Esempio n. 1
0
 def __radd__(self, other):
     # First check if argument is a scalar
     if isscalarlike(other):
         new = dok_matrix(self.shape, dtype=self.dtype)
         # Add this scalar to every element.
         M, N = self.shape
         for i in xrange(M):
             for j in xrange(N):
                 aij = self.get((i, j), 0) + other
                 if aij != 0:
                     new[i, j] = aij
     elif isinstance(other, dok_matrix):
         if other.shape != self.shape:
             raise ValueError("matrix dimensions are not equal")
         new = dok_matrix(self.shape, dtype=self.dtype)
         new.update(self)
         for key in other:
             new[key] += other[key]
     elif isspmatrix(other):
         csc = self.tocsc()
         new = csc + other
     elif isdense(other):
         new = other + self.todense()
     else:
         raise TypeError("data type not understood")
     return new
Esempio n. 2
0
File: dok.py Progetto: 87/scipy
 def __add__(self, other):
     # First check if argument is a scalar
     if isscalarlike(other):
         new = dok_matrix(self.shape, dtype=self.dtype)
         # Add this scalar to every element.
         M, N = self.shape
         for i in xrange(M):
             for j in xrange(N):
                 aij = self.get((i, j), 0) + other
                 if aij != 0:
                     new[i, j] = aij
         #new.dtype.char = self.dtype.char
     elif isinstance(other, dok_matrix):
         if other.shape != self.shape:
             raise ValueError("matrix dimensions are not equal")
         # We could alternatively set the dimensions to the the largest of
         # the two matrices to be summed.  Would this be a good idea?
         new = dok_matrix(self.shape, dtype=self.dtype)
         new.update(self)
         for key in other.keys():
             new[key] += other[key]
     elif isspmatrix(other):
         csc = self.tocsc()
         new = csc + other
     elif isdense(other):
         new = self.todense() + other
     else:
         raise TypeError("data type not understood")
     return new
Esempio n. 3
0
File: dok.py Progetto: 87/scipy
 def __radd__(self, other):
     # First check if argument is a scalar
     if isscalarlike(other):
         new = dok_matrix(self.shape, dtype=self.dtype)
         # Add this scalar to every element.
         M, N = self.shape
         for i in xrange(M):
             for j in xrange(N):
                 aij = self.get((i, j), 0) + other
                 if aij != 0:
                     new[i, j] = aij
     elif isinstance(other, dok_matrix):
         if other.shape != self.shape:
             raise ValueError("matrix dimensions are not equal")
         new = dok_matrix(self.shape, dtype=self.dtype)
         new.update(self)
         for key in other:
             new[key] += other[key]
     elif isspmatrix(other):
         csc = self.tocsc()
         new = csc + other
     elif isdense(other):
         new = other + self.todense()
     else:
         raise TypeError("data type not understood")
     return new
Esempio n. 4
0
File: dok.py Progetto: 87/scipy
    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        dict.__init__(self)
        spmatrix.__init__(self)

        self.dtype = getdtype(dtype, default=float)
        if isinstance(arg1, tuple) and isshape(arg1): # (M,N)
            M, N = arg1
            self.shape = (M, N)
        elif isspmatrix(arg1): # Sparse ctor
            if isspmatrix_dok(arg1) and copy:
                arg1 = arg1.copy()
            else:
                arg1 = arg1.todok()

            if dtype is not None:
                arg1 = arg1.astype(dtype)

            self.update(arg1)
            self.shape = arg1.shape
            self.dtype = arg1.dtype
        else: # Dense ctor
            try:
                arg1 = np.asarray(arg1)
            except:
                raise TypeError('invalid input format')

            if len(arg1.shape)!=2:
                raise TypeError('expected rank <=2 dense array or matrix')

            from coo import coo_matrix
            self.update( coo_matrix(arg1, dtype=dtype).todok() )
            self.shape = arg1.shape
            self.dtype = arg1.dtype
Esempio n. 5
0
 def __add__(self, other):
     # First check if argument is a scalar
     if isscalarlike(other):
         new = dok_matrix(self.shape, dtype=self.dtype)
         # Add this scalar to every element.
         M, N = self.shape
         for i in xrange(M):
             for j in xrange(N):
                 aij = self.get((i, j), 0) + other
                 if aij != 0:
                     new[i, j] = aij
         #new.dtype.char = self.dtype.char
     elif isinstance(other, dok_matrix):
         if other.shape != self.shape:
             raise ValueError("matrix dimensions are not equal")
         # We could alternatively set the dimensions to the the largest of
         # the two matrices to be summed.  Would this be a good idea?
         new = dok_matrix(self.shape, dtype=self.dtype)
         new.update(self)
         for key in other.keys():
             new[key] += other[key]
     elif isspmatrix(other):
         csc = self.tocsc()
         new = csc + other
     elif isdense(other):
         new = self.todense() + other
     else:
         raise TypeError("data type not understood")
     return new
Esempio n. 6
0
    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        dict.__init__(self)
        spmatrix.__init__(self)

        self.dtype = getdtype(dtype, default=float)
        if isinstance(arg1, tuple) and isshape(arg1):  # (M,N)
            M, N = arg1
            self.shape = (M, N)
        elif isspmatrix(arg1):  # Sparse ctor
            if isspmatrix_dok(arg1) and copy:
                arg1 = arg1.copy()
            else:
                arg1 = arg1.todok()

            if dtype is not None:
                arg1 = arg1.astype(dtype)

            self.update(arg1)
            self.shape = arg1.shape
            self.dtype = arg1.dtype
        else:  # Dense ctor
            try:
                arg1 = np.asarray(arg1)
            except:
                raise TypeError('invalid input format')

            if len(arg1.shape) != 2:
                raise TypeError('expected rank <=2 dense array or matrix')

            from coo import coo_matrix
            self.update(coo_matrix(arg1, dtype=dtype).todok())
            self.shape = arg1.shape
            self.dtype = arg1.dtype
Esempio n. 7
0
    def __truediv__(self,other):
        if isscalarlike(other):
            return self * (1./other)

        elif isspmatrix(other):
            if other.shape != self.shape:
                raise ValueError('inconsistent shapes')

            return self._binopt(other,'_eldiv_')

        else:
            raise NotImplementedError
Esempio n. 8
0
    def __truediv__(self, other):
        if isscalarlike(other):
            return self * (1. / other)

        elif isspmatrix(other):
            if other.shape != self.shape:
                raise ValueError('inconsistent shapes')

            return self._binopt(other, '_eldiv_')

        else:
            raise NotImplementedError
Esempio n. 9
0
    def __sub__(self,other):
        # First check if argument is a scalar
        if isscalarlike(other):
            # Now we would add this scalar to every element.
            raise NotImplementedError, 'adding a scalar to a sparse ' \
                  'matrix is not supported'
        elif isspmatrix(other):
            if (other.shape != self.shape):
                raise ValueError, "inconsistent shapes"

            return self._binopt(other,'_minus_')
        elif isdense(other):
            # Convert this matrix to a dense matrix and subtract them
            return self.todense() - other
        else:
            raise NotImplementedError
Esempio n. 10
0
    def __sub__(self,other):
        # First check if argument is a scalar
        if isscalarlike(other):
            # Now we would add this scalar to every element.
            raise NotImplementedError, 'adding a scalar to a sparse ' \
                  'matrix is not supported'
        elif isspmatrix(other):
            if (other.shape != self.shape):
                raise ValueError, "inconsistent shapes"

            return self._binopt(other,'_minus_')
        elif isdense(other):
            # Convert this matrix to a dense matrix and subtract them
            return self.todense() - other
        else:
            raise NotImplementedError
Esempio n. 11
0
    def __add__(self,other):
        # First check if argument is a scalar
        if isscalarlike(other):
            # Now we would add this scalar to every element.
            raise NotImplementedError('adding a scalar to a CSC or CSR '
                                        'matrix is not supported')
        elif isspmatrix(other):
            if (other.shape != self.shape):
                raise ValueError("inconsistent shapes")

            return self._binopt(other,'_plus_')
        elif isdense(other):
            # Convert this matrix to a dense matrix and add them
            return self.todense() + other
        else:
            raise NotImplementedError
Esempio n. 12
0
    def __setitem__(self, index, x):
        try:
            i, j = index
        except (ValueError, TypeError):
            raise IndexError('invalid index')

        # shortcut for common case of single entry assign:
        if np.isscalar(x) and np.isscalar(i) and np.isscalar(j):
            self._insertat2(self.rows[i], self.data[i], j, x)
            return

        # shortcut for common case of full matrix assign:
        if isspmatrix(x):
            if isinstance(i, slice) and i == slice(None) and \
               isinstance(j, slice) and j == slice(None):
                x = lil_matrix(x, dtype=self.dtype)
                self.rows = x.rows
                self.data = x.data
                return

        if isinstance(i, tuple):  # can't index lists with tuple
            i = list(i)

        if np.isscalar(i):
            rows = [self.rows[i]]
            datas = [self.data[i]]
        else:
            rows = self.rows[i]
            datas = self.data[i]

        x = lil_matrix(x, copy=False)
        xrows, xcols = x.shape
        if xrows == len(rows):  # normal rectangular copy
            for row, data, xrow, xdata in zip(rows, datas, x.rows, x.data):
                self._setitem_setrow(row, data, j, xrow, xdata, xcols)
        elif xrows == 1:  # OK, broadcast down column
            for row, data in zip(rows, datas):
                self._setitem_setrow(row, data, j, x.rows[0], x.data[0], xcols)

        # needed to pass 'test_lil_sequence_assignement' unit test:
        # -- set row from column of entries --
        elif xcols == len(rows):
            x = x.T
            for row, data, xrow, xdata in zip(rows, datas, x.rows, x.data):
                self._setitem_setrow(row, data, j, xrow, xdata, xrows)
        else:
            raise IndexError('invalid index')
Esempio n. 13
0
    def __setitem__(self, index, x):
        try:
            i, j = index
        except (ValueError, TypeError):
            raise IndexError('invalid index')

        # shortcut for common case of single entry assign:
        if np.isscalar(x) and np.isscalar(i) and np.isscalar(j):
            self._insertat2(self.rows[i], self.data[i], j, x)
            return

        # shortcut for common case of full matrix assign:
        if isspmatrix(x):
            if isinstance(i, slice) and i == slice(None) and \
               isinstance(j, slice) and j == slice(None):
                x = lil_matrix(x, dtype=self.dtype)
                self.rows = x.rows
                self.data = x.data
                return

        if isinstance(i, tuple):       # can't index lists with tuple
            i = list(i)

        if np.isscalar(i):
            rows = [self.rows[i]]
            datas = [self.data[i]]
        else:
            rows = self.rows[i]
            datas = self.data[i]

        x = lil_matrix(x, copy=False)
        xrows, xcols = x.shape
        if xrows == len(rows):    # normal rectangular copy
            for row, data, xrow, xdata in zip(rows, datas, x.rows, x.data):
                self._setitem_setrow(row, data, j, xrow, xdata, xcols)
        elif xrows == 1:          # OK, broadcast down column
            for row, data in zip(rows, datas):
                self._setitem_setrow(row, data, j, x.rows[0], x.data[0], xcols)

        # needed to pass 'test_lil_sequence_assignement' unit test:
        # -- set row from column of entries --
        elif xcols == len(rows):
            x = x.T
            for row, data, xrow, xdata in zip(rows, datas, x.rows, x.data):
                self._setitem_setrow(row, data, j, xrow, xdata, xrows)
        else:
            raise IndexError('invalid index')
Esempio n. 14
0
    def __sub__(self, other):
        # First check if argument is a scalar
        if isscalarlike(other):
            if other == 0:
                return self.copy()
            else:  # Now we would add this scalar to every element.
                raise NotImplementedError("adding a nonzero scalar to a " "sparse matrix is not supported")
        elif isspmatrix(other):
            if other.shape != self.shape:
                raise ValueError("inconsistent shapes")

            return self._binopt(other, "_minus_")
        elif isdense(other):
            # Convert this matrix to a dense matrix and subtract them
            return self.todense() - other
        else:
            raise NotImplementedError
Esempio n. 15
0
    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        spmatrix.__init__(self)
        self.dtype = getdtype(dtype, arg1, default=float)

        # First get the shape
        if isspmatrix(arg1):
            if isspmatrix_lil(arg1) and copy:
                A = arg1.copy()
            else:
                A = arg1.tolil()

            if dtype is not None:
                A = A.astype(dtype)

            self.shape = A.shape
            self.dtype = A.dtype
            self.rows  = A.rows
            self.data  = A.data
        elif isinstance(arg1,tuple):
            if isshape(arg1):
                if shape is not None:
                    raise ValueError('invalid use of shape parameter')
                M, N = arg1
                self.shape = (M,N)
                self.rows = np.empty((M,), dtype=object)
                self.data = np.empty((M,), dtype=object)
                for i in range(M):
                    self.rows[i] = []
                    self.data[i] = []
            else:
                raise TypeError('unrecognized lil_matrix constructor usage')
        else:
            #assume A is dense
            try:
                A = np.asmatrix(arg1)
            except TypeError:
                raise TypeError('unsupported matrix type')
            else:
                from csr import csr_matrix
                A = csr_matrix(A, dtype=dtype).tolil()

                self.shape = A.shape
                self.dtype = A.dtype
                self.rows  = A.rows
                self.data  = A.data
Esempio n. 16
0
    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        spmatrix.__init__(self)
        self.dtype = getdtype(dtype, arg1, default=float)

        # First get the shape
        if isspmatrix(arg1):
            if isspmatrix_lil(arg1) and copy:
                A = arg1.copy()
            else:
                A = arg1.tolil()

            if dtype is not None:
                A = A.astype(dtype)

            self.shape = A.shape
            self.dtype = A.dtype
            self.rows = A.rows
            self.data = A.data
        elif isinstance(arg1, tuple):
            if isshape(arg1):
                if shape is not None:
                    raise ValueError('invalid use of shape parameter')
                M, N = arg1
                self.shape = (M, N)
                self.rows = np.empty((M, ), dtype=object)
                self.data = np.empty((M, ), dtype=object)
                for i in range(M):
                    self.rows[i] = []
                    self.data[i] = []
            else:
                raise TypeError('unrecognized lil_matrix constructor usage')
        else:
            #assume A is dense
            try:
                A = np.asmatrix(arg1)
            except TypeError:
                raise TypeError('unsupported matrix type')
            else:
                from csr import csr_matrix
                A = csr_matrix(A, dtype=dtype).tolil()

                self.shape = A.shape
                self.dtype = A.dtype
                self.rows = A.rows
                self.data = A.data
Esempio n. 17
0
    def __setitem__(self, index, x):
        if np.isscalar(x):
            x = self.dtype.type(x)
        elif not isinstance(x, spmatrix):
            x = lil_matrix(x)

        try:
            i, j = index
        except (ValueError, TypeError):
            raise IndexError('invalid index')

        if isspmatrix(x):
            if (isinstance(i, slice) and (i == slice(None))) and \
               (isinstance(j, slice) and (j == slice(None))):
                # self[:,:] = other_sparse
                x = lil_matrix(x)
                self.rows = x.rows
                self.data = x.data
                return

        if np.isscalar(i):
            row = self.rows[i]
            data = self.data[i]
            self._insertat3(row, data, j, x)
        elif issequence(i) and issequence(j):
            if np.isscalar(x):
                for ii, jj in zip(i, j):
                    self._insertat(ii, jj, x)
            else:
                for ii, jj, xx in zip(i, j, x):
                    self._insertat(ii, jj, xx)
        elif isinstance(i, slice) or issequence(i):
            rows = self.rows[i]
            datas = self.data[i]
            if np.isscalar(x):
                for row, data in zip(rows, datas):
                    self._insertat3(row, data, j, x)
            else:
                for row, data, xx in zip(rows, datas, x):
                    self._insertat3(row, data, j, xx)
        else:
            raise ValueError('invalid index value: %s' % str((i, j)))
Esempio n. 18
0
    def __setitem__(self, index, x):
        if np.isscalar(x):
            x = self.dtype.type(x)
        elif not isinstance(x, spmatrix):
            x = lil_matrix(x)

        try:
            i, j = index
        except (ValueError, TypeError):
            raise IndexError('invalid index')

        if isspmatrix(x):
            if (isinstance(i, slice) and (i == slice(None))) and \
               (isinstance(j, slice) and (j == slice(None))):
                # self[:,:] = other_sparse
                x = lil_matrix(x)
                self.rows = x.rows
                self.data = x.data
                return

        if np.isscalar(i):
            row = self.rows[i]
            data = self.data[i]
            self._insertat3(row, data, j, x)
        elif issequence(i) and issequence(j):
            if np.isscalar(x):
                for ii, jj in zip(i, j):
                    self._insertat(ii, jj, x)
            else:
                for ii, jj, xx in zip(i, j, x):
                    self._insertat(ii, jj, xx)
        elif isinstance(i, slice) or issequence(i):
            rows = self.rows[i]
            datas = self.data[i]
            if np.isscalar(x):
                for row, data in zip(rows, datas):
                    self._insertat3(row, data, j, x)
            else:
                for row, data, xx in zip(rows, datas, x):
                    self._insertat3(row, data, j, xx)
        else:
            raise ValueError('invalid index value: %s' % str((i, j)))
Esempio n. 19
0
    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        _data_matrix.__init__(self)

        if isspmatrix(arg1):
            if arg1.format == self.format and copy:
                arg1 = arg1.copy()
            else:
                arg1 = arg1.asformat(self.format)
            self._set_self(arg1)

        elif isinstance(arg1, tuple):
            if isshape(arg1):
                # It's a tuple of matrix dimensions (M, N)
                # create empty matrix
                self.shape = arg1  #spmatrix checks for errors here
                M, N = self.shape
                self.data = np.zeros(0, getdtype(dtype, default=float))
                self.indices = np.zeros(0, np.intc)
                self.indptr = np.zeros(self._swap((M, N))[0] + 1,
                                       dtype=np.intc)
            else:
                if len(arg1) == 2:
                    # (data, ij) format
                    from coo import coo_matrix
                    other = self.__class__(coo_matrix(arg1, shape=shape))
                    self._set_self(other)
                elif len(arg1) == 3:
                    # (data, indices, indptr) format
                    (data, indices, indptr) = arg1
                    self.indices = np.array(indices, copy=copy)
                    self.indptr = np.array(indptr, copy=copy)
                    self.data = np.array(data,
                                         copy=copy,
                                         dtype=getdtype(dtype, data))
                else:
                    raise ValueError(
                        "unrecognized %s_matrix constructor usage" %
                        self.format)

        else:
            #must be dense
            try:
                arg1 = np.asarray(arg1)
            except:
                raise ValueError("unrecognized %s_matrix constructor usage" %
                                 self.format)
            from coo import coo_matrix
            self._set_self(self.__class__(coo_matrix(arg1, dtype=dtype)))

        # Read matrix dimensions given, if any
        if shape is not None:
            self.shape = shape  # spmatrix will check for errors
        else:
            if self.shape is None:
                # shape not already set, try to infer dimensions
                try:
                    major_dim = len(self.indptr) - 1
                    minor_dim = self.indices.max() + 1
                except:
                    raise ValueError('unable to infer matrix dimensions')
                else:
                    self.shape = self._swap((major_dim, minor_dim))

        if dtype is not None:
            self.data = self.data.astype(dtype)

        self.check_format(full_check=False)
Esempio n. 20
0
    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        _data_matrix.__init__(self)

        if isspmatrix_dia(arg1):
            if copy:
                arg1 = arg1.copy()
            self.data = arg1.data
            self.offsets = arg1.offsets
            self.shape = arg1.shape
        elif isspmatrix(arg1):
            if isspmatrix_dia(arg1) and copy:
                A = arg1.copy()
            else:
                A = arg1.todia()
            self.data = A.data
            self.offsets = A.offsets
            self.shape = A.shape
        elif isinstance(arg1, tuple):
            if isshape(arg1):
                # It's a tuple of matrix dimensions (M, N)
                # create empty matrix
                self.shape = arg1  #spmatrix checks for errors here
                self.data = np.zeros((0, 0), getdtype(dtype, default=float))
                self.offsets = np.zeros((0), dtype=np.intc)
            else:
                try:
                    # Try interpreting it as (data, offsets)
                    data, offsets = arg1
                except:
                    raise ValueError(
                        'unrecognized form for dia_matrix constructor')
                else:
                    if shape is None:
                        raise ValueError('expected a shape argument')
                    self.data = np.atleast_2d(
                        np.array(arg1[0], dtype=dtype, copy=copy))
                    self.offsets = np.atleast_1d(
                        np.array(arg1[1], dtype=np.intc, copy=copy))
                    self.shape = shape
        else:
            #must be dense, convert to COO first, then to DIA
            try:
                arg1 = np.asarray(arg1)
            except:
                raise ValueError("unrecognized form for" \
                        " %s_matrix constructor" % self.format)
            from coo import coo_matrix
            A = coo_matrix(arg1, dtype=dtype).todia()
            self.data = A.data
            self.offsets = A.offsets
            self.shape = A.shape

        if dtype is not None:
            self.data = self.data.astype(dtype)

        #check format
        if self.offsets.ndim != 1:
            raise ValueError('offsets array must have rank 1')

        if self.data.ndim != 2:
            raise ValueError('data array must have rank 2')

        if self.data.shape[0] != len(self.offsets):
            raise ValueError('number of diagonals (%d) ' \
                    'does not match the number of offsets (%d)' \
                    % (self.data.shape[0], len(self.offsets)))

        if len(np.unique(self.offsets)) != len(self.offsets):
            raise ValueError('offset array contains duplicate values')
Esempio n. 21
0
    def __init__(self,
                 arg1,
                 shape=None,
                 dtype=None,
                 copy=False,
                 blocksize=None):
        _data_matrix.__init__(self)

        if isspmatrix(arg1):
            if isspmatrix_bsr(arg1) and copy:
                arg1 = arg1.copy()
            else:
                arg1 = arg1.tobsr(blocksize=blocksize)
            self._set_self(arg1)

        elif isinstance(arg1, tuple):
            if isshape(arg1):
                #it's a tuple of matrix dimensions (M,N)
                self.shape = arg1
                M, N = self.shape
                #process blocksize
                if blocksize is None:
                    blocksize = (1, 1)
                else:
                    if not isshape(blocksize):
                        raise ValueError('invalid blocksize=%s' % blocksize)
                    blocksize = tuple(blocksize)
                self.data = np.zeros((0, ) + blocksize,
                                     getdtype(dtype, default=float))
                self.indices = np.zeros(0, dtype=np.intc)

                R, C = blocksize
                if (M % R) != 0 or (N % C) != 0:
                    raise ValueError, 'shape must be multiple of blocksize'

                self.indptr = np.zeros(M / R + 1, dtype=np.intc)

            elif len(arg1) == 2:
                # (data,(row,col)) format
                from coo import coo_matrix
                self._set_self(
                    coo_matrix(arg1, dtype=dtype).tobsr(blocksize=blocksize))

            elif len(arg1) == 3:
                # (data,indices,indptr) format
                (data, indices, indptr) = arg1
                self.indices = np.array(indices, copy=copy)
                self.indptr = np.array(indptr, copy=copy)
                self.data = np.array(data,
                                     copy=copy,
                                     dtype=getdtype(dtype, data))
            else:
                raise ValueError('unrecognized bsr_matrix constructor usage')
        else:
            #must be dense
            try:
                arg1 = np.asarray(arg1)
            except:
                raise ValueError("unrecognized form for" \
                        " %s_matrix constructor" % self.format)
            from coo import coo_matrix
            arg1 = coo_matrix(arg1, dtype=dtype).tobsr(blocksize=blocksize)
            self._set_self(arg1)

        if shape is not None:
            self.shape = shape  # spmatrix will check for errors
        else:
            if self.shape is None:
                # shape not already set, try to infer dimensions
                try:
                    M = len(self.indptr) - 1
                    N = self.indices.max() + 1
                except:
                    raise ValueError('unable to infer matrix dimensions')
                else:
                    R, C = self.blocksize
                    self.shape = (M * R, N * C)

        if self.shape is None:
            if shape is None:
                #TODO infer shape here
                raise ValueError('need to infer shape')
            else:
                self.shape = shape

        if dtype is not None:
            self.data = self.data.astype(dtype)

        self.check_format(full_check=False)
Esempio n. 22
0
def cs_graph_components(x):
    """
    Determine connected compoments of a graph stored as a compressed
    sparse row or column matrix. For speed reasons, the symmetry of the
    matrix x is not checked. A nonzero at index `(i, j)` means that node
    `i` is connected to node `j` by an edge. The number of rows/columns
    of the matrix thus corresponds to the number of nodes in the graph.

    Parameters
    -----------
    x: ndarray-like, 2 dimensions, or sparse matrix
        The adjacency matrix of the graph. Only the upper triangular part
        is used.

    Returns
    --------
    n_comp: int
        The number of connected components.
    label: ndarray (ints, 1 dimension):
        The label array of each connected component (-2 is used to
        indicate empty rows in the matrix: 0 everywhere, including
        diagonal). This array has the length of the number of nodes,
        i.e. one label for each node of the graph. Nodes having the same
        label belong to the same connected component.

    Notes
    ------

    The matrix is assumed to be symmetric and the upper triangular part
    of the matrix is used. The matrix is converted to a CSR matrix unless
    it is already a CSR.

    Example
    -------

    >>> from scipy.sparse import cs_graph_components
    >>> import numpy as np
    >>> D = np.eye(4)
    >>> D[0,1] = D[1,0] = 1
    >>> cs_graph_components(D)
    (3, array([0, 0, 1, 2]))
    >>> from scipy.sparse import dok_matrix
    >>> cs_graph_components(dok_matrix(D))
    (3, array([0, 0, 1, 2]))

    """
    try:
        shape = x.shape
    except AttributeError:
        raise ValueError(_msg0)
    
    if not ((len(x.shape) == 2) and (x.shape[0] == x.shape[1])):
        raise ValueError(_msg1 % x.shape)

    if isspmatrix(x):
        x = x.tocsr()
    else:
        x = csr_matrix(x)
    
    label = np.empty((shape[0],), dtype=x.indptr.dtype)

    n_comp = _cs_graph_components(shape[0], x.indptr, x.indices, label)

    return n_comp, label
Esempio n. 23
0
def cs_graph_components(x):
    """
    Determine connected compoments of a graph stored as a compressed
    sparse row or column matrix. For speed reasons, the symmetry of the
    matrix x is not checked. A nonzero at index `(i, j)` means that node
    `i` is connected to node `j` by an edge. The number of rows/columns
    of the matrix thus corresponds to the number of nodes in the graph.

    Parameters
    -----------
    x: ndarray-like, 2 dimensions, or sparse matrix
        The adjacency matrix of the graph. Only the upper triangular part
        is used.

    Returns
    --------
    n_comp: int
        The number of connected components.
    label: ndarray (ints, 1 dimension):
        The label array of each connected component (-2 is used to
        indicate empty rows in the matrix: 0 everywhere, including
        diagonal). This array has the length of the number of nodes,
        i.e. one label for each node of the graph. Nodes having the same
        label belong to the same connected component.

    Notes
    ------

    The matrix is assumed to be symmetric and the upper triangular part
    of the matrix is used. The matrix is converted to a CSR matrix unless
    it is already a CSR.

    Example
    -------

    >>> from scipy.sparse import cs_graph_components
    >>> import numpy as np
    >>> D = np.eye(4)
    >>> D[0,1] = D[1,0] = 1
    >>> cs_graph_components(D)
    (3, array([0, 0, 1, 2]))
    >>> from scipy.sparse import dok_matrix
    >>> cs_graph_components(dok_matrix(D))
    (3, array([0, 0, 1, 2]))

    """
    try:
        shape = x.shape
    except AttributeError:
        raise ValueError(_msg0)

    if not ((len(x.shape) == 2) and (x.shape[0] == x.shape[1])):
        raise ValueError(_msg1 % x.shape)

    if isspmatrix(x):
        x = x.tocsr()
    else:
        x = csr_matrix(x)

    label = np.empty((shape[0], ), dtype=x.indptr.dtype)

    n_comp = _cs_graph_components(shape[0], x.indptr, x.indices, label)

    return n_comp, label
Esempio n. 24
0
File: coo.py Progetto: afarahi/QFT
    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        _data_matrix.__init__(self)

        if isinstance(arg1, tuple):
            if isshape(arg1):
                M, N = arg1
                self.shape = (M, N)
                self.row = np.array([], dtype=np.intc)
                self.col = np.array([], dtype=np.intc)
                self.data = np.array([], getdtype(dtype, default=float))
            else:
                try:
                    obj, ij = arg1
                except:
                    raise TypeError('invalid input format')

                try:
                    if len(ij) != 2:
                        raise TypeError
                except TypeError:
                    raise TypeError('invalid input format')

                self.row = np.array(ij[0], copy=copy, dtype=np.intc)
                self.col = np.array(ij[1], copy=copy, dtype=np.intc)
                self.data = np.array(obj, copy=copy)

                if shape is None:
                    if len(self.row) == 0 or len(self.col) == 0:
                        raise ValueError(
                            'cannot infer dimensions from zero sized index arrays'
                        )
                    M = self.row.max() + 1
                    N = self.col.max() + 1
                    self.shape = (M, N)
                else:
                    # Use 2 steps to ensure shape has length 2.
                    M, N = shape
                    self.shape = (M, N)

        elif arg1 is None:
            # Initialize an empty matrix.
            if not isinstance(shape, tuple) or not isintlike(shape[0]):
                raise TypeError('dimensions not understood')
            warn('coo_matrix(None, shape=(M,N)) is deprecated, ' \
                    'use coo_matrix( (M,N) ) instead', DeprecationWarning)
            self.shape = shape
            self.data = np.array([], getdtype(dtype, default=float))
            self.row = np.array([], dtype=np.intc)
            self.col = np.array([], dtype=np.intc)
        else:
            if isspmatrix(arg1):
                if isspmatrix_coo(arg1) and copy:
                    self.row = arg1.row.copy()
                    self.col = arg1.col.copy()
                    self.data = arg1.data.copy()
                    self.shape = arg1.shape
                else:
                    coo = arg1.tocoo()
                    self.row = coo.row
                    self.col = coo.col
                    self.data = coo.data
                    self.shape = coo.shape
            else:
                #dense argument
                try:
                    M = np.atleast_2d(np.asarray(arg1))
                except:
                    raise TypeError('invalid input format')

                if np.rank(M) != 2:
                    raise TypeError('expected rank <= 2 array or matrix')

                self.shape = M.shape
                self.row, self.col = M.nonzero()
                self.data = M[self.row, self.col]

        if dtype is not None:
            self.data = self.data.astype(dtype)

        self._check()
Esempio n. 25
0
    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        _data_matrix.__init__(self)

        if isspmatrix_dia(arg1):
            if copy:
                arg1 = arg1.copy()
            self.data    = arg1.data
            self.offsets = arg1.offsets
            self.shape   = arg1.shape
        elif isspmatrix(arg1):
            if isspmatrix_dia(arg1) and copy:
                A = arg1.copy()
            else:
                A = arg1.todia()
            self.data    = A.data
            self.offsets = A.offsets
            self.shape   = A.shape
        elif isinstance(arg1, tuple):
            if isshape(arg1):
                # It's a tuple of matrix dimensions (M, N)
                # create empty matrix
                self.shape   = arg1   #spmatrix checks for errors here
                self.data    = np.zeros( (0,0), getdtype(dtype, default=float))
                self.offsets = np.zeros( (0), dtype=np.intc)
            else:
                try:
                    # Try interpreting it as (data, offsets)
                    data, offsets = arg1
                except:
                    raise ValueError('unrecognized form for dia_matrix constructor')
                else:
                    if shape is None:
                        raise ValueError('expected a shape argument')
                    self.data    = np.atleast_2d(np.array(arg1[0], dtype=dtype, copy=copy))
                    self.offsets = np.atleast_1d(np.array(arg1[1], dtype=np.intc, copy=copy))
                    self.shape   = shape
        else:
            #must be dense, convert to COO first, then to DIA
            try:
                arg1 = np.asarray(arg1)
            except:
                raise ValueError("unrecognized form for" \
                        " %s_matrix constructor" % self.format)
            from coo import coo_matrix
            A = coo_matrix(arg1, dtype=dtype).todia()
            self.data    = A.data
            self.offsets = A.offsets
            self.shape   = A.shape


        if dtype is not None:
            self.data = self.data.astype(dtype)

        #check format
        if self.offsets.ndim != 1:
            raise ValueError('offsets array must have rank 1')

        if self.data.ndim != 2:
            raise ValueError('data array must have rank 2')

        if self.data.shape[0] != len(self.offsets):
            raise ValueError('number of diagonals (%d) ' \
                    'does not match the number of offsets (%d)' \
                    % (self.data.shape[0], len(self.offsets)))

        if len(np.unique(self.offsets)) != len(self.offsets):
            raise ValueError('offset array contains duplicate values')
Esempio n. 26
0
    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        _data_matrix.__init__(self)


        if isspmatrix(arg1):
            if arg1.format == self.format and copy:
                arg1 = arg1.copy()
            else:
                arg1 = arg1.asformat(self.format)
            self._set_self( arg1 )

        elif isinstance(arg1, tuple):
            if isshape(arg1):
                # It's a tuple of matrix dimensions (M, N)
                # create empty matrix
                self.shape = arg1   #spmatrix checks for errors here
                M, N = self.shape
                self.data    = np.zeros(0, getdtype(dtype, default=float))
                self.indices = np.zeros(0, np.intc)
                self.indptr  = np.zeros(self._swap((M,N))[0] + 1, dtype=np.intc)
            else:
                if len(arg1) == 2:
                    # (data, ij) format
                    from coo import coo_matrix
                    other = self.__class__( coo_matrix(arg1, shape=shape) )
                    self._set_self( other )
                elif len(arg1) == 3:
                    # (data, indices, indptr) format
                    (data, indices, indptr) = arg1
                    self.indices = np.array(indices, copy=copy)
                    self.indptr  = np.array(indptr, copy=copy)
                    self.data    = np.array(data, copy=copy, dtype=getdtype(dtype, data))
                else:
                    raise ValueError("unrecognized %s_matrix constructor usage" %
                            self.format)

        else:
            #must be dense
            try:
                arg1 = np.asarray(arg1)
            except:
                raise ValueError("unrecognized %s_matrix constructor usage" %
                        self.format)
            from coo import coo_matrix
            self._set_self( self.__class__(coo_matrix(arg1, dtype=dtype)) )

        # Read matrix dimensions given, if any
        if shape is not None:
            self.shape = shape   # spmatrix will check for errors
        else:
            if self.shape is None:
                # shape not already set, try to infer dimensions
                try:
                    major_dim = len(self.indptr) - 1
                    minor_dim = self.indices.max() + 1
                except:
                    raise ValueError('unable to infer matrix dimensions')
                else:
                    self.shape = self._swap((major_dim,minor_dim))

        if dtype is not None:
            self.data = self.data.astype(dtype)

        self.check_format(full_check=False)
Esempio n. 27
0
    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        _data_matrix.__init__(self)

        if isinstance(arg1, tuple):
            if isshape(arg1):
                M, N = arg1
                self.shape = (M,N)
                self.row  = np.array([], dtype=np.intc)
                self.col  = np.array([], dtype=np.intc)
                self.data = np.array([], getdtype(dtype, default=float))
            else:
                try:
                    obj, ij = arg1
                except:
                    raise TypeError('invalid input format')

                try:
                    if len(ij) != 2:
                        raise TypeError
                except TypeError:
                    raise TypeError('invalid input format')

                self.row  = np.array(ij[0], copy=copy, dtype=np.intc)
                self.col  = np.array(ij[1], copy=copy, dtype=np.intc)
                self.data = np.array(  obj, copy=copy)

                if shape is None:
                    if len(self.row) == 0 or len(self.col) == 0:
                        raise ValueError('cannot infer dimensions from zero sized index arrays')
                    M = self.row.max() + 1
                    N = self.col.max() + 1
                    self.shape = (M, N)
                else:
                    # Use 2 steps to ensure shape has length 2.
                    M, N = shape
                    self.shape = (M, N)

        elif arg1 is None:
            # Initialize an empty matrix.
            if not isinstance(shape, tuple) or not isintlike(shape[0]):
                raise TypeError('dimensions not understood')
            warn('coo_matrix(None, shape=(M,N)) is deprecated, ' \
                    'use coo_matrix( (M,N) ) instead', DeprecationWarning)
            self.shape = shape
            self.data = np.array([], getdtype(dtype, default=float))
            self.row  = np.array([], dtype=np.intc)
            self.col  = np.array([], dtype=np.intc)
        else:
            if isspmatrix(arg1):
                if isspmatrix_coo(arg1) and copy:
                    self.row   = arg1.row.copy()
                    self.col   = arg1.col.copy()
                    self.data  = arg1.data.copy()
                    self.shape = arg1.shape
                else:
                    coo = arg1.tocoo()
                    self.row   = coo.row
                    self.col   = coo.col
                    self.data  = coo.data
                    self.shape = coo.shape
            else:
                #dense argument
                try:
                    M = np.atleast_2d(np.asarray(arg1))
                except:
                    raise TypeError('invalid input format')

                if np.rank(M) != 2:
                    raise TypeError('expected rank <= 2 array or matrix')
                self.shape = M.shape
                self.row,self.col = (M != 0).nonzero()
                self.data  = M[self.row,self.col]

        if dtype is not None:
            self.data = self.data.astype(dtype)


        self._check()
Esempio n. 28
0
    def __init__(self, arg1, shape=None, dtype=None, copy=False, blocksize=None):
        _data_matrix.__init__(self)


        if isspmatrix(arg1):
            if isspmatrix_bsr(arg1) and copy:
                arg1 = arg1.copy()
            else:
                arg1 = arg1.tobsr(blocksize=blocksize)
            self._set_self( arg1 )

        elif isinstance(arg1,tuple):
            if isshape(arg1):
                #it's a tuple of matrix dimensions (M,N)
                self.shape  = arg1
                M,N = self.shape
                #process blocksize
                if blocksize is None:
                    blocksize = (1,1)
                else:
                    if not isshape(blocksize):
                        raise ValueError('invalid blocksize=%s' % blocksize)
                    blocksize = tuple(blocksize)
                self.data    = np.zeros( (0,) + blocksize, getdtype(dtype, default=float) )
                self.indices = np.zeros( 0, dtype=np.intc )

                R,C = blocksize
                if (M % R) != 0 or (N % C) != 0:
                    raise ValueError('shape must be multiple of blocksize')

                self.indptr  = np.zeros(M//R + 1, dtype=np.intc )

            elif len(arg1) == 2:
                # (data,(row,col)) format
                from coo import coo_matrix
                self._set_self( coo_matrix(arg1, dtype=dtype).tobsr(blocksize=blocksize) )

            elif len(arg1) == 3:
                # (data,indices,indptr) format
                (data, indices, indptr) = arg1
                self.indices = np.array(indices, copy=copy)
                self.indptr  = np.array(indptr,  copy=copy)
                self.data    = np.array(data,    copy=copy, dtype=getdtype(dtype, data))
            else:
                raise ValueError('unrecognized bsr_matrix constructor usage')
        else:
            #must be dense
            try:
                arg1 = np.asarray(arg1)
            except:
                raise ValueError("unrecognized form for" \
                        " %s_matrix constructor" % self.format)
            from coo import coo_matrix
            arg1 = coo_matrix(arg1, dtype=dtype).tobsr(blocksize=blocksize)
            self._set_self( arg1 )

        if shape is not None:
            self.shape = shape   # spmatrix will check for errors
        else:
            if self.shape is None:
                # shape not already set, try to infer dimensions
                try:
                    M = len(self.indptr) - 1
                    N = self.indices.max() + 1
                except:
                    raise ValueError('unable to infer matrix dimensions')
                else:
                    R,C = self.blocksize
                    self.shape = (M*R,N*C)

        if self.shape is None:
            if shape is None:
                #TODO infer shape here
                raise ValueError('need to infer shape')
            else:
                self.shape = shape

        if dtype is not None:
            self.data = self.data.astype(dtype)

        self.check_format(full_check=False)