def gnrt_user(train_data, one_img, gnrt_num, user, bldshps, all_data): for ci in range(gnrt_num): train_data.append(base.TrainOnePoint(one_img, user)) train_data[-1].dis = one_img.dis.copy() first = random.randrange(len(all_data)) train_data[-1].user = all_data[first].user.copy() util.recal_dis(train_data[-1], bldshps) util.get_slt_land_cor_init(train_data[-1], bldshps, user)
def gnrt_rot(train_data, one_img, gnrt_num, user, bldshps): for ci in range(gnrt_num): train_data.append(base.TrainOnePoint(one_img, user)) train_data[-1].dis = one_img.dis.copy() #here, after rand the dif of angle, we should update slt for i in range(3): train_data[-1].init_angle[i] \ +=2*rand_angle_range[i]*np.random.random((1,))-rand_angle_range[i] util.get_slt_land_cor_init(train_data[-1], bldshps, user)
def gnrt_tslt(train_data, one_img, gnrt_num, user): print('gnrt_tslt') for ci in range(gnrt_num): train_data.append(base.TrainOnePoint(one_img, user)) for i in range(2): train_data[-1].init_tslt[i]\ +=2*rand_tslt_range[i]*np.random.random((1,))-rand_tslt_range[i] train_data[-1].init_tslt[2]\ +=2*rand_tslt_range[2]*train_data[-1].tslt[2]*np.random.random((1,))-rand_tslt_range[2]*train_data[-1].tslt[2]
def gnrt_fcs(train_data, one_img, gnrt_num, user, bldshps): for ci in range(gnrt_num): train_data.append(base.TrainOnePoint(one_img, user)) # ============================================================================= # print('one_img land cor------------------one_img:\n',one_img.land_cor) # print('land cor------------------',train_data[-1].land_cor) # ============================================================================= train_data[-1].dis = one_img.dis.copy() train_data[-1].fcs += (np.random.random( (1, ))[0]) * range_rand_fcs * 2 - range_rand_fcs util.recal_dis(train_data[-1], bldshps)
def gnrt_exp(train_data, one_img, gnrt_num, user, all_data, bldshps): for ci in range(gnrt_num): train_data.append(base.TrainOnePoint(one_img, user)) if (rand_pick_exp == 1): first = random.randrange(len(all_data)) second = random.randrange(len(all_data[first].data)) train_data[-1].init_exp = all_data[first].data[second].exp.copy() else: for i in range(1, train_data[-1].init_exp.shape[0]): train_data[-1].init_exp[i]\ +=2*rand_exp_range*np.random.random((1,))-rand_exp_range util.get_slt_land_cor_init(train_data[-1], bldshps, user)