def show_multi_plot(y_bundle, batch_size_): indep_test_axis = [] for i in range(batch_size_): indep_test_axis.append(i) p = PlotUtil("Accuracy Results on MNIST Dataset", np.array(indep_test_axis), "Epoch iterations", "Accuracy") p.show_plot(y_bundle)
test_accuracies = np.array(test_accuracies) y = YaxisBundle(np.array(test_losses), "loss", "b") y_bundle.append(y) y = YaxisBundle(np.array(test_accuracies), "accuracy", "g") y_bundle.append(y) #p.show_plot(y_bundle) if config.matplot_lib_for_single_ybundle: if config.matplot_lib_for_accuracy: return y_bundle[1] else: return y_bundle[0] return y_bundle if __name__ == '__main__': if config.matplot_lib_enabled: indep_test_axis = [] for i in range(config.training_epochs): indep_test_axis.append(i) p = PlotUtil("title", np.array(indep_test_axis), "x_label", "y_label") y_bundle = run_with_config(config) p.show_plot(y_bundle) else: run_with_config(config)
y = YaxisBundle(np.array(test_losses), "loss", "b") y_bundle.append(y) y = YaxisBundle(np.array(test_accuracies), "accuracy", "g") y_bundle.append(y) #p.show_plot(y_bundle) if config.matplot_lib_for_single_ybundle: if config.matplot_lib_for_accuracy: return y_bundle[1] else: return y_bundle[0] return y_bundle if __name__ == '__main__': if config.matplot_lib_enabled: indep_test_axis = [] for i in range(config.training_epochs): indep_test_axis.append(i) p = PlotUtil("Highway LSTM(3 layers) on MNIST", np.array(indep_test_axis), "Epoch iterations", "Loss or Accuracy") y_bundle = run_with_config(config) p.show_plot(y_bundle) else: run_with_config(config)
y = YaxisBundle(np.array(test_losses), "loss", "b") y_bundle.append(y) y = YaxisBundle(np.array(test_accuracies), "accuracy", "g") y_bundle.append(y) #p.show_plot(y_bundle) if config.matplot_lib_for_single_ybundle: if config.matplot_lib_for_accuracy: return y_bundle[1] else: return y_bundle[0] return y_bundle if __name__ == '__main__': if config.matplot_lib_enabled: indep_test_axis = [] for i in range(config.training_epochs): indep_test_axis.append(i) p = PlotUtil("Residual LSTM(3 layers) on HAR", np.array(indep_test_axis), "Epoch iterations", "Loss or Accuracy") y_bundle = run_with_config(config) p.show_plot(y_bundle) else: run_with_config(config)
def show_multi_plot(y_bundle, batch_size_): indep_test_axis = [] for i in range(batch_size_): indep_test_axis.append(i) p = PlotUtil("title", np.array(indep_test_axis), "x_label", "y_label") p.show_plot(y_bundle)
y = YaxisBundle(np.array(test_losses), "loss", "b") y_bundle.append(y) y = YaxisBundle(np.array(test_accuracies), "accuracy", "g") y_bundle.append(y) #p.show_plot(y_bundle) if config.matplot_lib_for_single_ybundle: if config.matplot_lib_for_accuracy: return y_bundle[1] else : return y_bundle[0] return y_bundle if __name__ == '__main__': if config.matplot_lib_enabled: indep_test_axis = [] for i in range(config.training_epochs): indep_test_axis.append(i) p = PlotUtil("Deep LSTM(3 layers) on UCR ElectricDevices", np.array(indep_test_axis), "Epoch iterations", "Loss or Accuracy") y_bundle = run_with_config(config) p.show_plot(y_bundle) else: run_with_config(config)