sys.path.append("..") from barry.config import setup from barry.models import PowerNoda2019 from barry.datasets import PowerSpectrum_SDSS_DR12_Z061_NGC from barry.postprocessing import BAOExtractor from barry.cosmology.camb_generator import getCambGenerator from barry.samplers import DynestySampler from barry.fitter import Fitter if __name__ == "__main__": pfn, dir_name, file = setup(__file__) c = getCambGenerator() r_s = c.get_data()[0] postprocess = BAOExtractor(r_s) sampler = DynestySampler(temp_dir=dir_name) fitter = Fitter(dir_name) for r in [True, False]: rt = "Recon" if r else "Prerecon" data = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r, postprocess=postprocess) n = PowerNoda2019(postprocess=postprocess, recon=r, nonlinear_type="spt") n2 = PowerNoda2019(postprocess=postprocess, recon=r, nonlinear_type="halofit")
from barry.utils import weighted_avg_and_std from barry.datasets.dataset_power_spectrum import PowerSpectrum_DESIMockChallenge0_Z01 from barry.cosmology.camb_generator import getCambGenerator from barry.postprocessing import BAOExtractor from barry.config import setup from barry.models import PowerBeutler2017 from barry.samplers import DynestySampler from barry.fitter import Fitter from barry.models.model import Correction if __name__ == "__main__": pfn, dir_name, file = setup(__file__) c = getCambGenerator() r_s = c.get_data()["r_s"] p = BAOExtractor(r_s) sampler = DynestySampler(temp_dir=dir_name, nlive=1000) fitter = Fitter(dir_name) cs = ["#262232", "#116A71", "#48AB75", "#D1E05B"] for r in [False]: t = "Recon" if r else "Prerecon" # Fix sigma_nl for one of the Beutler models model = PowerBeutler2017(recon=r, isotropic=False, correction=Correction.NONE) model.set_default("sigma_nl_par", 10.9) model.set_default("sigma_nl_perp", 5.98) model.set_fix_params(["om", "sigma_nl_par", "sigma_nl_perp"])
from barry.datasets import PowerSpectrum_SDSS_DR12_Z061_NGC from barry.postprocessing import BAOExtractor from barry.cosmology.camb_generator import CambGenerator from barry.samplers import DynestySampler from barry.fitter import Fitter if __name__ == "__main__": pfn, dir_name, file = setup(__file__) c = CambGenerator() r_s = c.get_data()[0] fitter = Fitter(dir_name) ps = [ BAOExtractor(r_s, extra_ks=(0.095, 0.13)), BAOExtractor(r_s, extra_ks=(0.095, 0.14)), BAOExtractor(r_s, extra_ks=(0.095, 0.15)), BAOExtractor(r_s, extra_ks=(0.095, 0.16)), BAOExtractor(r_s, extra_ks=(0.095, 0.17)), BAOExtractor(r_s, extra_ks=(0.095, 0.18)), BAOExtractor(r_s, extra_ks=(0.095, 0.19)), BAOExtractor(r_s, extra_ks=(0.095, 0.20)), BAOExtractor(r_s, extra_ks=(0.095, 0.21)), BAOExtractor(r_s, extra_ks=(0.095, 0.22)), BAOExtractor(r_s, extra_ks=(0.095, 0.23)), BAOExtractor(r_s, extra_ks=(0.095, 0.24)), ] recon = True for p in ps:
cov[i, j] = pk_cov[i, j] return cov if __name__ == "__main__": import seaborn as sb import matplotlib.pyplot as plt logging.basicConfig( level=logging.INFO, format="[%(levelname)7s |%(funcName)18s] %(message)s") logging.getLogger("matplotlib").setLevel(logging.WARNING) camb = getCambGenerator() r_s = c.get_data()[0] extractor = BAOExtractor(r_s, reorder=False) extractor2 = PureBAOExtractor(r_s) step_size = 1 mink = 0.02 maxk = 0.3 data_raw = PowerSpectrum_SDSS_DR12_Z061_NGC(step_size=step_size, fake_diag=False, min_k=0.0, max_k=0.32) data2 = PowerSpectrum_SDSS_DR12_Z061_NGC(postprocess=extractor, step_size=step_size, min_k=mink, max_k=maxk) ks = data_raw.ks
import logging from barry.cosmology.camb_generator import getCambGenerator from barry.datasets import PowerSpectrum_SDSS_DR12_Z061_NGC from barry.models import PowerNoda2019 from barry.postprocessing import BAOExtractor if __name__ == "__main__": logging.basicConfig( level=logging.DEBUG, format="[%(levelname)7s |%(funcName)20s] %(message)s") logging.getLogger("matplotlib").setLevel(logging.ERROR) c = getCambGenerator() r_s = c.get_data()["r_s"] postprocess = BAOExtractor(r_s, mink=0.15) for recon in [True, False]: model1 = PowerNoda2019(recon=recon, name=f"Noda2019, recon={recon}", postprocess=postprocess, fix_params=["om", "f", "gamma"]) dataset1 = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=recon, postprocess=postprocess, min_k=0.03, max_k=0.15) data1 = dataset1.get_data() print(list(data1[0].keys())) print(data1[0]["ks_output"]) exit()
from barry.datasets import PowerSpectrum_SDSS_DR12_Z061_NGC from barry.postprocessing import BAOExtractor from barry.cosmology.camb_generator import CambGenerator from barry.samplers import DynestySampler from barry.fitter import Fitter if __name__ == "__main__": pfn, dir_name, file = setup(__file__) c = CambGenerator() r_s = c.get_data()[0] fitter = Fitter(dir_name) ps = [ BAOExtractor(r_s, mink=0.03), BAOExtractor(r_s, mink=0.04), BAOExtractor(r_s, mink=0.05), BAOExtractor(r_s, mink=0.06), BAOExtractor(r_s, mink=0.07) ] recon = True for p in ps: n = f"$k = {p.mink:0.2f}\, h / {{\\rm Mpc}}$" model = PowerNoda2019(postprocess=p, recon=recon) data = PowerSpectrum_SDSS_DR12_Z061_NGC(min_k=0.02, max_k=0.30, postprocess=p, recon=recon) fitter.add_model_and_dataset(model, data, name=n)
pk1d = integrate.simps(pk_smooth * (kaiser_prefac ** 2 + pk_nonlinear), self.mu, axis=0) else: # Compute the BAO damping/propagator propagator = self.get_damping(growth, om, gamma) pk1d = integrate.simps(pk_smooth * ((1.0 + pk_ratio * propagator) * kaiser_prefac ** 2 + pk_nonlinear), self.mu, axis=0) return ks, pk1d if __name__ == "__main__": import sys sys.path.append("../..") from barry.datasets.dataset_power_spectrum import PowerSpectrum_SDSS_DR12_Z061_NGC from barry.postprocessing import BAOExtractor from barry.config import setup_logging setup_logging() postprocess = BAOExtractor(147.6) print("Checking pre-recon") dataset = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=False, postprocess=postprocess) model_pre = PowerNoda2019(recon=False, postprocess=postprocess) model_pre.sanity_check(dataset) print("Checking post-recon") dataset = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=True, postprocess=postprocess) model_post = PowerNoda2019(recon=True, postprocess=postprocess) model_post.sanity_check(dataset)
from barry.config import setup from barry.models import PowerNoda2019 from barry.datasets import PowerSpectrum_SDSS_DR12_Z061_NGC from barry.postprocessing import BAOExtractor, PureBAOExtractor from barry.cosmology.camb_generator import getCambGenerator from barry.samplers import DynestySampler from barry.fitter import Fitter import numpy as np if __name__ == "__main__": pfn, dir_name, file = setup(__file__) c = getCambGenerator() r_s = c.get_data()["r_s"] postprocess = BAOExtractor(r_s) r = True model = PowerNoda2019(postprocess=postprocess, recon=r, name="") mink = 0.03 maxk = 0.30 datas = [ PowerSpectrum_SDSS_DR12_Z061_NGC(name="Mock covariance", recon=r, min_k=mink, max_k=maxk, postprocess=postprocess), PowerSpectrum_SDSS_DR12_Z061_NGC(name="Nishimichi, full", recon=r, min_k=mink, max_k=maxk, postprocess=postprocess),
from barry.config import setup from barry.models import PowerSeo2016, PowerBeutler2017, PowerDing2018 from barry.samplers import DynestySampler, EnsembleSampler from barry.fitter import Fitter from barry.models.model import Correction # Check to see if including the hexadecapole or higher order multipoles gives tighter constraints on BAO parameters # when fitting the mock average if __name__ == "__main__": pfn, dir_name, file = setup(__file__) # dir_name = dir_name + "nlive_1500/" c = getCambGenerator() r_s = c.get_data()["r_s"] p = BAOExtractor(r_s) sampler = DynestySampler(temp_dir=dir_name, nlive=500) # sampler = EnsembleSampler(temp_dir=dir_name, num_steps=5000) fitter = Fitter(dir_name) cs = ["#262232", "#116A71", "#48AB75", "#D1E05B"] for r in [True]: t = "Recon" if r else "Prerecon" ls = "-" # if r else "--" d_quad = PowerSpectrum_Beutler2019(recon=r, isotropic=False, fit_poles=[0, 2], reduce_cov_factor=np.sqrt(2000.0)) d_odd = PowerSpectrum_Beutler2019(recon=r,