Esempio n. 1
0
def rearrange(X, optimal = True, method = "average"):
    metric_kwargs = {}

    Y = squareform(X, force="tovector")
    Z = [(int(l), int(r), max(0., d), int(n))
         for (l, r, d, n) in linkage(Y, method=method, metric=None)]

    leaves = list(leaves_list(Z))
    N      = len(leaves)
    root   = len(Z)+N-1

    assert len(X) == N

    # bar-joseph optimal ordering
    if optimal:
        import barjoseph
        leaves = barjoseph.optimal(root, **{
            "S":        lambda i, j: exp(-X[i][j]),
            "left":     lambda i: None if i < N else Z[i-N][0],
            "right":    lambda i: None if i < N else Z[i-N][1],
            "is_leaf":  lambda i: i < N,
            "is_empty": lambda v: v is None,
        })

    assert list(sorted(leaves)) == list(range(N))

    return leaves
Esempio n. 2
0
                  [0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 0, 1, 1, 1, 1, 0, 0, 0]])

y = pdist(data, metric=metric)
Z = linkage(y, method=method, metric=metric)
dendrogram(Z)
Z = [(int(l), int(r), max(0., s), int(n)) for (l, r, s, n) in Z]  # cleaning

leaves = list(leaves_list(Z))
count = len(leaves)
root = len(Z) + count - 1

X = squareform(y)
assert len(X) == count

from utils import memoise

# bar-joseph optimal ordering ################################################

from barjoseph import optimal

leaves = optimal(
    root, **{
        "S": lambda i, j: X[i][j],
        "left": lambda i: None if i < count else Z[i - count][0],
        "right": lambda i: None if i < count else Z[i - count][1],
        "is_leaf": lambda i: i < count,
        "is_empty": lambda v: v is None,
    })

print leaves
Esempio n. 3
0
Z = [(int(l), int(r), max(0., d), int(n))
     for (l, r, d, n) in linkage(Y, method=method, metric=None)]

leaves = list(leaves_list(Z))
N      = len(leaves)
root   = len(Z)+N-1

assert len(X) == N


# bar-joseph optimal ordering

if optimal:
	import barjoseph
	leaves = barjoseph.optimal(root, **{
		"S":        lambda i, j: exp(-X[i][j]),
		"left":     lambda i: None if i < N else Z[i-N][0],
		"right":    lambda i: None if i < N else Z[i-N][1],
		"is_leaf":  lambda i: i < N,
		"is_empty": lambda v: v is None,
	})

assert list(sorted(leaves)) == list(range(N))


# output

for leaf in leaves:
	print(format(names[leaf], "%ss" % max(len(name) for name in names)),
	      *vectors[leaf], sep=sep)
Esempio n. 4
0
y = pdist(data, metric=metric)
Z = linkage(y, method=method, metric=metric)
dendrogram(Z)
Z = [(int(l), int(r), max(0., s), int(n)) for (l, r, s, n) in Z] # cleaning

leaves = list(leaves_list(Z))
count = len(leaves)
root = len(Z)+count-1

X = squareform(y)
assert len(X) == count


from utils import memoise


# bar-joseph optimal ordering ################################################

from barjoseph import optimal

leaves = optimal(root, **{
    "S":        lambda i, j: X[i][j],
    "left":     lambda i: None if i < count else Z[i-count][0],
    "right":    lambda i: None if i < count else Z[i-count][1],
    "is_leaf":  lambda i: i < count,
    "is_empty": lambda v: v is None,
})

print leaves
Esempio n. 5
0
Z = [(int(l), int(r), max(0., d), int(n))
     for (l, r, d, n) in linkage(Y, method=method, metric=None)]

leaves = list(leaves_list(Z))
N      = len(leaves)
root   = len(Z)+N-1

assert len(X) == N


# bar-joseph optimal ordering

if optimal:
	import barjoseph
	leaves = barjoseph.optimal(root, **{
		"S":        lambda i, j: exp(-X[i][j]),
		"left":     lambda i: None if i < N else Z[i-N][0],
		"right":    lambda i: None if i < N else Z[i-N][1],
		"is_leaf":  lambda i: i < N,
		"is_empty": lambda v: v is None,
	})

assert list(sorted(leaves)) == list(range(N))


# output

for leaf in leaves:
	print(format(names[leaf], "%ss" % max(len(name) for name in names)),
	      *vectors[leaf], sep=sep)