Esempio n. 1
0
    def insert_before_value(self, value, x):
        '''
            This function is used to add element before given value
            params:
                value: any type
                x : any type
        '''
        if self.head is None:
            raise Exception("List has no items")

        new_node = Node(value)

        # if first node has matched condition
        if self.head.data == x:
            new_node.next = self.head
            self.head = new_node
            return

        prev = self.head
        while prev:
            if prev.next.data == x:
                break
            prev = prev.next

        if prev is None:
            raise Exception("{} not exists in list".format(x))

        new_node.next = prev.next
        prev.next = new_node
Esempio n. 2
0
def _build_tree(x, y, f, random_state, root=Node(), depth=0):
    """ Build a decision tree for a given data.

    """

    n_samples = len(y)

    # 1st base case : empty arrays.
    if n_samples == 0:
        return

    counts = np.bincount(y)
    n_classes = np.count_nonzero(counts)

    # 2nd base case : all node's labels are equal.
    if n_classes <= 1:
        return Leaf(y[0])

    # 3rd base case : maximum depth or minimum sample size reached.
    if depth >= f.max_depth != -1 or n_samples <= f.min_samples_split != -1:
        return Leaf(counts.argmax())

    # Train this node ...
    root.train(x, y, f.n_rounds, random_state)
    # ... and use it to split x
    z = root.split(x)

    assert z is not None

    # Recursive calls.
    root.left = _build_tree(x[~z], y[~z], f, random_state, Node(), depth + 1)
    root.right = _build_tree(x[z], y[z], f, random_state, Node(), depth + 1)

    return root
Esempio n. 3
0
    def test_add_child(self):
        update_queue = set()
        parent = Node(randomPK, update_queue)

        childPK = randomPK + 1
        old_sync_hash = parent.get_sync_hash()
        child = Node(childPK, set())
        parent.add_child(child)
        new_sync_hash = parent.get_sync_hash()

        self.assertEqual(child._parent, parent)
        self.assertIn(child, parent._children)
        self.assertEqual(parent._number_of_children(), 1)

        for x in sum((old_sync_hash, new_sync_hash), ()):
            if x != DEFAULT_HASH_VALUE:
                self.assertTrue(check_valid_hash(x))

        self.assertTrue(TestNodeCore.check_sync_hash_old_new(old_sync_hash, new_sync_hash, False, True, False))

        with self.assertRaises(NotImplementedError):
            parent.remove_child(childPK)

        # update_queue should have only parent added.
        self.assertSetEqual(parent._update_hash_queue, set([parent._pk, child._pk]))
Esempio n. 4
0
    def __init__(self, name='CLK%d', period=1,state=0):
        Node.__init__(self, name)

        self.add_output('CLK')
        self.initperiod = period
        self.period = period
        self.initstate = state
        self.state = None
Esempio n. 5
0
 def push(self, value):
     '''
         This function is used to add element at the beginning
         params:
             value: any type
     '''
     new_node = Node(value)
     new_node.next = self.head
     self.head = new_node
     return
Esempio n. 6
0
 def init_snake(self):
     # 左上方开始
     snake = Snake()
     head_node = Node(img_path=GameConfig.snake_head_img)
     tail_node = Node(img_path=GameConfig.snake_tail_img)
     head_point = Point(1, 0)
     tail_point = Point(0, 0)
     snake.set_head(node=head_node, point=head_point)
     snake.set_tail(node=tail_node, point=tail_point)
     self.snake = snake
Esempio n. 7
0
    def test_beam_init(self):
        n1 = Node(0., 0., 0.)
        n2 = Node(10., 10., 0.)

        b1 = Beam(n1, n2)
        b1.properties['Area'] = 0.1 * 0.1

        self.assertAlmostEqual(b1.length(), sqrt(200.))
        self.assertAlmostEqual(b1.volume(), 0.01 * sqrt(200.))
        self.assertTrue(b1.sizeOfEM() == 12)
Esempio n. 8
0
 def _recursive_populate(self, root, value):
         if value > root.value:
             if root.rchild is None:
                 root.rchild = Node(value)
             else:
                 self._recursive_populate(root.rchild, value)
         else:
             if root.lchild is None:
                 root.lchild = Node(value)
             else:
                 self._recursive_populate(root.lchild, value)
Esempio n. 9
0
def create(list):
    if len(list) == 0:
        return None

    head = Node(value=list[0])
    node = head
    for i in list[1:]:
        next = Node(value=i)
        node.next = next
        node = next
    return head
Esempio n. 10
0
 def reset_food(self):
     if self.food_images:
         food_img_path = self.food_images.pop()
         food_img = Node(img_path=food_img_path)
     else:
         self.food_images = self.get_food_imgs()  # 重新吃所有图片
         food_img_path = self.food_images.pop()
         food_img = Node(img_path=food_img_path)
     point = self.find_point()
     food = Food(node=food_img, point=point)
     self.food = food
Esempio n. 11
0
    def test_beam_transform(self):
        n1 = Node(0., 0., 0.)
        n2 = Node(10., 10., 0.)

        b1 = Beam(n1, n2)

        T = b1.calcT()

        p0 = np.dot(T, (0., 0., 0.))
        self.almostEqual(p0, (0., 0., 0.))

        p1 = np.dot(T, (10., 10., 0.))
        self.almostEqual(p1, (sqrt(200.), 0., 0.))
Esempio n. 12
0
def append(head, value):
    if not head:
        head = Node(value=value)
        return head

    node = head

    while node.next:
        node = node.next

    node.next = Node(value=value)

    return head
Esempio n. 13
0
    def timeslice(self, time):
        Node.timeslice(self,time)

        ev = self.event_available('IN',time)
        if ev:
            newstate = int(not ev.state)
            ev.set_processed()
        else:
            newstate = int(not self.in_port_states['IN'])

        if self.out_port_states['OUT'] != newstate:
            self.send_state_change('OUT',newstate, time)

        self.timeslice_updatestates(time)
Esempio n. 14
0
 def parse(self, shellLog):
     activeNodes=[]
     try:
         f = open(shellLog.discovery_log, 'r').readlines()
         for i in range(0, len(f)):
             node = Node()
             node.ip_addr = f[i].split(";")[0]
             node.mac_addr = f[i].split(";")[5]
             node.manufacturer_name = f[i].split(";")[6].split('\n')[0]
             node.node_status = NODE_STATUS.UP
             activeNodes.append(node)
         return activeNodes
     except Exception, msg:
         raise ParserFailed(msg)
Esempio n. 15
0
def make_decision_split_node(node, feature_indices):
    """

    :param node: Node
        Node to be split

    :param feature_indices: array-like of shape (D_try, )
        Contains feature indices to be considered in the present split

    :return: tuple
        Tuple of left and right children nodes (to be placed on the stack)
    """
    n, D = node.data.shape

    # Find best feature j (among 'feature_indices') and best threshold t for the split
    e_min = 1e100
    j_min, t_min = 0, 0
    for j in feature_indices:
        # Remove duplicate features
        dj = np.sort(np.unique(node.data[:, j]))
        # Compute candidate thresholds
        tj = (dj[1:] + dj[:-1]) / 2

        # Compute Gini-impurity of resulting children nodes for each candidate threshold
        for t in tj:
            left_indices = node.data[:, j] <= t

            nl = np.sum(node.data[:, j] <= t)
            ll = node.labels[left_indices]
            el = nl * (1 - np.sum(np.square(np.bincount(ll) / nl)))

            nr = n - nl
            # lr = node.labels[node.data[:, j] > t]
            lr = node.labels[~left_indices]
            er = nr * (1 - np.sum(np.square(np.bincount(lr) / nr)))

            if el + er < e_min:
                e_min = el + er
                j_min = j
                t_min = t

    # Create children
    left = Node()
    right = Node()

    # Initialize 'left' and 'right' with the data subsets and labels
    # according to the optimal split found above
    left.data = node.data[node.data[:, j_min] <= t_min, :]
    left.labels = node.labels[node.data[:, j_min] <= t_min]

    right.data = node.data[node.data[:, j_min] > t_min, :]
    right.labels = node.labels[node.data[:, j_min] > t_min]

    node.left = left
    node.right = right
    node.feature = j_min
    node.threshold = t_min

    return left, right
Esempio n. 16
0
    def test_node_creation(self):
        node = Node(randomPK, set())

        self.assertEqual(node._pk, randomPK)
        self.assertIsNone(node._parent)
        self.assertSetEqual(node._update_hash_queue ,set([node._pk]))
        self.assertListEqual(node._children, [])
Esempio n. 17
0
def ucb_score(config: AlphaZeroConfig, parent: Node, child: Node):
    '''
    The score for a node is based on its value, plus an exploration bonus based on the prior.
    '''
    pb_c = math.log((parent.visit_count + config.pb_c_base + 1) /
                    config.pb_c_base) + config.pb_c_init
    pb_c *= math.sqrt(parent.visit_count) / (child.visit_count + 1)
    # Classic UCB
    # pb_c = 1 * np.sqrt(np.log(parent.visit_count) / child.visit_count) if child.visit_count > 0 else float('inf')
    # XXX pi_hat influences the search priority
    prior_score = pb_c * child.prior
    # XXX Should we use V_hat during testing? Maybe we should just use true terminal values. This way, value prediction is really used only for training (features).
    # NOTE: we are choosing a good move for the player of the parent node and each node returns the ego-centric value
    value_score = child.sampled_value(
    ) if child.is_first_player == parent.is_first_player else (
        0 - child.sampled_value())
    return prior_score + value_score
Esempio n. 18
0
 def addNode(self, elem):
     """
     Add a new node with the specified value.
     :param elem: the node value.
     :return: the create node.
     """
     newNode = Node(elem, elem)
     self.nextId += 1
     return newNode
Esempio n. 19
0
 def test_get_children_chance_nodes(self):
     node = Node()
     node.board_string = ''
     node.board = card_to_string.string_to_cards(node.board_string)
     node.street = 0
     node.num_bets = 0
     node.current_player = constants.players.P1
     node.bets = arg.IntTensor([1, 1]).to(arg.device)
     children = tree_builder.get_children_chance_nodes(node)
     for child in children:
         pass
Esempio n. 20
0
    def timeslice(self, time):
        timepass = time - self.lastslice
        lastslice = self.lastslice
        Node.timeslice(self, time)

        if self.state is None:
            self.state = self.initstate
            self.send_state_change('CLK', self.state, time)
        else:
            period = self.period
            while (timepass):
                period = period - 1
                timepass = timepass - 1
                if period == 0:
                    self.state = int(not self.state)
                    self.send_state_change('CLK', self.state, lastslice + (time - timepass))
                    period = self.initperiod

            self.period = period
Esempio n. 21
0
 def test_build_tree(self):
     params = TreeParams()
     params.root_node = Node()
     params.root_node.board = card_to_string.string_to_cards('')
     params.root_node.board_string = ''
     params.root_node.street = 0
     params.root_node.current_player = constants.players.P1
     params.root_node.bets = arg.IntTensor([1, 1]).to(arg.device)
     root = tree_builder.build_tree(params)
     tree_visulizer.draw_tree(root)   
Esempio n. 22
0
 def build_tree(self, params):
     root = Node()
     root.street = params.root_node.street
     root.bets = params.root_node.bets.clone()
     root.current_player = params.root_node.current_player
     root.board = params.root_node.board.clone()
     root.board_string = params.root_node.board_string
     self.build_tree_dfs(root)
     return root
Esempio n. 23
0
 def get_children_chance_nodes(self, parent_node):
     children = []
     next_boards = card_tools.get_second_round_boards()
     for board in next_boards:
         chance_node = Node(parent_node)
         chance_node.current_player = constants.players.P1
         chance_node.street = parent_node.street + 1
         chance_node.board = board
         chance_node.board_string = card_to_string.cards_to_string(board)
         chance_node.num_bets = 0
         chance_node.action = chance_node.board_string
         children.append(chance_node)
     return children
Esempio n. 24
0
    def test_setting_getting_deleting_data(self):
        node = Node(randomPK, set())

        self.assertDictEqual(node._info._data_holder, {})
        for k, v in temp_info.iteritems():
            setattr(node, k, v)
            self.assertEqual(getattr(node, k), v)

        node.abc = 124
        self.assertEqual(node.abc, 124)
        node.abc += 1
        self.assertEqual(node.abc, 125)

        del node.abc
        with self.assertRaises(AttributeError):
            temp = node.abc

        new_node = Node(randomPK, set(), **temp_info)
        for k,v in temp_info.iteritems():
            self.assertEqual(getattr(new_node, k), v)
Esempio n. 25
0
    def handleNODE(self, fh, line):
        if self.step > 0:
            raise FEError('*NODE should be placed before all step definitions')

        nset = None
        nsetdat = set()

        # check for nset definition
        for part in line.parts:
            part = part.upper()
            if part.startswith("NSET="):
                _, nset = part.split("=")
            else:
                raise ParserError(line, '*NODE definition malformed!')

        # loop until EOF or new keyword
        line = self.nextline(fh)
        while not line.keyword and not line is EmptyLine:
            nid = self.parse_int(line.parts[0], minimum=1)
            if nid in self.nodemap:
                raise FEError("Nodes #%d redefined" % nid)

            # add to set
            if not nset is None:
                nsetdat.add(nid)

            # fetch coordinates
            x, y, z = 0., 0., 0.
            coords = line.parts[1:]

            ll = len(coords)
            if ll == 1:
                x = float(coords[0])
            elif ll == 2:
                x, y = map(float, coords)
            elif ll == 3:
                x, y, z = map(float, coords)
            else:
                raise ParserError(line, '*NODE definition malformed!')

            self.nodemap[nid] = Node(x, y, z)

            # get next line
            line = self.nextline(fh)

        # Save or update nset
        if not nset is None:
            if nset in self.nset:
                self.nset[nset] += nsetdat
            else:
                self.nset[nset] = nsetdat

        return line
Esempio n. 26
0
    def timeslice(self, time):
        Node.timeslice(self, time)

        A = self.in_port_states['A']
        B = self.in_port_states['B']

        aevent = self.event_available('A',time)
        bevent = self.event_available('B',time)
        if aevent:
            aevent.set_processed()
            A = aevent.state
        if self.in_events.has_key('B'):
            bevent.set_processed()
            B = bevent.state

        result = self.operator(A, B)
        if result != self.lastout:
            self.lastout = result
            self.send_state_change('OUT', result, time)

        self.timeslice_updatestates(time)
Esempio n. 27
0
def evaluate(node: Node, game: Game, network: Network, use_cpu: bool = False):
    '''
    We use the neural network to obtain a value and policy prediction.
    '''
    ego_rep = game.ego_board_representation()
    ego_value, ego_policy_logits = network.single_inference(ego_rep,
                                                            use_cpu=use_cpu)
    # Transform ego-centric to absolute
    is_first_player = game.is_first_player_turn()
    value = game.ego2abs_value(is_first_player, ego_value)
    policy_logits = game.ego2abs_policy(is_first_player, ego_policy_logits)

    # Expand the node.
    node.is_first_player = is_first_player
    # print('eval', '%0.2f' % policy_logits.max())
    policy = {a: math.exp(policy_logits[a]) for a in game.legal_actions()}
    policy_sum = sum(policy.values())
    for action, p in policy.items():
        node.children[action] = Node(p / policy_sum)
        # node.children[action] = Node(0)
    return value
Esempio n. 28
0
def insert(head, index, value):
    if index < 0:
        return head

    if not head and index > 0:
        return head

    if index == 0:
        new = Node(value=value)
        new.next = head
        head = new
        return head

    node = head
    prev = None
    step = 0

    while node and step < index:
        prev = node
        node = node.next
        step += 1

    if not node:
        return head

    next = prev.next
    new = Node(value=value)
    prev.next = new
    new.next = next

    return head
Esempio n. 29
0
def sum_linked_lists(root1, root2):
    num1 = 0
    mult = 1
    while root1 is not None:
        num1 += root1.data * mult
        root1 = root1.next
        mult *= 10
    num2 = 0
    mult = 1
    while root2 is not None:
        num2 += root2.data * mult
        root2 = root2.next
        mult *= 10
    result = num1 + num2
    print "%s + %s = %s" % (num1, num2, result)
    result_list = None
    for x in str(result)[::-1]:
        if result_list is None:
            result_list = Node(x)
        else:
            result_list.append_to_tail(x)
    return result_list
Esempio n. 30
0
    def insert_after_value(self, value, x):
        '''
            This function is used to add element after given value
            params:
                value: any type
                x : any type
        '''
        if self.head is None:
            raise Exception("List has no items")

        new_node = Node(value)
        current = self.head
        while current:
            if current.data == x:
                break
            current = current.next

        if current is None:
            raise Exception("{} not exists in list".format(x))

        new_node.next = current.next
        current.next = new_node
Esempio n. 31
0
    def put(self, key, val):
        # 如存在,先删除
        if key in self.key2val:
            self.key2val[key]=val

        if len(self.key2val) >= self.cap:
            self.__remove_min_freq_key()

        self.key2val[key]=val
        self.key2freq[key]=1
        self.freq2keys.setdefault(1,LRUCache())
        self.freq2keys[1].add_last(Node(key,val))
        self.min_freq=1
Esempio n. 32
0
 def test_build_tree(self):
     params = TreeParams()
     params.root_node = Node()
     params.root_node.board = card_to_string.string_to_cards('')
     params.root_node.board_string = ''
     params.root_node.street = 0
     params.root_node.current_player = constants.players.P1
     params.root_node.bets = arg.IntTensor([1, 1]).to(arg.device)
     root = tree_builder.build_tree(params)
     self.terminal_node = 0
     self.chacne_node = 0
     self.else_node = 0
     self.dfs(root)
Esempio n. 33
0
def a_star_search(start, goal, problem, safe_states):
    """
    Find the list of actions to perform on the start state to reach the goal
    state through optimal path with least cost.
    Args:
        start: tuple - (x,y). Start state of the agent
        goal: tuple - (x,y). Goal state to reach.
        problem: 2d list of characters - [['m','p'],['s','p']]. Problem with terrain as characters.
        safe_states:
    Returns: string. Sequence of actions to take on start state to reach
    the goal state.
    """
    explored = set()
    frontier = []

    # push the start node to the frontier
    heappush(frontier, Node(0, 0, start, None, None))

    while True:
        # if all nodes in the frontier are explored and path is not found, then
        # there exists no path.
        if len(frontier) == 0:
            return [], sys.maxsize

        # select state with least cost from frontier
        node = heappop(frontier)
        # print(node.state)
        # goal test the current node
        goal_node = goal_test(node, goal, frontier)
        if goal_node:
            # get the solution(seq. of actions)
            return get_solution(goal_node)

        # add state to explored set
        explored.add(node.state)

        # get the list of all possible actions on the state
        actions = find_actions(len(problem) - 1, node.state, problem)
        # expand a node and generate children
        for action in actions:
            # generate a child node by applying actions to the current state
            child = generate_child(problem, goal, node, action)
            if child is not None:
                # check if child is already explored or present in frontier and
                # (Ref: Line 144)replace the frontier node with child if the child has lower cost
                if child.state not in explored and child not in frontier:
                    # add node with current state and path cost to reach the node from
                    # the start state to the frontier
                    # if the safeStates passed from the plan is in the frontier then only it will consider it
                    if (len(safe_states) == 0) or (child.state in safe_states) or (child.state == goal):
                        heappush(frontier, child)
Esempio n. 34
0
class TestNodeClass(unittest.TestCase):
    """Class to test common behavior of all nodes"""

    def setUp(self):
        (public_key, private_key) = rsa.newkeys(512)
        self.node = Node(public_key, private_key)
        self.node_mapping = {str(public_key): self.node}

    def test_set_mapping(self):
        self.node.set_node_mapping(dict(self.node_mapping))
        # node is supposed to remove its own mapping from dictionary
        self.assertEqual(self.node.node_mapping, {})

    def test_method_name(self):
        # call method here
        # assert that the expected result is the case
        pass

    def test_node_in_network(self):
        actual = self.node.is_node_in_network(self.node.public_key)
        self.assertTrue(self.node_mapping, actual)

    def test_sign_message(self):
        # Encoding our message into bits using .encode()
        message = 'Test Message'.encode()

        # Ciphertext that takes a message and makes a node sign the message
        cipher = self.node.sign_message(message)

        # plaintext that uses decryption with the private key on the cipher text
        # Cannot test for encryption equality, because random seed makes encryption results different
        plaintxt = rsa.decrypt(cipher, self.node._private_key)

        # tested if node signs message properly
        self.assertEqual(message, plaintxt,
                         'Node did not sign message properly')
Esempio n. 35
0
    def append(self, value):
        '''
            This function is used to add element at the end of list
            params:
                value: any type
        '''
        new_node = Node(value)
        if self.head is None:
            self.head = new_node
            return

        current = self.head
        while current.next:
            current = current.next

        current.next = new_node
        return
Esempio n. 36
0
    def test_hash_changes_on_setting_getting_deleting_data(self):
        node = Node(randomPK, set())

        old_hash = node.get_hash()
        node.abc = "abc"
        new_hash = node.get_hash()
        self.assertTrue(check_valid_hash(new_hash))
        self.assertNotEqual(old_hash, new_hash)

        temp = node.abc
        old_hash, new_hash = new_hash, node.get_hash()
        self.assertEqual(new_hash, old_hash)

        del node.abc
        new_hash = node.get_hash()
        self.assertTrue(check_valid_hash(new_hash))
        self.assertNotEqual(old_hash, new_hash)
Esempio n. 37
0
 def __init__(self, name='GATE%d'):
     Node.__init__(self, name)
     self.add_input('A')
     self.add_input('B')
     self.add_output('OUT')
     self.lastout = 0
Esempio n. 38
0
 def __init__(self, name='NOT%d'):
     Node.__init__(self, name)
     self.add_input('IN')
     self.add_output('OUT')
Esempio n. 39
0
        root1 = root1.next
        mult *= 10
    num2 = 0
    mult = 1
    while root2 is not None:
        num2 += root2.data * mult
        root2 = root2.next
        mult *= 10
    result = num1 + num2
    print "%s + %s = %s" % (num1, num2, result)
    result_list = None
    for x in str(result)[::-1]:
        if result_list is None:
            result_list = Node(x)
        else:
            result_list.append_to_tail(x)
    return result_list


root1 = Node(3)
root1.append_to_tail(1)
root1.append_to_tail(5)
root1.append_to_tail(6)

root2 = Node(5)
root2.append_to_tail(9)
root2.append_to_tail(2)

result = sum_linked_lists(root1, root2)
print_nodes(result)
Esempio n. 40
0
from base import Node, print_nodes

def remove_duplicates(root):
    n = root
    prev = None
    d = {}
    while n is not None:
        if n.data in d:
            prev.next = n.next
        else:
            d[n.data] = 1
            prev = n
        n = n.next

root = Node(4)
root.append_to_tail(5)
root.append_to_tail(8)
root.append_to_tail(7)
root.append_to_tail(8)
root.append_to_tail(10)
root.append_to_tail(8)
root.append_to_tail(10)

print_nodes(root)
remove_duplicates(root)
print_nodes(root)
Esempio n. 41
0
 def test_node_gets_present_time_as_updated_time_on_insertion(self):
     now = time_now()
     node = Node(0, set(), **temp_info)
     self.assertAlmostEqual(now, node.get_update_time(), places=0)
Esempio n. 42
0
    def test_hash_and_queue_changes_in_a_complex_tree(self):
        update_queue = set()

        root = Node(randomPK, update_queue)
        root_child1 = Node(getRandomPK(), update_queue)
        root_child2 = Node(getRandomPK(), update_queue)
        root_child1_child1 = Node(getRandomPK(), update_queue)
        root_child1_child2 = Node(getRandomPK(), update_queue)
        root_child2_child1 = Node(getRandomPK(), update_queue)
        root_child2_child2 = Node(getRandomPK(), update_queue)
        root_child1_child1_child1 = Node(getRandomPK(), update_queue)

        all_nodes = [locals()[x] for x in locals().keys() if 'root' in x]

        # Each new node announces its presence in the update queue
        self.assertSetEqual(update_queue, set([x._pk for x in all_nodes]))

        update_queue = set()
        for x in all_nodes:
            x._update_hash_queue = update_queue


        #start creating relationships
        old_root_hash = root.get_sync_hash()
        old_root_child1_hash = root_child1.get_sync_hash()
        root.add_child(root_child1)
        self.assertSetEqual(update_queue, set([root._pk, root_child1._pk]))
        new_root_hash = root.get_sync_hash()
        new_root_child1_hash = root_child1.get_sync_hash()

        self.assertTrue(TestNodeCore.check_sync_hash_old_new(old_root_hash, new_root_hash, False, True, False))
        self.assertTrue(TestNodeCore.check_sync_hash_old_new(old_root_child1_hash, new_root_child1_hash, True, True, True))

        root_child1.add_child(root_child1_child1)
        self.assertSetEqual(update_queue, set([root._pk, root_child1._pk, root_child1_child1._pk]))

        root.add_child(root_child2)
        self.assertSetEqual(update_queue, set([root._pk, root_child1._pk, root_child1_child1._pk, root_child2._pk]))

        #create complete relationship
        root_child1.add_child(root_child1_child2)
        root_child2.add_child(root_child2_child1)
        root_child2.add_child(root_child2_child2)
        root_child1_child1.add_child(root_child1_child1_child1)

        self.assertEqual(root._number_of_children(), 2)
        self.assertEqual(root_child1._number_of_children(), 2)
        self.assertEqual(root_child2._number_of_children(), 2)
        self.assertEqual(root_child1_child1._number_of_children(), 1)
        self.assertEqual(root_child1_child2._number_of_children(), 0)
        self.assertEqual(root_child2_child1._number_of_children(), 0)
        self.assertEqual(root_child2_child2._number_of_children(), 0)

        self.assertEqual(len(update_queue), 8)

        self.assertIn(root_child1_child1_child1, root_child1_child1._children)

        # test that changing a child's description, changes its hash and adds self
        # pk in the update queue

        update_queue.remove(root_child2_child2._pk)
        old_sync_hash = root_child2_child2.get_sync_hash()
        root_child2_child2.something = "Sometihng"
        new_sync_hash = root_child2_child2.get_sync_hash()
        self.assertIn(root_child2_child2._pk, update_queue)
        self.assertTrue(TestNodeCore.check_sync_hash_old_new(
            old_sync_hash, new_sync_hash, False, False, True))
Esempio n. 43
0
from base import Node, print_nodes


def find_loop_start(node):
    nodes = {}
    while node is not None:
        if node not in nodes:
            nodes[node] = 1
        else:
            return node
        node = node.next

root = Node('A')
root.append_to_tail('B')
root.append_to_tail('C')
root.append_to_tail('D')
root.append_to_tail('E')
root.next.next.next.next.next = root.next.next

loop_start = find_loop_start(root)
print loop_start.data
Esempio n. 44
0
 def __init__(self, name='PKG%d'):
     Node.__init__(self,name)
     self.contents = list()
Esempio n. 45
0
def find_nth_to_last(root, nth):
    if root is None or nth < 0:
        return None
    p2 = root
    for x in xrange(0, nth):
        p2 = p2.next
        if p2 is None:
            return None
    p1 = root
    while p2.next is not None:
        p1 = p1.next
        p2 = p2.next
    return p1


root = Node(0)
root.append_to_tail(1)
root.append_to_tail(2)
root.append_to_tail(3)
root.append_to_tail(4)
root.append_to_tail(5)
root.append_to_tail(6)
root.append_to_tail(7)
root.append_to_tail(8)
root.append_to_tail(9)

print_nodes(root)
nth = 2
node = find_nth_to_last(root, nth)
print "%s to last: %s" % (nth, node.data)
Esempio n. 46
0
    def timeslice(self, time):
        Node.timeslice(self, time)

        for node in self.contents:
            node.timeslice(time)