Esempio n. 1
0
    def test_find_lane(self):
        xodr_parser = XodrParser("modules/runtime/tests/data/urban_road.xodr")
        params = ParameterServer()
        world = World(params)
        map_interface = MapInterface()
        map_interface.SetOpenDriveMap(xodr_parser.map)
        world.SetMap(map_interface)

        lane_sw = map_interface.FindLane(Point2d(46, 180))
        assert lane_sw.lane_type == XodrLaneType.sidewalk

        lane_rl = map_interface.FindLane(Point2d(52, 130))
        assert lane_rl.lane_type == XodrLaneType.driving

        lane_no_lane = map_interface.FindLane(Point2d(120, 140))
        assert lane_no_lane == None

        xodr_parser = XodrParser(
            "modules/runtime/tests/data/city_highway_straight.xodr")
        np.set_printoptions(precision=8)
        params = ParameterServer()
        world = World(params)

        map_interface = MapInterface()
        map_interface.SetOpenDriveMap(xodr_parser.map)
        world.SetMap(map_interface)
        point = Point2d(5114, 5072)
        viewer = MPViewer(params=params, use_world_bounds=True)
        viewer.drawWorld(world)
        viewer.drawPoint2d(point, 'red', 1.0)
        viewer.show(block=True)
        time.sleep(0.1)
        lane_sw = map_interface.FindLane(point)
        self.assertIsNotNone(lane_sw, "This point is clearly on a lane!")
Esempio n. 2
0
    def test_one_agent_at_goal_state_limits(self):
        param_server = ParameterServer()
        # Model Definition
        behavior_model = BehaviorConstantVelocity(param_server)
        execution_model = ExecutionModelInterpolate(param_server)
        dynamic_model = SingleTrackModel(param_server)

        # Agent Definition
        agent_2d_shape = CarLimousine()
        init_state = np.array(
            [0, -191.789, -50.1725, 3.14 * 3.0 / 4.0, 150 / 3.6])
        agent_params = param_server.AddChild("agent1")
        goal_polygon = Polygon2d(
            [0, 0, 0],
            [Point2d(-1, -1),
             Point2d(-1, 1),
             Point2d(1, 1),
             Point2d(1, -1)])
        goal_polygon = goal_polygon.Translate(Point2d(-191.789, -50.1725))

        agent = Agent(
            init_state, behavior_model, dynamic_model, execution_model,
            agent_2d_shape, agent_params,
            GoalDefinitionStateLimits(
                goal_polygon,
                (3.14 * 3.0 / 4.0 - 0.08, 3.14 * 3.0 / 4.0 + 0.08)), None)

        world = World(param_server)
        world.AddAgent(agent)
        evaluator = EvaluatorGoalReached(agent.id)
        world.AddEvaluator("success", evaluator)

        info = world.Evaluate()
        self.assertEqual(info["success"], True)
Esempio n. 3
0
    def test_lane_change(self):
        # World Definition
        params = ParameterServer()
        world = World(params)

        # Model Definitions
        behavior_model = BehaviorMobil(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorIDMLaneTracking(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Map Definition
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        #agent_2d_shape = CarLimousine()
        agent_2d_shape = CarRectangle()
        init_state = np.array([0, 3, -1.75, 0, 5])
        agent_params = params.AddChild("agent1")
        goal_polygon = Polygon2d(
            [1, 1, 0],
            [Point2d(0, 0),
             Point2d(0, 2),
             Point2d(2, 2),
             Point2d(2, 0)])
        goal_polygon = goal_polygon.Translate(Point2d(50, -2))

        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      GoalDefinitionPolygon(goal_polygon), map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 15, -1.75, 0, 2])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       GoalDefinitionPolygon(goal_polygon), map_interface)
        world.AddAgent(agent2)

        # viewer
        viewer = MPViewer(params=params, use_world_bounds=True)

        # World Simulation
        sim_step_time = params["simulation"]["step_time",
                                             "Step-time in simulation", 0.05]
        sim_real_time_factor = params["simulation"][
            "real_time_factor", "execution in real-time or faster", 100]

        # Draw map
        for _ in range(0, 10):
            viewer.clear()
            world.Step(sim_step_time)
            viewer.drawWorld(world)
            viewer.show(block=False)
            time.sleep(sim_step_time / sim_real_time_factor)
Esempio n. 4
0
def goal_definition_from_track(track, end):
    states = list(dict_utils.get_item_iterator(track.motion_states))
    motion_state = states[-1][1]
    bark_state = bark_state_from_motion_state(motion_state)
    goal_polygon = Polygon2d(
        np.array([0.0, 0.0, 0.0]),
        [Point2d(-1.5, 0),
         Point2d(-1.5, 8),
         Point2d(1.5, 8),
         Point2d(1.5, 0)])
    goal_polygon = goal_polygon.Translate(
        Point2d(bark_state[0, int(StateDefinition.X_POSITION)],
                bark_state[0, int(StateDefinition.Y_POSITION)]))
    goal_definition = GoalDefinitionPolygon(goal_polygon)
    return goal_definition
Esempio n. 5
0
    def create_cpp_plan_view(self, plan_view, header):

        new_plan_view = PlanView()
        # create plan view..
        for geometry in plan_view["geometries"]:
            starting_point = Point2d(float(geometry["x"]),
                                     float(geometry["y"]))
            if geometry["geometry"]["type"] == "line":
                new_plan_view.AddLine(starting_point, float(geometry["hdg"]),
                                      float(geometry["length"]))
            if geometry["geometry"]["type"] == "arc":
                new_plan_view.AddArc(starting_point, float(geometry["hdg"]),
                                     float(geometry["length"]),
                                     float(geometry["geometry"]["curvature"]),
                                     0.25)  # TODO: s_inc
            if geometry["geometry"]["type"] == "spiral":
                new_plan_view.AddSpiral(
                    starting_point, float(geometry["hdg"]),
                    float(geometry["length"]),
                    float(geometry["geometry"]["curv_start"]),
                    float(geometry["geometry"]["curv_end"]), 2)  # TODO: s_inc

        # now use header/ offset to modify plan view
        if "offset" in header:
            off_x = header["offset"]["x"]
            off_y = header["offset"]["y"]
            off_hdg = header["offset"]["hdg"]
            logger.info("Transforming PlanView with given offset",
                        header["offset"])
            new_plan_view.ApplyOffsetTransform(off_x, off_y, off_hdg)

        return new_plan_view
Esempio n. 6
0
    def test_road(self):
        newXodrRoad = XodrRoad()
        newXodrRoad.id = 1
        newXodrRoad.name = "Autobahn A9"

        newPlanView = PlanView()
        newPlanView.AddLine(Point2d(0, 0), 1.57079632679, 10)

        newXodrRoad.plan_view = newPlanView

        line = newXodrRoad.plan_view.GetReferenceLine().ToArray()

        # Spiral
        p = Point2d(line[-1][0], line[-1][1])
        newXodrRoad.plan_view.AddSpiral(p, 1.57079632679, 50.0, 0.0, 0.3, 0.4)
        line = newXodrRoad.plan_view.GetReferenceLine().ToArray()
Esempio n. 7
0
 def test_write_params_agent(self):
   params = ParameterServer()
   behavior = BehaviorConstantVelocity(params)
   execution = ExecutionModelInterpolate(params)
   dynamic = SingleTrackModel(params)
   shape = Polygon2d([1.25, 1, 0], [
       Point2d(0, 0),
       Point2d(0, 2),
       Point2d(4, 2),
       Point2d(4, 0),
       Point2d(0, 0)
   ])
   init_state = np.zeros(4)
   agent = Agent(init_state, behavior, dynamic, execution, shape,
                 params.AddChild("agent"))
   params.Save("written_agents_param_test.json")
Esempio n. 8
0
    def test_road(self):
        newRoad = Road()
        newRoad.id = 1
        newRoad.name = "Autobahn A9"

        newPlanView = PlanView()
        newPlanView.add_line(Point2d(0, 0), 1.57079632679, 10)

        newRoad.plan_view = newPlanView

        line = newRoad.plan_view.get_reference_line().toArray()

        # Spiral
        p = Point2d(line[-1][0], line[-1][1])
        newRoad.plan_view.add_spiral(p, 1.57079632679, 50.0, 0.0, 0.3, 0.4)
        line = newRoad.plan_view.get_reference_line().toArray()
    def test_between_lanes(self):
        xodr_parser = XodrParser(
            "modules/runtime/tests/data/city_highway_straight.xodr")
        np.set_printoptions(precision=8)
        params = ParameterServer()

        world = World(params)
        map_interface = MapInterface()
        map_interface.SetOpenDriveMap(xodr_parser.map)
        world.SetMap(map_interface)

        # Simple test
        point_close = Point2d(5114.68262, 5086.44971)
        lane_sw = map_interface.FindLane(point_close)
        self.assertIsNotNone(
            lane_sw,
            "This point is still in the left lane! XodrLane boundary is 5114.683"
        )

        switched_lane = False
        lng_coord = 5086.44971
        i = 5114.5
        lane_sw = map_interface.FindLane(Point2d(i, lng_coord))
        assert lane_sw != None
        prev = lane_sw.lane_id
        prev_i = i
        while (i < 5117.5):
            lane_sw = map_interface.FindLane(Point2d(i, lng_coord))
            self.assertIsNotNone(
                lane_sw,
                "Should always be on at least one lane! Currently at ({}, {})".
                format(i, lng_coord))
            if prev != lane_sw.lane_id:
                # print(prev)
                # print(prev_i)
                # print(lane_sw.lane_id)
                # print(i)
                self.assertFalse(switched_lane,
                                 "XodrLane switch should only happens once!")
                switched_lane = True
            prev_i = i
            prev = lane_sw.lane_id
            i = i + 0.01
        self.assertTrue(switched_lane,
                        "Eventually should have switched lanes!")
Esempio n. 10
0
  def test_one_agent_at_goal_sequential(self):
    param_server = ParameterServer()
    # Model Definition
    dynamic_model = SingleTrackModel(param_server)
    behavior_model = BehaviorMPContinuousActions(param_server)
    idx = behavior_model.AddMotionPrimitive(np.array([1, 0]))
    behavior_model.ActionToBehavior(idx)
    execution_model = ExecutionModelInterpolate(param_server)


    # Agent Definition
    agent_2d_shape = CarLimousine()
    init_state = np.array([0, 0, 0, 0, 0])
    agent_params = param_server.AddChild("agent1")
    goal_frame = Polygon2d([0, 0, 0],
                             [Point2d(-1,-1),
                              Point2d(-1,1),
                              Point2d(1,1),
                              Point2d(1,-1)])

    goal_polygon1 = goal_frame.Translate(Point2d(10, 0))
    goal_polygon2 = goal_frame.Translate(Point2d(20, 0))
    goal_polygon3 = goal_frame.Translate(Point2d(30, 0))

    goal_def1 = GoalDefinitionStateLimits(goal_polygon1, [-0.08, 0.08])
    goal_def2 = GoalDefinitionStateLimits(goal_polygon2, [-0.08, 0.08])
    goal_def3 = GoalDefinitionStateLimits(goal_polygon3, [-0.08, 0.08])

    goal_definition = GoalDefinitionSequential([goal_def1,
                                                goal_def2,
                                                goal_def3])

    self.assertEqual(len(goal_definition.sequential_goals),3)
    agent = Agent(init_state,
                behavior_model,
                dynamic_model,
                execution_model,
                agent_2d_shape,
                agent_params,
                goal_definition,
                  None)

    world = World(param_server)
    world.AddAgent(agent)
    evaluator = EvaluatorGoalReached(agent.id)
    world.AddEvaluator("success", evaluator)

    # just drive with the single motion primitive should be successful 
    for _ in range(0,1000):
        world.Step(0.2)
        info = world.Evaluate()
        if info["success"]:
            break
    
    self.assertEqual(info["success"], True)
    self.assertAlmostEqual(agent.state[int(StateDefinition.X_POSITION)], 30, delta=0.5)
Esempio n. 11
0
  def test_draw_agents(self):
    params = ParameterServer()
    behavior = BehaviorConstantVelocity(params)
    execution = ExecutionModelInterpolate(params)
    dynamic = SingleTrackModel(params)
    shape = Polygon2d([1.25, 1, 0], [
        Point2d(0, 0),
        Point2d(0, 2),
        Point2d(4, 2),
        Point2d(4, 0),
        Point2d(0, 0)
    ])
    shape2 = CarLimousine()

    init_state = [0, 3, 2, 1]
    init_state2 = [0, 0, 5, 4]

    agent = Agent(init_state, behavior, dynamic, execution, shape,
                  params.AddChild("agent"))
    agent2 = Agent(init_state2, behavior, dynamic, execution, shape2,
                    params.AddChild("agent"))
Esempio n. 12
0
    def test_Crossing8Course(self):
        xodr_parser = XodrParser(
            "modules/runtime/tests/data/Crossing8Course.xodr")

        params = ParameterServer()
        world = World(params)

        map_interface = MapInterface()
        map_interface.SetOpenDriveMap(xodr_parser.map)
        world.SetMap(map_interface)

        start_point = Point2d(0, -11)
        lanes_near_start = map_interface.find_nearest_lanes(start_point, 1)
        assert (len(lanes_near_start) == 1)

        goal_point = Point2d(-191.789, -50.1725)
        lanes_near_goal = map_interface.find_nearest_lanes(goal_point, 1)
        assert (len(lanes_near_goal) == 1)
        time.sleep(
            2
        )  # if this is not here, the second unit test is not executed (maybe parsing takes too long?)
Esempio n. 13
0
    def __find_first_ts_on_map__(self, id_ego):
        traj = trajectory_from_track(self._track_dict[id_ego])
        for state in traj:
            point_agent = Point2d(state[1], state[2])
            lane_list = self._map_interface.find_nearest_lanes(point_agent, 3)
            for lane in lane_list:
                polygon = self._map_interface.GetRoadgraph(
                ).GetLanePolygonForLaneId(lane.lane_id)
                if Collide(polygon, point_agent):
                    time_ego_first = state[0] * 1e3  # use timestamp in ms
                    return time_ego_first

        return None
Esempio n. 14
0
    def test_line(self):
        pv = PlanView()

        # Line
        pv.AddLine(Point2d(0, 0), 1.57079632679, 10)
        line = pv.GetReferenceLine().ToArray()

        # Spiral
        p = Point2d(line[-1][0], line[-1][1])
        pv.AddSpiral(p, 1.57079632679, 50.0, 0.0, 0.3, 0.4)
        line = pv.GetReferenceLine().ToArray()

        offset = XodrLaneOffset(1.5, 0, 0, 0)
        lane_width = XodrLaneWidth(0.0, 59.9, offset)

        lane = XodrLane.CreateLaneFromLaneWidth(-1, pv.GetReferenceLine(),
                                                lane_width, 0.5)

        print(lane)
        lane = XodrLane.CreateLaneFromLaneWidth(1, pv.GetReferenceLine(),
                                                lane_width, 0.5)
        print(lane)
Esempio n. 15
0
    def test_line(self):
        pv = PlanView()

        # Line
        pv.add_line(Point2d(0, 0), 1.57079632679, 10)
        line = pv.get_reference_line().toArray()

        # Spiral
        p = Point2d(line[-1][0], line[-1][1])
        pv.add_spiral(p, 1.57079632679, 50.0, 0.0, 0.3, 0.4)
        line = pv.get_reference_line().toArray()

        offset = LaneOffset(1.5, 0, 0, 0)
        lane_width = LaneWidth(0.0, 59.9, offset)

        lane = Lane.create_lane_from_lane_width(-1,
                                                pv.get_reference_line(), lane_width, 0.5)

        print(lane)
        lane = Lane.create_lane_from_lane_width(
            1, pv.get_reference_line(), lane_width, 0.5)
        print(lane)
Esempio n. 16
0
  def test_two_roads_one_lane(self):
    params = ParameterServer()
    world = World(params)

    xodr_map = MakeXodrMapOneRoadTwoLanes()

    map_interface = MapInterface()
    map_interface.SetOpenDriveMap(xodr_map)
    world.SetMap(map_interface)

    start_point = Point2d(0, -11)
    lanes_near_start = map_interface.find_nearest_lanes(start_point, 1)
    assert(len(lanes_near_start) == 1)

    goal_point = Point2d(-191.789, -50.1725)
    lanes_near_goal = map_interface.find_nearest_lanes(goal_point, 1)
    assert(len(lanes_near_goal) == 1)

    viewer = MPViewer(params=params, use_world_bounds=True)
    viewer.drawWorld(world)

    time.sleep(2)  # if this is not here, the second unit test is not executed (maybe parsing takes too long?)
Esempio n. 17
0
    def test_world(self):
        # create agent
        params = ParameterServer()
        behavior = BehaviorConstantVelocity(params)
        execution = ExecutionModelInterpolate(params)
        dynamic = SingleTrackModel(params)
        shape = Polygon2d([1.25, 1, 0], [
            Point2d(0, 0),
            Point2d(0, 2),
            Point2d(4, 2),
            Point2d(4, 0),
            Point2d(0, 0)
        ])
        init_state = np.array([0, 0, 0, 0, 5])
        agent = Agent(init_state, behavior, dynamic, execution, shape,
                      params.AddChild("agent"))
        road_map = OpenDriveMap()
        newXodrRoad = XodrRoad()
        newXodrRoad.id = 1
        newXodrRoad.name = "Autobahn A9"
        newPlanView = PlanView()
        newPlanView.AddLine(Point2d(0, 0), 1.57079632679, 10)
        newXodrRoad.plan_view = newPlanView
        line = newXodrRoad.plan_view.GetReferenceLine().ToArray()
        p = Point2d(line[-1][0], line[-1][1])
        newXodrRoad.plan_view.AddSpiral(p, 1.57079632679, 50.0, 0.0, 0.3, 0.4)
        line = newXodrRoad.plan_view.GetReferenceLine()
        lane_section = XodrLaneSection(0)
        lane = XodrLane()
        lane.line = line
        lane_section.AddLane(lane)
        newXodrRoad.AddLaneSection(lane_section)
        road_map.AddRoad(newXodrRoad)

        r = Roadgraph()
        map_interface = MapInterface()
        map_interface.SetOpenDriveMap(road_map)
        map_interface.SetRoadgraph(r)
        world = World(params)
        world.AddAgent(agent)
Esempio n. 18
0
behavior_model2 = BehaviorConstantVelocity(param_server)
execution_model2 = ExecutionModelInterpolate(param_server)
dynamic_model2 = SingleTrackModel(param_server)

# Map Definition
xodr_parser = XodrParser("modules/runtime/tests/data/Crossing8Course.xodr")
map_interface = MapInterface()
map_interface.SetOpenDriveMap(xodr_parser.map)
world.SetMap(map_interface)

# Agent Definition
agent_2d_shape = CarLimousine()
init_state = np.array([0, -15, -13, 3.14 * 3.0 / 4.0, 50 / 3.6])
goal_polygon = Polygon2d(
    [0, 0, 0],
    [Point2d(-1, -1),
     Point2d(-1, 1),
     Point2d(1, 1),
     Point2d(1, -1)])
goal_polygon = goal_polygon.Translate(Point2d(-63, -61))
agent_params = param_server.addChild("agent1")
agent1 = Agent(init_state, behavior_model, dynamic_model,
               execution_model, agent_2d_shape, agent_params,
               GoalDefinitionPolygon(goal_polygon), map_interface)
world.AddAgent(agent1)

agent_2d_shape2 = CarLimousine()
init_state2 = np.array([0, -15, -13, 3.14 * 3.0 / 4.0, 5.2])
agent_params2 = param_server.addChild("agent2")
agent2 = Agent(init_state2, behavior_model2, dynamic_model2, execution_model2,
               agent_2d_shape2, agent_params2,
Esempio n. 19
0
    def test_one_agent_at_goal_state_limits_frenet(self):
        param_server = ParameterServer()
        # Model Definition
        behavior_model = BehaviorConstantVelocity(param_server)
        execution_model = ExecutionModelInterpolate(param_server)
        dynamic_model = SingleTrackModel(param_server)

        # Agent Definition
        agent_2d_shape = CarLimousine()
        agent_params = param_server.AddChild("agent1")

        center_line = Line2d()
        center_line.AddPoint(Point2d(5.0, 5.0))
        center_line.AddPoint(Point2d(10.0, 10.0))
        center_line.AddPoint(Point2d(20.0, 10.0))

        max_lateral_dist = (0.4, 1)
        max_orientation_diff = (0.08, 0.1)
        velocity_range = (20.0, 25.0)
        goal_definition = GoalDefinitionStateLimitsFrenet(
            center_line, max_lateral_dist, max_orientation_diff,
            velocity_range)

        # not at goal x,y, others yes
        agent1 = Agent(np.array([0, 6, 8, 3.14 / 4.0, velocity_range[0]]),
                       behavior_model, dynamic_model, execution_model,
                       agent_2d_shape, agent_params, goal_definition, None)

        # at goal x,y and others
        agent2 = Agent(np.array([0, 5.0, 5.5, 3.14 / 4.0, velocity_range[1]]),
                       behavior_model, dynamic_model, execution_model,
                       agent_2d_shape, agent_params, goal_definition, None)

        # not at goal x,y,v yes but not orientation
        agent3 = Agent(
            np.array(
                [0, 5, 5.5, 3.14 / 4.0 + max_orientation_diff[1] + 0.001,
                 20]), behavior_model, dynamic_model, execution_model,
            agent_2d_shape, agent_params, goal_definition, None)

        # not at goal x,y, orientation but not v
        agent4 = Agent(
            np.array([
                0, 5, 4.5, 3.14 / 4 - max_orientation_diff[0],
                velocity_range[0] - 0.01
            ]), behavior_model, dynamic_model, execution_model, agent_2d_shape,
            agent_params, goal_definition, None)

        # at goal x,y, at lateral limit
        agent5 = Agent(
            np.array([
                0, 15, 10 - max_lateral_dist[0] + 0.05, 0, velocity_range[1]
            ]), behavior_model, dynamic_model, execution_model, agent_2d_shape,
            agent_params, goal_definition, None)

        # not at goal x,y slightly out of lateral limit
        agent6 = Agent(
            np.array([
                0, 15, 10 + max_lateral_dist[0] + 0.05,
                3.14 / 4 + max_orientation_diff[0], velocity_range[0]
            ]), behavior_model, dynamic_model, execution_model, agent_2d_shape,
            agent_params, goal_definition, None)

        # not at goal x,y,v yes but not orientation
        agent7 = Agent(
            np.array(
                [0, 5, 5.5, 3.14 / 4.0 - max_orientation_diff[0] - 0.001,
                 20]), behavior_model, dynamic_model, execution_model,
            agent_2d_shape, agent_params, goal_definition, None)

        world = World(param_server)
        world.AddAgent(agent1)
        world.AddAgent(agent2)
        world.AddAgent(agent3)
        world.AddAgent(agent4)
        world.AddAgent(agent5)
        world.AddAgent(agent6)
        world.AddAgent(agent7)

        evaluator1 = EvaluatorGoalReached(agent1.id)
        evaluator2 = EvaluatorGoalReached(agent2.id)
        evaluator3 = EvaluatorGoalReached(agent3.id)
        evaluator4 = EvaluatorGoalReached(agent4.id)
        evaluator5 = EvaluatorGoalReached(agent5.id)
        evaluator6 = EvaluatorGoalReached(agent6.id)
        evaluator7 = EvaluatorGoalReached(agent7.id)
        world.AddEvaluator("success1", evaluator1)
        world.AddEvaluator("success2", evaluator2)
        world.AddEvaluator("success3", evaluator3)
        world.AddEvaluator("success4", evaluator4)
        world.AddEvaluator("success5", evaluator5)
        world.AddEvaluator("success6", evaluator6)
        world.AddEvaluator("success7", evaluator7)

        info = world.Evaluate()
        self.assertEqual(info["success1"], False)
        self.assertEqual(info["success2"], True)
        self.assertEqual(info["success3"], False)
        self.assertEqual(info["success4"], False)
        self.assertEqual(info["success5"], True)
        self.assertEqual(info["success6"], False)
        self.assertEqual(info["success7"], False)
Esempio n. 20
0
#   # plot plan_view
#   road_id = roadgraph.GetRoadForLaneId(lane_id)
#   road = map_interface.GetOpenDriveMap().GetRoad(road_id)
#   plan_view_reference = road.plan_view.GetReferenceLine()
#   # plot polygon with center line
#   viewer.drawWorld(world)
#   color = list(np.random.choice(range(256), size=3)/256)
#   viewer.drawPolygon2d(lane_polygon, color, 1.0)
#   viewer.drawLine2d(plan_view_reference, color="red")
#   viewer.saveFig(output_dir + "/" + "roadgraph_laneid_" + str(lane_id) + ".png")
#   viewer.show()
#   viewer.clear()


comb_all = []
start_point = [Point2d(-115+1117, -158+1107)]
end_point_list = [Point2d(27+1117, -158+1107)]
comb = list(itertools.product(start_point, end_point_list))
comb_all = comb_all + comb


# OpenDrive8
# comb_all = []
# start_point = [Point2d(1003, 1007)]
# end_point_list = [Point2d(892, 1008)]
# comb = list(itertools.product(start_point, end_point_list))
# comb_all = comb_all + comb

# starting on the left
# three_way_plain
# comb_all = []
Esempio n. 21
0
    # plot plan_view
    road_id = roadgraph.GetRoadForLaneId(lane_id)
    road = map_interface.GetOpenDriveMap().GetRoad(road_id)
    plan_view_reference = road.plan_view.GetReferenceLine()
    # plot polygon with center line
    viewer.drawWorld(world)
    color = list(np.random.choice(range(256), size=3) / 256)
    viewer.drawPolygon2d(lane_polygon, color, 1.0)
    viewer.drawLine2d(plan_view_reference, color="red")
    viewer.saveFig(output_dir + "/" + "roadgraph_laneid_" + str(lane_id) +
                   ".png")
    viewer.show()
    viewer.clear()

comb_all = []
start_point = [Point2d(1004, 1003), Point2d(1004, 1006)]
end_point_list = [Point2d(886, 1008)]
comb = list(itertools.product(start_point, end_point_list))
comb_all = comb_all + comb

# OpenDrive8
# comb_all = []
# start_point = [Point2d(1003, 1007)]
# end_point_list = [Point2d(892, 1008)]
# comb = list(itertools.product(start_point, end_point_list))
# comb_all = comb_all + comb

# starting on the left
# three_way_plain
# comb_all = []
# start_point = [Point2d(-30, -2)]
Esempio n. 22
0
    def test_python_behavior_model(self):
        # World Definition
        scenario_param_file = "macro_actions_test.json"  # must be within examples params folder
        params = ParameterServer(filename=os.path.join(
            "modules/world/tests/params/", scenario_param_file))

        world = World(params)

        # Define two behavior models one python one standard c++ model
        behavior_model = PythonDistanceBehavior(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorConstantVelocity(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Define the map interface and load a testing map
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        # Define the agent shapes
        agent_2d_shape = CarRectangle()
        init_state = np.array([0, 3, -5.25, 0, 20])

        # Define the goal definition for agents
        center_line = Line2d()
        center_line.AddPoint(Point2d(0.0, -1.75))
        center_line.AddPoint(Point2d(100.0, -1.75))

        max_lateral_dist = (0.4, 0.5)
        max_orientation_diff = (0.08, 0.1)
        velocity_range = (5.0, 20.0)
        goal_definition = GoalDefinitionStateLimitsFrenet(
            center_line, max_lateral_dist, max_orientation_diff,
            velocity_range)

        # define two agents with the different behavior models
        agent_params = params.AddChild("agent1")
        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      goal_definition, map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 25, -5.25, 0, 15])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       goal_definition, map_interface)
        world.AddAgent(agent2)

        # viewer
        viewer = MPViewer(params=params, use_world_bounds=True)

        # World Simulation
        sim_step_time = params["simulation"]["step_time",
                                             "Step-time in simulation", 0.2]
        sim_real_time_factor = params["simulation"][
            "real_time_factor", "execution in real-time or faster", 1]

        # Draw map
        video_renderer = VideoRenderer(renderer=viewer,
                                       world_step_time=sim_step_time)

        for _ in range(0, 20):
            world.Step(sim_step_time)
            viewer.clear()
            video_renderer.drawWorld(world)
            video_renderer.drawGoalDefinition(goal_definition, "red", 0.5,
                                              "red")
            time.sleep(sim_step_time / sim_real_time_factor)

        video_renderer.export_video(filename="./test_video_intermediate",
                                    remove_image_dir=True)
Esempio n. 23
0
execution_model = ExecutionModelInterpolate(param_server)
dynamic_model = SingleTrackModel(param_server)

# Map Definition
xodr_parser = XodrParser("modules/runtime/tests/data/Crossing8Course.xodr")
map_interface = MapInterface()
map_interface.SetOpenDriveMap(xodr_parser.map)
world.SetMap(map_interface)

# Agent Definition
agent_2d_shape = CarLimousine()
init_state = np.array([0, -15, -13, 3.14 * 5.0 / 4.0, 10 / 3.6])
agent_params = param_server.addChild("agent1")
goal_polygon = Polygon2d(
    [0, 0, 0],
    [Point2d(-1, -1),
     Point2d(-1, 1),
     Point2d(1, 1),
     Point2d(1, -1)])
goal_polygon = goal_polygon.Translate(Point2d(-191.789, -50.1725))

agent = Agent(
    init_state,
    behavior_model,
    dynamic_model,
    execution_model,
    agent_2d_shape,
    agent_params,
    GoalDefinitionPolygon(goal_polygon),  # goal_lane_id
    map_interface)
world.AddAgent(agent)
        self.cosimulation_viewer.show()


sim = Cosimulation()

try:
    sim.launch_carla_server()
    sim.connect_carla_server()

    sim.spawn_npc_agents(10)

    # [TIME_POSITION, X_POSITION, Y_POSITION, THETA_POSITION, VEL_POSITION, ...]
    ego_initial = np.array([0, 90, -197, 0, 0])
    goal_polygon = Polygon2d(
        [0, 0, 0],
        [Point2d(-1, -1),
         Point2d(-1, 1),
         Point2d(1, 1),
         Point2d(1, -1)])
    goal_polygon = goal_polygon.Translate(Point2d(2, -300))

    bp_lib = sim.carla_client.get_blueprint_library()
    bp = bp_lib.filter("vehicle.dodge_charger.police")[0]
    tf = sim.carla_client.generate_tranformation(x=ego_initial[1],
                                                 y=ego_initial[2],
                                                 z=0.3,
                                                 pitch=0,
                                                 yaw=ego_initial[3],
                                                 roll=0)

    carla_ego_id = sim.carla_client.spawn_actor(bp, tf)
Esempio n. 25
0
    def test_uct_single_agent(self):
        try:
            from bark.models.behavior import BehaviorUCTSingleAgentMacroActions
        except:
            print("Rerun with --define planner_uct=true")
            return
        # World Definition
        scenario_param_file = "macro_actions_test.json"  # must be within examples params folder
        params = ParameterServer(filename=os.path.join(
            "modules/world/tests/params/", scenario_param_file))

        world = World(params)

        # Model Definitions
        behavior_model = BehaviorUCTSingleAgentMacroActions(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorConstantVelocity(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Map Definition
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        # agent_2d_shape = CarLimousine()
        agent_2d_shape = CarRectangle()
        init_state = np.array([0, 3, -5.25, 0, 20])
        agent_params = params.AddChild("agent1")

        # goal_polygon = Polygon2d(
        #     [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)])
        # goal_definition = GoalDefinitionPolygon(goal_polygon)
        # goal_polygon = goal_polygon.Translate(Point2d(90, -2))

        center_line = Line2d()
        center_line.AddPoint(Point2d(0.0, -1.75))
        center_line.AddPoint(Point2d(100.0, -1.75))

        max_lateral_dist = (0.4, 0.5)
        max_orientation_diff = (0.08, 0.1)
        velocity_range = (5.0, 20.0)
        goal_definition = GoalDefinitionStateLimitsFrenet(
            center_line, max_lateral_dist, max_orientation_diff,
            velocity_range)

        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      goal_definition, map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 25, -5.25, 0, 0])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       goal_definition, map_interface)
        world.AddAgent(agent2)

        # viewer
        viewer = MPViewer(params=params, use_world_bounds=True)

        # World Simulation
        sim_step_time = params["simulation"]["step_time",
                                             "Step-time in simulation", 0.2]
        sim_real_time_factor = params["simulation"][
            "real_time_factor", "execution in real-time or faster", 1]

        # Draw map
        video_renderer = VideoRenderer(renderer=viewer,
                                       world_step_time=sim_step_time)

        for _ in range(0, 5):
            world.Step(sim_step_time)
            viewer.clear()
            video_renderer.drawWorld(world)
            video_renderer.drawGoalDefinition(goal_definition)
            time.sleep(sim_step_time / sim_real_time_factor)

        video_renderer.export_video(filename="./test_video_intermediate",
                                    remove_image_dir=True)
Esempio n. 26
0
    def test_evaluator_drivable_area(self):
        # World Definition
        params = ParameterServer()
        world = World(params)

        # Model Definitions
        behavior_model = BehaviorConstantVelocity(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        # Map Definition
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)
        #open_drive_map = world.map.GetOpenDriveMap()

        #agent_2d_shape = CarLimousine()
        agent_2d_shape = Polygon2d(
            [1.25, 1, 0],
            [Point2d(-1, -1),
             Point2d(-1, 1),
             Point2d(3, 1),
             Point2d(3, -1)])
        init_state = np.array([0, 3, -1.75, 0, 5])
        agent_params = params.AddChild("agent1")
        goal_polygon = Polygon2d(
            [1, 1, 0],
            [Point2d(0, 0),
             Point2d(0, 2),
             Point2d(2, 2),
             Point2d(2, 0)])
        goal_polygon = goal_polygon.Translate(Point2d(50, -2))

        agent = Agent(
            init_state,
            behavior_model,
            dynamic_model,
            execution_model,
            agent_2d_shape,
            agent_params,
            GoalDefinitionPolygon(goal_polygon),  # goal_lane_id
            map_interface)
        world.AddAgent(agent)

        evaluator = EvaluatorDrivableArea()
        world.AddEvaluator("drivable_area", evaluator)

        info = world.Evaluate()
        self.assertFalse(info["drivable_area"])

        viewer = MPViewer(params=params, use_world_bounds=True)

        # Draw map
        viewer.drawGoalDefinition(goal_polygon,
                                  color=(1, 0, 0),
                                  alpha=0.5,
                                  facecolor=(1, 0, 0))
        viewer.drawWorld(world)
        viewer.drawRoadCorridor(agent.road_corridor)
        viewer.show(block=False)
Esempio n. 27
0
        self.cosimulation_viewer.show()


sim = Cosimulation()

try:
    sim.launch_carla_server()
    sim.connect_carla_server()

    sim.spawn_npc_agents(1)

    # [TIME_POSITION, X_POSITION, Y_POSITION, THETA_POSITION, VEL_POSITION, ...]
    ego_initial = np.array([0, 200, 0, 0, 0])
    goal_polygon = Polygon2d(
        [0, 0, 0],
        [Point2d(-2, -2),
         Point2d(-2, 2),
         Point2d(2, 2),
         Point2d(2, -2)])
    goal_polygon = goal_polygon.Translate(Point2d(0, 0))

    bp_lib = sim.carla_client.get_blueprint_library()
    bp = bp_lib.filter("vehicle.dodge_charger.police")[0]
    tf = sim.carla_client.generate_tranformation(x=ego_initial[1],
                                                 y=ego_initial[2],
                                                 z=0.3,
                                                 pitch=0,
                                                 yaw=math.degrees(
                                                     ego_initial[3]),
                                                 roll=0)