Esempio n. 1
0
def log_grow_ratio(combined_node: LeafNode, left_node: LeafNode,
                   right_node: LeafNode, sigma: Sigma, sigma_mu: float):
    var = np.power(sigma.current_value(), 2)
    var_mu = np.power(sigma_mu, 2)
    n = combined_node.data.n_obsv
    n_l = left_node.data.n_obsv
    n_r = right_node.data.n_obsv

    first_term = (var * (var + n * sigma_mu)) / ((var + n_l * var_mu) *
                                                 (var + n_r * var_mu))
    first_term = np.log(np.sqrt(first_term))

    if combined_node.data.y_sum_cache_up_to_date and left_node.data.y_sum_cache_up_to_date:
        combined_y_sum = combined_node.data.summed_y()
        left_y_sum = left_node.data.summed_y()
        right_y_sum = right_node.data.summed_y()
    else:
        combined_y_sum = combined_node.data.summed_y()
        left_y_sum = left_node.data.summed_y()
        right_y_sum = combined_y_sum - left_y_sum

    left_resp_contribution = np.square(left_y_sum) / (var + n_l * sigma_mu)
    right_resp_contribution = np.square(right_y_sum) / (var + n_r * sigma_mu)
    combined_resp_contribution = np.square(combined_y_sum) / (var +
                                                              n * sigma_mu)

    resp_contribution = left_resp_contribution + right_resp_contribution - combined_resp_contribution

    return first_term + ((var_mu / (2 * var)) * resp_contribution)
Esempio n. 2
0
def log_change_ratio(old_node: DecisionNode, old_left_node: LeafNode,
                     old_right_node: LeafNode, node: LeafNode,
                     left_node: LeafNode, right_node: LeafNode, sigma: Sigma,
                     sigma_mu: float):
    var = np.power(sigma.current_value(), 2)
    var_mu = np.power(sigma_mu, 2)
    n_1 = old_left_node.data.n_obsv
    n_1_star = left_node.data.n_obsv
    n_2 = old_right_node.data.n_obsv
    n_2_star = old_right_node.data.n_obsv
    combined_y_sum, left_y_sum, right_y_sum = left_and_right_sums(
        old_node, old_left_node, old_right_node)
    combined_y_sum_star, left_y_sum_star, right_y_sum_star = left_and_right_sums(
        node, left_node, right_node)

    first_term = (var / var_mu + n_1) / (var / var_mu + n_1_star) * (
        var / var_mu + n_2) / (var / var_mu + n_2_star)
    first_term = np.log(np.sqrt(first_term))
    left_contribution = np.square(left_y_sum) / (n_1 + var / var_mu)
    right_contribution = np.square(right_y_sum) / (n_2 + var / var_mu)
    left_contribution_star = np.square(left_y_sum_star) / (n_1_star +
                                                           var / var_mu)
    right_contribution_star = np.square(right_y_sum_star) / (n_2_star +
                                                             var / var_mu)
    contribution = left_contribution_star + right_contribution_star - left_contribution - right_contribution

    return first_term + contribution / (2 * var)
Esempio n. 3
0
 def _construct_model(self, X: np.ndarray, y: np.ndarray) -> Model:
     if len(X) == 0 or X.shape[1] == 0:
         raise ValueError("Empty covariate matrix passed")
     self.data = self._convert_covariates_to_data(X, y)
     self.sigma = Sigma(self.sigma_a, self.sigma_b,
                        self.data.normalizing_scale)
     self.model = Model(self.data,
                        self.sigma,
                        n_trees=self.n_trees,
                        alpha=self.alpha,
                        beta=self.beta)
     return self.model
Esempio n. 4
0
 def setUp(self):
     self.X = format_covariate_matrix(pd.DataFrame({"a": [1, 2, 3, 4, 5]}))
     self.raw_y = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
     self.data = Data(format_covariate_matrix(self.X),
                      self.raw_y,
                      normalize=True)
     normalizing_scale = self.data.y.normalizing_scale
     self.model = Model(self.data,
                        Sigma(0.001,
                              0.001,
                              scaling_factor=normalizing_scale),
                        n_trees=2,
                        initializer=None)
     self.model.initialize_trees()
Esempio n. 5
0
def log_grow_ratio(combined_node: LeafNode, left_node: LeafNode, right_node: LeafNode, sigma: Sigma, sigma_mu: float):
    var = np.power(sigma.current_value(), 2)
    var_mu = np.power(sigma_mu, 2)
    n = combined_node.data.n_obsv
    n_l = left_node.data.n_obsv
    n_r = right_node.data.n_obsv

    first_term = (var * (var + n * sigma_mu)) / ((var + n_l * var_mu) * (var + n_r * var_mu))
    first_term = np.log(np.sqrt(first_term))

    left_resp_contribution = np.square(np.sum(left_node.data.y)) / (var + n_l * sigma_mu)
    right_resp_contribution = np.square(np.sum(right_node.data.y)) / (var + n_r * sigma_mu)
    combined_resp_contribution = np.square(np.sum(combined_node.data.y)) / (var + n * sigma_mu)

    resp_contribution = left_resp_contribution + right_resp_contribution - combined_resp_contribution

    return first_term + ((var_mu / (2 * var)) * resp_contribution)
Esempio n. 6
0
 def step(self, model: Model, sigma: Sigma) -> float:
     sample_value = self.sample(model, sigma)
     sigma.set_value(sample_value)
     return sample_value
Esempio n. 7
0
 def step(self, model: Model, sigma: Sigma) -> None:
     sigma.set_value(self.sample(model, sigma))
Esempio n. 8
0
 def _construct_model(self, X: Union[np.ndarray, pd.DataFrame], y: np.ndarray) -> Model:
     self.data = self._convert_covariates_to_data(X, y)
     self.sigma = Sigma(self.sigma_a, self.sigma_b, self.data.normalizing_scale)
     self.model = Model(self.data, self.sigma, n_trees=self.n_trees, alpha=self.alpha, beta=self.beta)
     return self.model