def attach(self, netspec, bottom, residual_branch):

        ######## Pre Norm ########
        prenorm = BNReLUModule(name_template=self.name_template, \
                                bn_params=self.bnParams, \
                                sync_bn=self.sync_bn).attach(netspec, bottom)

        ######## 1x1x1 Shortcut ########
        shortcut = BaseModule('Convolution',
                              self.conv3x1x1Params).attach(netspec, [prenorm])

        ######## Main Branch ########

        #### Spatial Global Pooling ####
        pooling = BaseModule('Pooling',
                             self.poolingParams).attach(netspec, [prenorm])

        #### Temporal Convolution ####
        t_conv = BaseModule('Convolution',
                            self.t_convParams).attach(netspec, [pooling])

        #### Sigmoid ####
        sigmoid = BaseModule('Sigmoid',
                             self.sigmoidParams).attach(netspec, [t_conv])

        ######## add ########
        out = BaseModule('Axpxpy', self.addParams).attach(
            netspec, [sigmoid, shortcut, residual_branch])

        return out
    def attach(self, netspec, bottom):

        ######## Pre Norm ########
        prenorm = BNReLUModule(name_template=self.name_template, \
                                bn_params=self.bnParams, \
                                sync_bn=self.sync_bn).attach(netspec, bottom)

        ######## 1x1x1 Shortcut ########
        shortcut = BaseModule('Convolution',
                              self.conv1x1x1Params).attach(netspec, [prenorm])

        ######## Main Branch ########

        #### Spatial Global Pooling ####
        pooling = BaseModule('Pooling',
                             self.poolingParams).attach(netspec, [prenorm])

        #### Temporal Convolution ####
        t_conv = BaseModule('Convolution',
                            self.t_convParams).attach(netspec, [pooling])

        #### Reshape ####
        reshape = BaseModule('Reshape',
                             self.reshapeParams).attach(netspec, [t_conv])

        ######## Bias ########
        bias = BaseModule('Bias',
                          self.biasParams).attach(netspec, [shortcut, reshape])

        return bias
Esempio n. 3
0
 def __init__(self, db):
     BaseModule.__init__(self, db)
     config = ConfigParser.ConfigParser()
     config.readfp(open(AP + 'common/conf.ini'))
     self._circle_table = self.prefix + 'circle_table'
     self._c_id = config.get(self._circle_table, "c_id")
     self._umeng_cid = config.get(self._circle_table, "umeng_cid")
     self._umeng_virtual_cid = config.get(self._circle_table,
                                          "umeng_virtual_cid")
     # self._circle_type_id = config.get(self._circle_table,"circle_type_id")
     self._icon_url = config.get(self._circle_table, "icon_url")
Esempio n. 4
0
 def __init__(self, db):
     BaseModule.__init__(self, db)
     config = ConfigParser.ConfigParser()
     config.readfp(open(AP + 'common/conf.ini'))
     self._user_common_table = self.prefix + 'user_common_info'
     self._uid = config.get(self._user_common_table, "uid")
     self._admission_year = config.get(self._user_common_table,
                                       "admission_year")
     self._faculty = config.get(self._user_common_table, "faculty")
     self._major = config.get(self._user_common_table, "major")
     self._name = config.get(self._user_common_table, "name")
     self._gender = config.get(self._user_common_table, "gender")
     self._job = config.get(self._user_common_table, "job")
     self._icon_url = config.get(self._user_common_table, "icon_url")
     self._city = config.get(self._user_common_table, "city")
     self._state = config.get(self._user_common_table, "state")
     self._country = config.get(self._user_common_table, "country")
Esempio n. 5
0
    def __init__(self, db):
        BaseModule.__init__(self, db)
        config = ConfigParser.ConfigParser()
        config.readfp(open(AP + 'common/conf.ini'))
        self._manual_review_table = self.prefix + 'manual_review_table'

        self._review_id = config.get(self._manual_review_table, "review_id")
        self._circle_name = config.get(self._manual_review_table,
                                       "circle_name")
        self._circle_icon_url = config.get(self._manual_review_table,
                                           "circle_icon_url")
        self._creator_uid = config.get(self._manual_review_table,
                                       "creator_uid")
        self._circle_type_id = config.get(self._manual_review_table,
                                          "circle_type_id")
        self._reason_message = config.get(self._manual_review_table,
                                          "reason_message")
        self._result = config.get(self._manual_review_table, "result")
        self._description = config.get(self._manual_review_table,
                                       "description")
        self._circle_type_name = config.get(self._manual_review_table,
                                            "circle_type_name")
        self._creator_name = config.get(self._manual_review_table,
                                        "creator_name")
 def attach(self, netspec, bottom):
     if self.uni_bn:
         if self.sync_bn:
             bn = BaseModule('SyncBN',
                             self.bnParams).attach(netspec, bottom)
         else:
             bn = BaseModule('BN', self.bnParams).attach(netspec, bottom)
         relu = BaseModule('ReLU', self.reluParams).attach(netspec, [bn])
     else:
         batch_norm = BaseModule('BatchNorm', self.batchNormParams).attach(
             netspec, bottom)
         scale = BaseModule('Scale',
                            self.scaleParams).attach(netspec, [batch_norm])
         relu = BaseModule('ReLU', self.reluParams).attach(netspec, [scale])
     corr = BaseModule('Corrv1', self.corrParams).attach(netspec, [relu])
     return corr
Esempio n. 7
0
def write_prototxt(is_train, output_folder, \
                    filename, main_branch, \
                    num_output_stage1, \
                    blocks, sync_bn, uni_bn):

    netspec = caffe.NetSpec()

    #### Input Setting ####
    crop_size = 112
    width = 170
    height = 128
    length = 16
    step = 8
    num_segments = 1

    if is_train:
        use_global_stats = False
    else:
        use_global_stats = True

    #### Data layer ####
    if is_train:
        data_train_params = dict(name='data', \
                            ntop=2, \
                            video4d_data_param=dict( \
                                source="../kinetics_train_list.txt", \
                                batch_size=32, \
                                new_width=width, \
                                new_height=height, \
                                new_length=length, \
                                num_segments=num_segments, \
                                modality=0, \
                                step=step, \
                                rand_step=True, \
                                name_pattern='image_%06d.jpg', \
                                shuffle=True), \
                            transform_param=dict(
                                crop_size=crop_size, \
                                mirror=True, \
                                multi_scale=True, \
                                max_distort=1, \
                                scale_ratios=[1, 0.875, 0.75, 0.66], \
                                mean_value=[104]*length+[117]*length+[123]*length), \
                            include=dict(phase=0))

        data_val_params = dict(name='vdata', \
                                ntop=2, \
                                video4d_data_param=dict(
                                    source="../kinetics_val_list.txt", \
                                    batch_size=1, \
                                    new_width=width, \
                                    new_height=height, \
                                    new_length=length, \
                                    num_segments=num_segments, \
                                    modality=0, \
                                    step=step, \
                                    name_pattern='image_%06d.jpg'), \
                                transform_param=dict(
                                    crop_size=crop_size, \
                                    mirror=False, \
                                    mean_value=[104]*length+[117]*length+[123]*length), \
                                include=dict(phase=1))
        # pdb.set_trace()
        netspec.data, netspec.label = BaseModule('Video4dData', data_train_params).attach(netspec, [])
        netspec.vdata, netspec.vlabel = BaseModule('Video4dData', data_val_params).attach(netspec, [])
    else:
        data_params = dict(name='data', \
                            dummy_data_param=dict( \
                                shape=dict(\
                                    dim=[10, 3, length, crop_size, crop_size])))
        netspec.data = BaseModule('DummyData', data_params).attach(netspec, [])

    #### (Optional) Reshape Layer ####
    if is_train:
        reshape_params = dict(name='data_reshape', \
                            reshape_param=dict( \
                                shape=dict(dim=[-1, 3, length, crop_size, crop_size])))
        netspec.data_reshape = BaseModule('Reshape', reshape_params).attach(netspec, [netspec.data])

    #### Stage 1 ####
    channels = 3*7*7*3*64/(7*7*3+3*64)
    conv1xdxd_params = dict(name='conv1_1x3x3', \
                            num_output=channels, \
                            kernel_size=[1, 7, 7], \
                            pad=[0, 3, 3], \
                            stride=[1, 2, 2], \
                            engine=2)
    conv1_1xdxd = BaseModule('Convolution', conv1xdxd_params).attach(
                            netspec, [netspec.data_reshape if is_train else netspec.data])
    convtx1x1_params = dict(name='conv1_3x1x1', \
                            num_output=64, \
                            kernel_size=[3, 1, 1], \
                            pad=[1, 0, 0], \
                            stride=[2, 1, 1], \
                            engine=2)
    if uni_bn:
        bn_params = dict(frozen=False)
    else:
        bn_params = dict(use_global_stats=use_global_stats)
    stage1 = BNReLUConvModule(name_template='1', \
                            bn_params=bn_params, \
                            conv_params=convtx1x1_params, \
                            sync_bn=sync_bn, \
                            uni_bn=uni_bn).attach(netspec, [conv1_1xdxd])
    num_output = num_output_stage1

    #### Stages 2 - 5 ####
    last = stage1
    for stage in range(4):
        for block in range(blocks[stage]):
            # First block usually projection
            if block == 0:
                shortcut = 'projection'
                stride = 2
                if stage == 0:
                    shortcut = 'identity'
                    stride = 1
            else:
                shortcut = 'identity'
                stride = 1

            name = str(stage+2) + num2letter[int(block)]
            curr_num_output = num_output * (2 ** (stage))

            if uni_bn:
                params = dict(name=name, num_output=curr_num_output,
                          shortcut=shortcut, main_branch=main_branch,
                          stride=stride, frozen=False)
            else:
                params = dict(name=name, num_output=curr_num_output,
                          shortcut=shortcut, main_branch=main_branch,
                          stride=stride, use_global_stats=use_global_stats)
            last = PreActWiderDecoupBlock(name_template=name, \
                                        shortcut=shortcut, \
                                        num_output=curr_num_output, \
                                        stride=stride, \
                                        sync_bn=sync_bn, \
                                        uni_bn=uni_bn).attach(netspec, [last])
            
            if stage == 0 and block == 1:
                name = 'stage2_atten'
                last = CorrAttentionBlock(name_template=name,
                                        template_type=1,
                                        num_output=curr_num_output,
                                        kernel_size=1,
                                        max_displacement=7,
                                        pad=7).attach(netspec, [last])

            if stage == 1 and block == 1:
                name = 'stage3_atten'
                print(name)
                last = CorrAttentionBlock(name_template=name,
                                        template_type=1,
                                        num_output=curr_num_output,
                                        kernel_size=1,
                                        max_displacement=5,
                                        pad=5).attach(netspec, [last])


    #### Last Norm & ReLU ####
    if uni_bn:
        bn_params = dict(frozen=False)
    else:
        bn_params = dict(use_global_stats=use_global_stats)
    last = BNReLUModule(name_template='5b', \
                        bn_params=bn_params, \
                        sync_bn=sync_bn, \
                        uni_bn=uni_bn).attach(netspec, [last])

    #### pool5 ####
    pool_params = dict(global_pooling=True, pool=P.Pooling.AVE, name='pool5')
    pool = BaseModule('Pooling', pool_params).attach(netspec, [last])

    #### pool5_reshape ####
    reshape_params = dict(shape=dict(dim=[-1, num_output_stage1 * 8]), name='pool5_reshape')
    reshape = BaseModule('Reshape', reshape_params).attach(netspec, [pool])

    #### dropout ####
    dropout_params = dict(dropout_ratio=0.2, name='dropout')
    dropout = BaseModule('Dropout', dropout_params).attach(netspec, [reshape])
    
    #### ip ####
    ip_params = dict(name='fc400', num_output=400)
    ip = BaseModule('InnerProduct', ip_params).attach(netspec, [dropout])

    if is_train:

        #### Softmax Loss ####
        smax_params = dict(name='loss')
        smax_loss = BaseModule('SoftmaxWithLoss', smax_params).attach(netspec, [ip, netspec.label])

        #### Top1 Accuracy ####
        top1_params = dict(name='top1', accuracy_param=dict(top_k=1), include=dict(phase=1))
        top1 = BaseModule('Accuracy', top1_params).attach(netspec, [ip, netspec.label])

        #### Top5 Accuracy ####
        top5_params = dict(name='top5', accuracy_param=dict(top_k=5), include=dict(phase=1))
        top5 = BaseModule('Accuracy', top5_params).attach(netspec, [ip, netspec.label])

    filepath = os.path.join(output_folder, filename)
    fp = open(filepath, 'w')
    print >> fp, netspec.to_proto()
    fp.close()
Esempio n. 8
0
 def __init__(self, db):
     BaseModule.__init__(self, db)
     self.prefix = self.prefix + 'message_'
     config = ConfigParser.ConfigParser()
     config.readfp(open(AP + 'common/conf.ini'))
    def attach(self, netspec, bottom):
        #### BNReLU + tx1x1 convA ####
        name = self.name_template
        prenorm = BNReLUModule(name_template=name, \
                                    bn_params=self.bn_params, \
                                    sync_bn=self.sync_bn, \
                                    uni_bn=self.uni_bn).attach(netspec, bottom)
        convtx1x1_params = dict(name='conv_' + name, \
                                num_output=self.num_output, \
                                kernel_size=[3,1,1], \
                                pad=[1,0,0], \
                                stride=[self.stride,1,1], \
                                engine=2)
        br2a_tx1x1 = BaseModule('Convolution',
                                convtx1x1_params).attach(netspec, [prenorm])

        #### pyramid_1 ####
        name = self.name_template + '_p1'
        pool_params = dict(name='pool_' + name,
                           kernel_size=[1, 3, 3],
                           pad=[0, 1, 1],
                           stride=[1, 2, 2],
                           pool=0)
        pool1 = BaseModule('Pooling', pool_params).attach(netspec, [prenorm])
        convtx1x1_params = dict(name='conv_' + name, \
                                num_output=self.num_output/2, \
                                kernel_size=[3,1,1], \
                                pad=[1,0,0], \
                                stride=[1,1,1], \
                                engine=2)
        br2a_tx1x1_p1 = BaseModule('Convolution',
                                   convtx1x1_params).attach(netspec, [pool1])
        interp_params = dict(name='interp_' + name)
        interp_p1 = BaseModule('Interp', interp_params).attach(
            netspec, [br2a_tx1x1_p1, br2a_tx1x1])

        #### pyramid_2 ####
        name = self.name_template + '_p2'
        pool_params = dict(name='pool_' + name,
                           kernel_size=[1, 3, 3],
                           pad=[0, 1, 1],
                           stride=[1, 4, 4],
                           pool=0)
        pool2 = BaseModule('Pooling', pool_params).attach(netspec, [prenorm])
        convtx1x1_params = dict(name='conv_' + name, \
                                num_output=self.num_output/2, \
                                kernel_size=[3,1,1], \
                                pad=[1,0,0], \
                                stride=[1,1,1], \
                                engine=2)
        br2a_tx1x1_p2 = BaseModule('Convolution',
                                   convtx1x1_params).attach(netspec, [pool2])
        interp_params = dict(name='interp_' + name)
        interp_p2 = BaseModule('Interp', interp_params).attach(
            netspec, [br2a_tx1x1_p2, br2a_tx1x1])

        #### pyramid_extreme ####
        # Not Implemented

        #### concat ####
        name = self.name_template + '_concat'
        concat_params = dict(name=name)  # [1, 1, 1]
        concat = BaseModule('Concat', concat_params).attach(
            netspec, [br2a_tx1x1, interp_p1, interp_p2])

        #### fusion conv ####
        name = self.name_template + '_fusion'
        convtx1x1_params = dict(name='conv_' + name, \
                                num_output=self.num_output, \
                                kernel_size=[3,1,1], \
                                pad=[1,0,0], \
                                stride=[1,1,1], \
                                engine=2)
        out = BNReLUConvModule(name_template=name,
                               bn_params=self.bn_params,
                               conv_params=convtx1x1_params).attach(
                                   netspec, [concat])

        return br2a_tx1x1, out
    def attach(self, netspec, bottom, res=None):
        #### BNReLU + tx1x1 convA ####
        name = self.name_template
        prenorm = BNReLUModule(name_template=name, \
                                    bn_params=self.bn_params, \
                                    sync_bn=self.sync_bn, \
                                    uni_bn=self.uni_bn).attach(netspec, bottom)
        convtx1x1_params = dict(name='conv_' + name, \
                                num_output=self.num_output, \
                                kernel_size=[3,1,1], \
                                pad=[1,0,0], \
                                stride=[self.stride,1,1], \
                                engine=2)
        br2a_tx1x1 = BaseModule('Convolution',
                                convtx1x1_params).attach(netspec, [prenorm])

        #### pyramid_1 ####
        name = self.name_template + '_p1'
        pool_params = dict(name='pool_' + name,
                           kernel_size=[1, 3, 3],
                           pad=[0, 1, 1],
                           stride=[1, 2, 2],
                           pool=0)
        pool1 = BaseModule('Pooling',
                           pool_params).attach(netspec, [br2a_tx1x1])
        convtx1x1_params = dict(name='conv_' + name, \
                                num_output=self.num_output, \
                                kernel_size=[3,1,1], \
                                pad=[1,0,0], \
                                stride=[1,1,1], \
                                engine=2)
        br2a_tx1x1_p1 = BaseModule('Convolution',
                                   convtx1x1_params).attach(netspec, [pool1])
        interp_params = dict(name='interp_' + name)
        interp_p1 = BaseModule('Interp', interp_params).attach(
            netspec, [br2a_tx1x1_p1, br2a_tx1x1])

        #### pyramid_2 ####
        name = self.name_template + '_p2'
        pool_params = dict(name='pool_' + name,
                           kernel_size=[1, 3, 3],
                           pad=[0, 1, 1],
                           stride=[1, 2, 2],
                           pool=0)
        pool2 = BaseModule('Pooling',
                           pool_params).attach(netspec, [br2a_tx1x1_p1])
        convtx1x1_params = dict(name='conv_' + name, \
                                num_output=self.num_output, \
                                kernel_size=[3,1,1], \
                                pad=[1,0,0], \
                                stride=[1,1,1], \
                                engine=2)
        br2a_tx1x1_p2 = BaseModule('Convolution',
                                   convtx1x1_params).attach(netspec, [pool2])
        interp_params = dict(name='interp_' + name)
        interp_p2 = BaseModule('Interp', interp_params).attach(
            netspec, [br2a_tx1x1_p2, br2a_tx1x1])

        #### pyramid_extreme ####
        ## Not Added Yet

        #### add ####
        if res is None:
            name = self.name_template + '_add'
            eltwise_params = dict(name=name, operation=1,
                                  coeff=[1, 0.5, 0.5])  # [1, 1, 1]
            out = BaseModule('Eltwise', eltwise_params).attach(
                netspec, [br2a_tx1x1, interp_p1, interp_p2])
        else:
            name = 'eltadd_' + res[0]
            eltwise_params = dict(name=name,
                                  operation=1,
                                  coeff=[1, 1, 0.5, 0.5])
            out = BaseModule('Eltwise', eltwise_params).attach(
                netspec, [res[1], br2a_tx1x1, interp_p1, interp_p2])

        return out