Esempio n. 1
0
    def build_train_step(self):
        # 损失
        if self.loss is None:
            _loss = Loss(label_data=self.label_data,
                         pred=self.pred,
                         output_act_func=self.output_act_func)
            self.loss = _loss.get_loss_func(
                self.loss_func
            )  # + 0.5*tf.matrix_determinant(tf.matmul(self.out_W,tf.transpose(self.out_W)))
        # 正确率
        if self.accuracy is None:

            _ac = Accuracy(label_data=self.label_data, pred=self.pred)
            self.accuracy = _ac.accuracy()

        # 构建训练步
        if self.train_batch is None:
            if self.bp_algorithm == 'adam' or self.bp_algorithm == 'rmsp':
                self.global_step = None
                self.r = self.lr
            else:
                self.global_step = tf.Variable(
                    0, trainable=False)  # minimize 中会对 global_step 自加 1
                self.r = tf.train.exponential_decay(
                    learning_rate=self.lr,
                    global_step=self.global_step,
                    decay_steps=100,
                    decay_rate=0.96,
                    staircase=True)

            self._optimization = Optimization(r=self.r, momentum=self.momentum)
            self.train_batch = self._optimization.trainer(
                algorithm=self.bp_algorithm).minimize(
                    self.loss, global_step=self.global_step)
Esempio n. 2
0
    def build_model(self):
        # feed 变量
        self.input_data = tf.placeholder(
            tf.float32, [None, self.n_x],
            name='X')  # N等于batch_size(训练)或_num_examples(测试)
        self.A = tf.placeholder(tf.float32, [None, self.n_x], name='A')
        # 权值 变量(初始化)
        self.W = tf.Variable(tf.truncated_normal(shape=[self.n_x, self.n_y],
                                                 stddev=0.1),
                             name='W')
        self.bz = tf.Variable(tf.constant(0.1, shape=[self.n_x]), name='bz')
        self.by = tf.Variable(tf.constant(0.1, shape=[self.n_y]), name='by')
        self.p_mat = tf.Variable(tf.constant(self.p, shape=[1, self.n_y]),
                                 name='p_mat')

        self.var_list = [self.W, self.by, self.bz]

        # 建模
        x = self.input_data
        y = self.transform(x)
        z = self.reconstruction(y)
        if self.ae_type == 'dae':  # 去噪自编码器 [dae]
            self.loss = self.get_denoising_loss(x, z)
        else:
            _loss = Loss(
                label_data=self.input_data,  # 自编码器 [ae]
                pred=z,
                output_act_func=self.de_func)
            self.loss = _loss.get_loss_func(self.loss_func)
            if self.ae_type == 'sae':  # 稀疏自编码器 [sae]
                self.loss = (1 -
                             self.beta) * self.loss + self.beta * self.KL(y)

        _optimization = Optimization(r=self.ae_lr,
                                     momentum=self.momentum,
                                     use_nesterov=True)
        self.train_batch_bp = _optimization.trainer(algorithm='sgd').minimize(
            self.loss, var_list=self.var_list)

        #****************** Tensorboard ******************
        Summaries.scalars_histogram('_W', self.W)
        Summaries.scalars_histogram('_bz', self.bz)
        Summaries.scalars_histogram('_by', self.by)
        tf.summary.scalar('loss', self.loss)
        self.merge = tf.summary.merge(
            tf.get_collection(tf.GraphKeys.SUMMARIES,
                              tf.get_default_graph()._name_stack))
Esempio n. 3
0
class Model(object):
    def __init__(self, name):
        """
            ↓ user control ↓
        """
        self.show_pic = True  # show curve in 'Console'
        self.tbd = False  # tensorboard
        self.save_model = False  # save model
        self.plot_para = False  # plot W pic
        self.save_weight = False  # save W matrix
        self.do_tSNE = False  # t-SNE
        """
            ↑ user control ↑
        """
        # name
        self.name = name
        # record best acc
        self.ave_acc = 0  # average acc
        self.best_acc = None  # acc list

        # for pre-training
        self.momentum = 0.5
        self.output_act_func = 'softmax'
        self.loss_func = 'mse'
        self.bp_algorithm = 'rmsp'
        self.use_label = False  # supervised pre-training
        self.pre_exp_time = None  # pre-training expend time
        self.deep_feature = None
        # for fine-tuning
        self.h_act_p = 0
        self.recon_data = None
        # for build train step
        self.pt_model = None
        self.decay_lr = False
        self.loss = None
        self.accuracy = None
        self.train_batch = None
        # for summary (tensorboard)
        self.merge = None
        # for plot
        self.pt_img = None
        self.title = False
        # for 'prediction'
        self.pred_Y = None
        self.mse = np.inf
        # for 'classification'
        self.loss_and_acc = None  # loss, train_acc, test_acc, spend_time
        self.test_Y = None  # real label
        self.real_class = None
        self.pred_class = None

    #########################
    #        Build          #
    #########################

    def build_train_step(self):
        # 预训练/微调
        if self.recon_data is not None:
            label_data = self.recon_data
        else:
            label_data = self.label_data
        # 损失
        if self.loss is None:
            _loss = Loss(label=label_data,
                         logits=self.logits,
                         out_func_name=self.output_act_func,
                         loss_name=self.loss_func)
            self.loss = _loss.get_loss_func(
            )  # + 0.5*tf.matrix_determinant(tf.matmul(self.out_W,tf.transpose(self.out_W)))
        # 正确率
        if self.accuracy is None:

            _ac = Accuracy(label_data=label_data, pred=self.pred)
            self.accuracy = _ac.accuracy()

        # 构建训练步
        if self.train_batch is None:
            if self.bp_algorithm == 'adam' or self.bp_algorithm == 'rmsp':
                self.global_step = None
                self.r = self.lr
            else:
                self.global_step = tf.Variable(
                    0, trainable=False)  # minimize 中会对 global_step 自加 1
                self.r = tf.train.exponential_decay(
                    learning_rate=self.lr,
                    global_step=self.global_step,
                    decay_steps=100,
                    decay_rate=0.96,
                    staircase=True)

            self._optimization = Optimization(r=self.r, momentum=self.momentum)
            self.train_batch = self._optimization.trainer(
                algorithm=self.bp_algorithm).minimize(
                    self.loss, global_step=self.global_step)

    #########################
    #        Train          #
    #########################

    def train_model(self,
                    train_X,
                    train_Y=None,
                    test_X=None,
                    test_Y=None,
                    sess=None,
                    summ=None,
                    load_saver=''):

        W_csv_pt = None
        saver = tf.train.Saver()

        if load_saver == 'f':
            # 加载训练好的模型 --- < fine-tuned >
            print("Load Fine-tuned model...")
            ft_save_path = '../saver/' + self.name + '/fine-tune'
            if not os.path.exists(ft_save_path): os.makedirs(ft_save_path)
            saver.restore(sess, ft_save_path + '/fine-tune.ckpt')

        elif load_saver == 'p':
            # 加载预训练的模型 --- < pre-trained >
            print("Load Pre-trained model...")
            pt_save_path = '../saver/' + self.name + '/pre-train'
            if not os.path.exists(pt_save_path): os.makedirs(pt_save_path)
            saver.restore(sess, pt_save_path + '/pre-train.ckpt')

        elif self.pt_model is not None:

            #####################################################################
            #     开始逐层预训练 -------- < start pre-traning layer by layer>     #
            #####################################################################

            print("Start Pre-training...")
            pre_time_start = time.time()
            # >>> Pre-traning -> unsupervised_train_model
            self.deep_feature = self.pt_model.train_model(train_X=train_X,
                                                          train_Y=train_Y,
                                                          sess=sess,
                                                          summ=summ)
            pre_time_end = time.time()
            self.pre_exp_time = pre_time_end - pre_time_start
            print('>>> Pre-training expend time = {:.4}'.format(
                self.pre_exp_time))

            if self.save_weight:
                W_csv_pt = self.save_modele_weight_csv('pt', sess)
            if self.save_model:
                print("Save Pre-trained model...")
                saver.save(sess, pt_save_path + '/pre-train.ckpt')
            if self.use_for == 'classification' and self.do_tSNE:
                tSNE_2d(self.deep_feature, train_Y, 'train')
                if test_Y is not None:
                    test_deep_feature = sess.run(
                        self.pt_model.transform(test_X))
                    tSNE_2d(test_deep_feature, test_Y, 'test')

        self.test_Y = test_Y
        # 统计测试集各类样本总数
        self.stat_label_total()

        #######################################################
        #     开始微调 -------------- < start fine-tuning >    #
        #######################################################

        if load_saver != 'f':
            print("Start Fine-tuning...")
            _data = Batch(images=train_X,
                          labels=train_Y,
                          batch_size=self.batch_size)

            b = int(train_X.shape[0] / self.batch_size)
            self.loss_and_acc = np.zeros((self.epochs, 4))
            # 迭代次数
            time_start = time.time()
            for i in range(self.epochs):
                sum_loss = 0
                sum_acc = 0
                for j in range(b):
                    batch_x, batch_y = _data.next_batch()
                    loss, acc, _ = sess.run(
                        [self.loss, self.accuracy, self.train_batch],
                        feed_dict={
                            self.input_data: batch_x,
                            self.label_data: batch_y,
                            self.keep_prob: 1 - self.dropout
                        })
                    sum_loss = sum_loss + loss
                    sum_acc = sum_acc + acc

                #**************** 写入 ******************
                if self.tbd:
                    summary = sess.run(self.merge,
                                       feed_dict={
                                           self.input_data: batch_x,
                                           self.label_data: batch_y,
                                           self.keep_prob: 1 - self.dropout
                                       })
                    summ.train_writer.add_summary(summary, i)
                #****************************************
                loss = sum_loss / b
                acc = sum_acc / b

                self.loss_and_acc[i][0] = loss  # <0> 损失loss
                time_end = time.time()
                time_delta = time_end - time_start
                self.loss_and_acc[i][3] = time_delta  # <3> 耗时time

                # >>> for 'classification'
                if self.use_for == 'classification':
                    self.loss_and_acc[i][1] = acc  # <1> 训练acc
                    string = '>>> epoch = {}/{}  | 「Train」: loss = {:.4} , accuracy = {:.4}% , expend time = {:.4}'.format(
                        i + 1, self.epochs, loss, acc * 100, time_delta)

                    ###########################################################
                    #     开始测试    <classification>  with: test_X, test_Y   #
                    ###########################################################

                    if test_Y is not None:
                        acc = self.test_average_accuracy(test_X, test_Y, sess)
                        string = string + '  | 「Test」: accuracy = {:.4}%'.format(
                            acc * 100)
                        self.loss_and_acc[i][2] = acc  # <2> 测试acc

                    sys.stdout.write('\r' + string)
                    sys.stdout.flush()

                # >>> for 'prediction'
                else:
                    string = '>>> epoch = {}/{}  | 「Train」: loss = {:.4}'.format(
                        i + 1, self.epochs, loss)

                    ###########################################################
                    #     开始测试    <prediction>  with: test_X, test_Y       #
                    ###########################################################

                    if test_Y is not None:
                        mse, pred_Y = self.test_model(test_X, test_Y, sess)
                        string = string + '  | 「Test」: mse = {:.4}%'.format(
                            mse)
                        self.loss_and_acc[i][2] = mse  # <2> 测试acc
                        if mse < self.mse:
                            self.mse = mse
                            self.pred_Y = pred_Y

                    sys.stdout.write('\r' + string)
                    sys.stdout.flush()

            print('')
            np.savetxt("../saver/loss_and_acc.csv",
                       self.loss_and_acc,
                       fmt='%.4f',
                       delimiter=",")

            if self.save_model:
                print("Save model...")
                saver.save(sess, ft_save_path + '/fine-tune.ckpt')

        #################################################################
        #     开始测试    <classification, prediction>  with: test_X     #
        #################################################################

        if test_X is not None and test_Y is None:
            if self.use_for == 'classification':
                _, pred = self.test_model(test_X, test_Y, sess)
                self.pred_class = np.argmax(pred, axis=1)
            else:
                _, self.pred_Y = self.test_model(test_X, test_Y, sess)

        if self.save_weight:
            W_csv_ft = self.save_modele_weight_csv('ft', sess)

        if self.plot_para:
            plot_para_pic(W_csv_pt, W_csv_ft, name=self.name)

    def unsupervised_train_model(self, train_X, train_Y, sess, summ):
        if self.use_label: labels = train_Y
        else: labels = None
        _data = Batch(images=train_X,
                      labels=labels,
                      batch_size=self.batch_size)

        b = int(train_X.shape[0] / self.batch_size)

        ########################################################
        #     开始训练 -------- < start traning for rbm/ae>     #
        ########################################################

        # 迭代次数
        for i in range(self.epochs):
            sum_loss = 0
            if self.decay_lr:
                self.lr = self.lr * 0.94
            for j in range(b):
                batch_x = _data.next_batch()
                loss, _ = sess.run([self.loss, self.train_batch],
                                   feed_dict={
                                       self.input_data: batch_x,
                                       self.recon_data: batch_x
                                   })
                sum_loss = sum_loss + loss

            #**************** 写入 ******************
            if self.tbd:
                summary = sess.run(self.merge,
                                   feed_dict={
                                       self.input_data: batch_x,
                                       self.recon_data: batch_x
                                   })
                summ.train_writer.add_summary(summary, i)
            #****************************************
            loss = sum_loss / b
            string = '>>> epoch = {}/{}  | 「Train」: loss = {:.4}'.format(
                i + 1, self.epochs, loss)
            sys.stdout.write('\r' + string)
            sys.stdout.flush()

        print('')

    #########################
    #      Statistics       #
    #########################

    def stat_label_total(self):
        # 统计样本总数
        if self.use_for == 'classification' and self.test_Y is not None:
            self.real_class = np.argmax(self.test_Y, axis=1)

    #########################
    #        Judge          #
    #########################

    def test_model(self, test_X, test_Y, sess):
        pred_y = sess.run(self.pred,
                          feed_dict={
                              self.input_data: test_X,
                              self.keep_prob: 1.0
                          })
        if test_Y is None:
            return None, pred_y
        if self.use_for == 'classification':
            acc = sess.run(self.accuracy,
                           feed_dict={
                               self.input_data: test_X,
                               self.label_data: test_Y,
                               self.keep_prob: 1.0
                           })
            return acc, pred_y
        else:
            mse = sess.run(self.loss,
                           feed_dict={
                               self.input_data: test_X,
                               self.label_data: test_Y,
                               self.keep_prob: 1.0
                           })
            return mse, pred_y

    # for 'array' test data
    def test_average_accuracy(self, test_X, test_Y, sess):
        """
            pred_cnt[p][r]:
                    0      1       2
            0 [[ r0->p0, r1->p0, r2->p0 ],
            1  [ r0->p1, r1->p1, r2->p1 ],
            2  [ r0->p2, r1->p2, r2->p2 ]] 
            
            sum_label[p]:
              [ sum(p1),sum(p2), sum(p2)]
            
            r分到p的比例 l_d[p][r]]:
            self.label_distribution = pred_per[p][r] = pred_cnt[p][r] / sum_label[p]
            
            正确率:
            self.best_acc = diag(pred_per[p][r])
            
            平均正确率:
            average(self.best_acc)
            
            总体平均正确率:
            self.ave_acc = sum(n_pi->pi) / n_samples
            
        """
        # 图片分类任务
        n_class = test_Y.shape[1]

        acc, pred = self.test_model(test_X, test_Y, sess)

        if acc > self.ave_acc:
            self.ave_acc = acc
            if n_class > 1:
                pred_class = np.argmax(pred, axis=1)
            else:
                n_class = 2
            real_class = self.real_class
            self.pred_class = pred_class
            n_sample = pred_class.shape[0]

            pred_cnt = np.zeros((n_class, n_class))
            for i in range(n_sample):
                # 第 r 号分类 被 分到了 第 p 号分类
                p = pred_class[i]
                r = real_class[i]
                pred_cnt[p][r] = pred_cnt[p][r] + 1
            sum_label = np.sum(pred_cnt, axis=0)  # 统计 pred 各分类总数
            pred_per = pred_cnt / sum_label  # 计算 pred_cnt[p][r] 的百分比
            self.label_distribution = pred_per  # 记录划分比例
            self.best_acc = np.diag(
                pred_per)  # array是一个1维数组时,结果形成一个以一维数组为对角线元素的矩阵
            # array是一个2维矩阵时,结果输出矩阵的对角线元素 <这里是这种情况>
        return acc

    ##########################
    #        Result          #
    ##########################

    def show_and_save_result(self, figname):

        if self.test_Y is not None:
            print("Show Testing result...")
            if self.use_for == 'classification':
                for i in range(len(self.best_acc)):
                    print(">>> Class {}:".format(i + 1))
                    print('[Accuracy]: {:.4}%'.format(self.best_acc[i] * 100))
                print('[Average accuracy]: {:.4}%'.format(self.ave_acc * 100))
                self.plot_label_distribution()  # 显示预测分布

            self.plot_curve(figname)  # 显示训练/预测曲线
            print("Save csv...")

            if self.use_for == 'classification':
                np.savetxt("../saver/best_acc.csv",
                           self.best_acc,
                           fmt='%.4f',
                           delimiter=",")
                np.savetxt("../saver/label_distribution.csv",
                           self.label_distribution,
                           fmt='%.4f',
                           delimiter=",")
                np.savetxt("../saver/real_class.csv",
                           self.real_class,
                           fmt='%.4f',
                           delimiter=",")
                np.savetxt("../saver/pred_class.csv",
                           self.pred_class,
                           fmt='%.4f',
                           delimiter=",")

    #######################
    #        Weight       #
    #######################

    def save_modele_weight_csv(self, stage, sess):  # save W csv
        print("Save weight...")
        if not os.path.exists('../saver/weight'):
            os.makedirs('../saver/weight')
        if stage == 'pt':
            para_list = self.pt_model.parameter_list
        else:
            para_list = self.parameter_list

        W_list = list()
        for i in range(len(para_list)):
            W = para_list[i][0]
            np_W = sess.run(W)
            np.savetxt("../saver/weight/[" + stage + "]W_" + str(i + 1) +
                       ".csv",
                       np_W,
                       fmt='%.4f',
                       delimiter=",")
            W_list.append(np_W)

        return W_list

    ########################
    #        Plot          #
    ########################

    def plot_curve(self, figname):
        import matplotlib.pyplot as plt

        plt.style.use('classic')
        fig = plt.figure(figsize=[32, 18])

        if self.use_for == 'classification':
            print("Plot loss and acc curve...")
            n = self.loss_and_acc.shape[0]
            x = range(1, n + 1)
            ax1 = fig.add_subplot(111)
            ax1.plot(x,
                     self.loss_and_acc[:, 0],
                     color='r',
                     marker='o',
                     markersize=10,
                     linestyle='-.',
                     linewidth=4,
                     label='loss')
            ax1.set_ylabel('$Loss$', fontsize=36)
            if self.title:
                ax1.set_title("Training loss and test accuracy")
            ax1.set_xlabel('$Epochs$', fontsize=36)
            ax1.legend(loc='upper left', fontsize=24)
            plt.xticks(fontsize=20)
            plt.yticks(fontsize=20)

            ax2 = ax1.twinx()  # this is the important function
            ax2.plot(x,
                     self.loss_and_acc[:, 1],
                     color='c',
                     marker='D',
                     markersize=10,
                     linestyle='-',
                     linewidth=4,
                     label='train_acc')
            if self.test_Y is not None:
                ax2.plot(x,
                         self.loss_and_acc[:, 2],
                         color='m',
                         marker='D',
                         markersize=10,
                         linestyle='-',
                         linewidth=4,
                         label='test_acc')
            ax2.set_ylabel('$Accuracy$', fontsize=36)
            ax2.legend(loc='upper right', fontsize=24)
            plt.yticks(fontsize=20)
        else:
            print("Plot prediction curve...")
            n = self.pred_Y.shape[0]
            x = range(1, n + 1)
            ax1 = fig.add_subplot(111)
            ax1.plot(x,
                     self.test_Y,
                     color='r',
                     marker='D',
                     markersize=10,
                     linestyle='-',
                     linewidth=4,
                     label='test_Y')
            ax1.plot(x,
                     self.pred_Y,
                     color='g',
                     marker='D',
                     markersize=10,
                     linestyle='-',
                     linewidth=4,
                     label='pred_Y')
            if self.title:
                ax1.set_title("prediction curve")
            ax1.set_xlabel('$sample$', fontsize=36)
            ax1.set_ylabel('$y$', fontsize=36)
            ax1.legend(loc='upper right')
            plt.xticks(fontsize=20)
            plt.yticks(fontsize=20)

        if not os.path.exists('../saver/img'): os.makedirs('../saver/img')
        plt.savefig('../saver/img/' + figname + '.png', bbox_inches='tight')
        if self.show_pic: plt.show()
        plt.close(fig)

    def plot_label_distribution(self):
        import warnings
        import matplotlib.cbook
        import matplotlib.pyplot as plt
        warnings.filterwarnings("ignore",
                                category=matplotlib.cbook.mplDeprecation)

        print("Plot label distribution...")

        real_class = self.real_class
        pred_class = self.pred_class

        n = pred_class.shape[0]  # 预测样本总数
        x = np.asarray(range(1, n + 1))
        real_class = real_class.reshape(-1, )
        pred_class = pred_class.reshape(-1, )

        fig = plt.figure(figsize=[32, 18])
        plt.style.use('ggplot')

        ax1 = fig.add_subplot(111)
        ax1.scatter(x,
                    real_class,
                    alpha=0.75,
                    color='none',
                    edgecolor='red',
                    s=20,
                    label='test_class')
        ax1.scatter(x,
                    pred_class,
                    alpha=0.75,
                    color='none',
                    edgecolor='blue',
                    s=20,
                    label='pred_class')
        if self.title:
            ax1.set_title("Label Distribution", fontsize=36)
        ax1.set_xlabel('$point$', fontsize=36)
        ax1.set_ylabel('$label$', fontsize=36)
        ax1.legend(loc='upper left', fontsize=24)
        plt.xticks(fontsize=20)
        plt.yticks(fontsize=20)

        if not os.path.exists('../saver/img'): os.makedirs('../saver/img')
        plt.savefig('../saver/img/label_distibution.png', bbox_inches='tight')
        if self.show_pic: plt.show()
        plt.close(fig)
Esempio n. 4
0
class Model(object):
    def __init__(self, name):
        self.name = name
        self.momentum = 0.5
        self.output_act_func = 'softmax'
        self.loss_func = 'mse'
        self.bp_algorithm = 'sgd'
        self.best_acc = 0
        self.pt_model = None
        self.decay_lr = False
        self.loss = None
        self.accuracy = None
        self.train_batch = None
        self.merge = None

    def build_train_step(self):
        # 损失
        if self.loss is None:
            _loss = Loss(label_data=self.label_data,
                         pred=self.pred,
                         output_act_func=self.output_act_func)
            self.loss = _loss.get_loss_func(
                self.loss_func
            )  # + 0.5*tf.matrix_determinant(tf.matmul(self.out_W,tf.transpose(self.out_W)))
        # 正确率
        if self.accuracy is None:

            _ac = Accuracy(label_data=self.label_data, pred=self.pred)
            self.accuracy = _ac.accuracy()

        # 构建训练步
        if self.train_batch is None:
            if self.bp_algorithm == 'adam' or self.bp_algorithm == 'rmsp':
                self.global_step = None
                self.r = self.lr
            else:
                self.global_step = tf.Variable(
                    0, trainable=False)  # minimize 中会对 global_step 自加 1
                self.r = tf.train.exponential_decay(
                    learning_rate=self.lr,
                    global_step=self.global_step,
                    decay_steps=100,
                    decay_rate=0.96,
                    staircase=True)

            self._optimization = Optimization(r=self.r, momentum=self.momentum)
            self.train_batch = self._optimization.trainer(
                algorithm=self.bp_algorithm).minimize(
                    self.loss, global_step=self.global_step)

    def train_model(self,
                    train_X,
                    train_Y=None,
                    val_X=None,
                    val_Y=None,
                    sess=None,
                    summ=None,
                    load_saver=''):
        pt_save_path = '../saver/' + self.name + '/pre-train'
        ft_save_path = '../saver/' + self.name + '/fine-tune'
        if not os.path.exists(pt_save_path): os.makedirs(pt_save_path)
        if not os.path.exists(ft_save_path): os.makedirs(ft_save_path)
        saver = tf.train.Saver()
        if load_saver == 'f':
            # 加载训练好的模型
            print("Load Fine-tuned model...")
            saver.restore(sess, ft_save_path + '/fine-tune.ckpt')
            test_acc = self.validation_model(val_X, val_Y, sess)
            return print('>>> Test accuracy = {:.4}'.format(test_acc))
        elif load_saver == 'p':
            # 加载预训练的模型
            print("Load Pre-trained model...")
            saver.restore(sess, pt_save_path + '/pre-train.ckpt')
        elif self.pt_model is not None:
            # 开始预训练
            print("Start Pre-training...")
            self.pt_model.train_model(train_X=train_X, sess=sess, summ=summ)
            print("Save Pre-trained model...")
            saver.save(sess, pt_save_path + '/pre-train.ckpt')
        # 开始微调
        print("Start Fine-tuning...")
        _data = Batch(images=train_X,
                      labels=train_Y,
                      batch_size=self.batch_size)

        b = int(train_X.shape[0] / self.batch_size)
        self.record_array = np.zeros((self.epochs, 3))
        # 迭代次数
        for i in range(self.epochs):
            sum_loss = 0
            sum_acc = 0
            for j in range(b):
                batch_x, batch_y = _data.next_batch()
                loss, acc, _ = sess.run(
                    [self.loss, self.accuracy, self.train_batch],
                    feed_dict={
                        self.input_data: batch_x,
                        self.label_data: batch_y,
                        self.keep_prob: 1 - self.dropout
                    })
                sum_loss = sum_loss + loss
                sum_acc = sum_acc + acc

            #**************** 写入 ******************
            summary = sess.run(self.merge,
                               feed_dict={
                                   self.input_data: batch_x,
                                   self.label_data: batch_y,
                                   self.keep_prob: 1 - self.dropout
                               })
            summ.train_writer.add_summary(summary, i)
            #****************************************
            loss = sum_loss / b
            acc = sum_acc / b
            print('>>> epoch = {} , loss = {:.4} , accuracy = {:.4}'.format(
                i + 1, loss, acc))
            self.record_array[i][0] = loss
            self.record_array[i][1] = acc
            if val_X is not None:
                val_acc = self.validation_model(val_X, val_Y, sess)
                print('    >>> validation accuracy = {:.4}'.format(val_acc))
                self.record_array[i][2] = val_acc

        print("Save model...")
        saver.save(sess, ft_save_path + '/fine-tune.ckpt')

    def unsupervised_train_model(self, train_X, sess, summ):
        _data = Batch(images=train_X, labels=None, batch_size=self.batch_size)

        b = int(train_X.shape[0] / self.batch_size)
        # 迭代次数
        for i in range(self.epochs):
            sum_loss = 0
            for j in range(b):
                if self.decay_lr:
                    self.lr = self.lr * 0.94
                batch_x = _data.next_batch()
                loss, _ = sess.run([self.loss, self.train_batch],
                                   feed_dict={
                                       self.input_data: batch_x,
                                       self.label_data: batch_x
                                   })
                sum_loss = sum_loss + loss

            #**************** 写入 ******************
            summary = sess.run(self.merge,
                               feed_dict={
                                   self.input_data: batch_x,
                                   self.label_data: batch_x
                               })
            summ.train_writer.add_summary(summary, i)
            #****************************************
            loss = sum_loss / b
            print('>>> epoch = {} , loss = {:.4}'.format(i + 1, loss))

    def test_model(self, test_X, test_Y, sess):
        if self.use_for == 'classification':
            acc, pred_y = sess.run(
                [self.accuracy, self.pred],
                feed_dict={
                    self.input_data: test_X,
                    self.label_data: test_Y,
                    self.keep_prob: 1.0
                })
            print('[Accuracy]: %f' % acc)
            return acc, pred_y
        else:
            mse, pred_y = sess.run(
                [self.loss, self.pred],
                feed_dict={
                    self.input_data: test_X,
                    self.label_data: test_Y,
                    self.keep_prob: 1.0
                })
            print('[MSE]: %f' % mse)
            return mse, pred_y

    def validation_model(self, val_X, val_Y, sess):
        if type(val_X) == list:  # TE 数据
            n_class = len(val_X)
            acc = np.zeros(n_class)
            pred_list = list()
            for i in range(n_class):
                if i == 3 or i == 9 or i == 15: continue
                acc[i], pred = sess.run(
                    [self.accuracy, self.pred],
                    feed_dict={
                        self.input_data: val_X[i],
                        self.label_data: val_Y[i],
                        self.keep_prob: 1.0
                    })
                pred_list.append(pred)
            average_acc = np.sum(acc) / 19

            if average_acc > self.best_acc:
                self.best_acc = average_acc
                self.best_acc_array = acc

                label_cnt = np.zeros((n_class, 19))
                for i, pred in enumerate(pred_list):
                    label = np.argmax(pred, axis=1)
                    n_sample = label.shape[0]
                    for j in range(n_sample):
                        # 第 i 号分类 被 分到了 第 label[j] 号分类
                        label_cnt[label[j]][i] = label_cnt[
                            label[j]][i] + 1 / n_sample
                self.label_distribution = label_cnt

            return average_acc
        else:  # 手写识别
            n_class = val_Y.shape[1]

            acc, pred = sess.run(
                [self.accuracy, self.pred],
                feed_dict={
                    self.input_data: val_X,
                    self.label_data: val_Y,
                    self.keep_prob: 1.0
                })

            if acc > self.best_acc:
                self.best_acc = acc
                pre_lab = np.argmax(pred, axis=1)
                real_lab = np.argmax(val_Y, axis=1)
                n_sample = pre_lab.shape[0]

                label_cnt = np.zeros((n_class, n_class))
                for i in range(n_sample):
                    # 第 real_lab[i] 号分类 被 分到了 第 pre_lab[i] 号分类
                    label_cnt[pre_lab[i]][
                        real_lab[i]] = label_cnt[pre_lab[i]][real_lab[i]] + 1
                sum_label = np.sum(label_cnt, axis=0)
                label_cnt = label_cnt / sum_label
                self.label_distribution = label_cnt

            return acc
Esempio n. 5
0
    def build_model(self):
        """
        Pre-training
        """
        # 构建dbm
        self.dbm = DBM(rbm_v_type=self.rbm_v_type,
                       dbm_struct=self.dbm_struct,
                       rbm_epochs=self.rbm_epochs,
                       batch_size=self.batch_size,
                       cd_k=self.cd_k,
                       rbm_lr=self.rbm_lr)
        """
        Fine-tuning
        """
        with tf.name_scope('DBN'):
            # feed 变量
            self.input_data = tf.placeholder(
                tf.float32, [None, self.dbn_struct[0]
                             ])  # N等于batch_size(训练)或_num_examples(测试)
            self.label_data = tf.placeholder(
                tf.float32, [None, self.dbn_struct[-1]
                             ])  # N等于batch_size(训练)或_num_examples(测试)
            # 权值 变量(初始化)
            self.out_W = tf.Variable(tf.truncated_normal(
                shape=[self.dbn_struct[-2], self.dbn_struct[-1]], stddev=0.1),
                                     name='W_out')
            self.out_b = tf.Variable(tf.constant(0.0,
                                                 shape=[self.dbn_struct[-1]]),
                                     name='b_out')
            # 构建dbn
            # 构建权值列表(dbn结构)
            self.parameter_list = list()
            for rbm in self.dbm.rbm_list:
                self.parameter_list.append(rbm.W)
                self.parameter_list.append(rbm.bh)
            self.parameter_list.append(self.out_W)
            self.parameter_list.append(self.out_b)
            # 损失函数
            self.pred = self.transform(self.input_data)
            _loss = Loss(label_data=self.label_data,
                         pred=self.pred,
                         output_act_func=self.output_act_func)
            self.loss = _loss.get_loss_func(self.loss_func)
            _optimization = Optimization(r=self.dbn_lr, momentum=self.momentum)
            self.train_batch_bp = _optimization.trainer(
                algorithm=self.bp_algorithm).minimize(
                    self.loss, var_list=self.parameter_list)
            # 正确率
            _ac = Accuracy(label_data=self.label_data, pred=self.pred)
            self.accuracy = _ac.accuracy()

            #****************** 记录 ******************
            for i in range(len(self.parameter_list)):
                if i % 2 == 1: continue
                k = int(i / 2 + 1)
                W = self.parameter_list[i]
                b = self.parameter_list[i + 1]
                Summaries.scalars_histogram('_W' + str(k), W)
                Summaries.scalars_histogram('_b' + str(k), b)
            tf.summary.scalar('loss', self.loss)
            tf.summary.scalar('accuracy', self.accuracy)
            self.merge = tf.summary.merge(
                tf.get_collection(tf.GraphKeys.SUMMARIES,
                                  tf.get_default_graph()._name_stack))
class Model(object):
    def __init__(self, name):
        """
        user control
        """
        self.tbd = False
        self.sav = False
        self.show_pic = False
        self.plot_para = True

        # name
        self.name = name
        # record best acc
        self.ave_acc = 0
        self.acc_list = []

        # for unsupervised training
        self.momentum = 0.5
        self.output_act_func = 'softmax'
        self.loss_func = 'mse'
        self.bp_algorithm = 'rmsp'
        # for build train step
        self.pt_model = None
        self.decay_lr = False
        self.loss = None
        self.accuracy = None
        self.train_batch = None
        # for summary (tensorboard)
        self.merge = None
        # for plot
        self.pt_img = None
        # 用于预测
        self.pred_Y = None
        # 用于分类
        self.train_curve = None
        self.label_fig = None
        self.label_tag = None

    def build_train_step(self):
        # 损失
        if self.loss is None:
            _loss = Loss(label_data=self.label_data,
                         pred=self.pred,
                         logist=self.logist,
                         output_act_func=self.output_act_func)
            self.loss = _loss.get_loss_func(
                self.loss_func
            )  # + 0.5*tf.matrix_determinant(tf.matmul(self.out_W,tf.transpose(self.out_W)))
        # 正确率
        if self.accuracy is None:

            _ac = Accuracy(label_data=self.label_data, pred=self.pred)
            self.accuracy = _ac.accuracy()

        # 构建训练步
        if self.train_batch is None:
            if self.bp_algorithm == 'adam' or self.bp_algorithm == 'rmsp':
                self.global_step = None
                self.r = self.lr
            else:
                self.global_step = tf.Variable(
                    0, trainable=False)  # minimize 中会对 global_step 自加 1
                self.r = tf.train.exponential_decay(
                    learning_rate=self.lr,
                    global_step=self.global_step,
                    decay_steps=100,
                    decay_rate=0.96,
                    staircase=True)
#                self.global_step =  None
#                self.r = self.lr

            self._optimization = Optimization(r=self.r, momentum=self.momentum)
            self.train_batch = self._optimization.trainer(
                algorithm=self.bp_algorithm).minimize(
                    self.loss, global_step=self.global_step)

    def train_model(self,
                    train_X,
                    train_Y=None,
                    val_X=None,
                    val_Y=None,
                    sess=None,
                    summ=None,
                    load_saver=''):
        pt_save_path = '../saver/' + self.name + '/pre-train'
        ft_save_path = '../saver/' + self.name + '/fine-tune'
        if not os.path.exists(pt_save_path): os.makedirs(pt_save_path)
        if not os.path.exists(ft_save_path): os.makedirs(ft_save_path)
        saver = tf.train.Saver()
        if load_saver == 'f':
            # 加载训练好的模型
            print("Load Fine-tuned model...")
            saver.restore(sess, ft_save_path + '/fine-tune.ckpt')
            test_acc = self.validation_model(val_X, val_Y, sess)
            return print('>>> Test accuracy = {:.4}'.format(test_acc))
        elif load_saver == 'p':
            # 加载预训练的模型
            print("Load Pre-trained model...")
            saver.restore(sess, pt_save_path + '/pre-train.ckpt')
        elif self.pt_model is not None:
            # 开始预训练
            print("Start Pre-training...")
            self.pt_model.train_model(train_X=train_X,
                                      train_Y=train_Y,
                                      sess=sess,
                                      summ=summ)
            if self.sav:
                print("Save Pre-trained model...")
                saver.save(sess, pt_save_path + '/pre-train.ckpt')
            if self.plot_para:
                self.pt_img = sess.run(self.pt_model.parameter_list)
        # 开始微调
        print("Start Fine-tuning...")
        _data = Batch(images=train_X,
                      labels=train_Y,
                      batch_size=self.batch_size)

        b = int(train_X.shape[0] / self.batch_size)
        self.train_curve = np.zeros((self.epochs, 3))
        self.label_tag = val_Y

        # 迭代次数
        for i in range(self.epochs):
            sum_loss = 0
            sum_acc = 0
            for j in range(b):
                batch_x, batch_y = _data.next_batch()
                loss, acc, _ = sess.run(
                    [self.loss, self.accuracy, self.train_batch],
                    feed_dict={
                        self.input_data: batch_x,
                        self.label_data: batch_y,
                        self.keep_prob: 1 - self.dropout
                    })
                sum_loss = sum_loss + loss
                sum_acc = sum_acc + acc

            #**************** 写入 ******************
            if self.tbd:
                summary = sess.run(self.merge,
                                   feed_dict={
                                       self.input_data: batch_x,
                                       self.label_data: batch_y,
                                       self.keep_prob: 1 - self.dropout
                                   })
                summ.train_writer.add_summary(summary, i)
            #****************************************
            loss = sum_loss / b
            acc = sum_acc / b

            self.train_curve[i][0] = loss
            if self.use_for == 'classification':
                self.train_curve[i][1] = acc
                print(
                    '>>> epoch = {} , loss = {:.4} , accuracy = {:.4}'.format(
                        i + 1, loss, acc))
                if val_X is not None:
                    val_acc = self.validation_classification_model(
                        val_X, val_Y, sess)
                    print('    >>> test accuracy = {:.4}'.format(val_acc))
                    self.train_curve[i][2] = val_acc
            else:
                print('>>> epoch = {} , loss = {:.4}'.format(i + 1, loss))

        if self.use_for == 'prediction':
            mse, self.pred_Y = self.test_model(val_X, val_Y, sess)
            self.test_Y = val_Y
            self.mse = mse

        if self.sav:
            print("Save model...")
            saver.save(sess, ft_save_path + '/fine-tune.ckpt')
        if self.plot_para:
            self.img = sess.run(self.parameter_list)
            plot_para_pic(self.pt_img, self.img, name=self.name)

    def unsupervised_train_model(self, train_X, train_Y, sess, summ):
        _data = Batch(images=train_X, labels=None, batch_size=self.batch_size)

        b = int(train_X.shape[0] / self.batch_size)
        # 迭代次数
        for i in range(self.epochs):
            sum_loss = 0
            for j in range(b):
                if self.decay_lr:
                    self.lr = self.lr * 0.94
                batch_x = _data.next_batch()
                loss, _ = sess.run([self.loss, self.train_batch],
                                   feed_dict={
                                       self.input_data: batch_x,
                                       self.label_data: batch_x
                                   })
                sum_loss = sum_loss + loss

            #**************** 写入 ******************
            if self.tbd:
                summary = sess.run(self.merge,
                                   feed_dict={
                                       self.input_data: batch_x,
                                       self.label_data: batch_x
                                   })
                summ.train_writer.add_summary(summary, i)
            #****************************************
            loss = sum_loss / b
            print('>>> epoch = {} , loss = {:.4}'.format(i + 1, loss))

    def test_model(self, test_X, test_Y, sess):
        if self.use_for == 'classification':
            acc, pred_y = sess.run(
                [self.accuracy, self.pred],
                feed_dict={
                    self.input_data: test_X,
                    self.label_data: test_Y,
                    self.keep_prob: 1.0
                })
            return acc, pred_y
        else:
            mse, pred_y = sess.run(
                [self.loss, self.pred],
                feed_dict={
                    self.input_data: test_X,
                    self.label_data: test_Y,
                    self.keep_prob: 1.0
                })
            return mse, pred_y

    def validation_classification_model(self, val_X, val_Y, sess):
        n_class = val_Y.shape[1]

        acc, pred = self.test_model(val_X, val_Y, sess)

        if acc > self.ave_acc:
            self.ave_acc = acc
            pre_lab = np.argmax(pred, axis=1)
            real_lab = np.argmax(val_Y, axis=1)
            self.label_fig = pre_lab
            n_sample = pre_lab.shape[0]

            label_cnt = np.zeros((n_class, n_class))
            for i in range(n_sample):
                # 第 real_lab[i] 号分类 被 分到了 第 pre_lab[i] 号分类
                label_cnt[pre_lab[i]][
                    real_lab[i]] = label_cnt[pre_lab[i]][real_lab[i]] + 1
            sum_label = np.sum(label_cnt, axis=0)
            label_cnt = label_cnt / sum_label
            self.label_distribution = label_cnt
            self.acc_list = np.diag(label_cnt)
        return acc

    def show_result(self, figname):
        if self.use_for == 'classification':
            for i in range(len(self.acc_list)):
                print(">>>Test fault {}:".format(i))
                print('[Accuracy]: %f' % self.acc_list[i])
            print('[Average Accuracy]: %f' % self.ave_acc)
            self.plot_curve(figname)  # 显示训练曲线
            self.plot_label_distribution()  # 显示预测分布
            return self.label_distribution
        else:
            print('[MSE]: %f' % self.mse)
            self.plot_curve(figname)  # 显示预测曲线

    def plot_curve(self, figname):
        fig = plt.figure(figsize=[32, 18])
        plt.style.use('classic')
        if self.use_for == 'classification':
            n = self.train_curve.shape[0]
            x = range(1, n + 1)
            ax1 = fig.add_subplot(111)
            ax1.plot(x, self.train_curve[:, 0], color='r', label='loss')
            ax1.set_ylabel('$Loss$')
            ax1.set_title("Training Curve")
            ax1.set_xlabel('$Epochs$')
            ax1.legend(loc='upper left')

            ax2 = ax1.twinx()  # this is the important function
            ax2.plot(x, self.train_curve[:, 1], color='g', label='trian_acc')
            ax2.plot(x, self.train_curve[:, 2], color='b', label='test_acc')
            ax2.set_ylabel('$Accuracy$')
            ax2.legend(loc='upper right')
        else:
            n = self.pred_Y.shape[0]
            x = range(1, n + 1)
            ax1 = fig.add_subplot(111)
            ax1.plot(x, self.test_Y, color='r', label='test_Y')
            ax1.plot(x, self.pred_Y, color='g', label='pred_Y')
            ax1.set_title("Prediction Curve")
            ax1.set_xlabel('$point$')
            ax1.set_ylabel('$y$')
            ax1.legend(loc='upper right')

        if not os.path.exists('img'): os.makedirs('img')
        plt.savefig('img/' + figname + '.png', bbox_inches='tight')
        if self.show_pic: plt.show()
        plt.close(fig)

    def save_result(self):
        self.acc_list = list(self.acc_list)
        self.acc_list.append(self.ave_acc)
        np.savetxt("../saver/acc_list.csv",
                   self.acc_list,
                   fmt='%.4f',
                   delimiter=",")
        np.savetxt("../saver/label_distribution.csv",
                   self.label_distribution,
                   fmt='%.4f',
                   delimiter=",")
        np.savetxt("../saver/loss_and_acc.csv",
                   self.train_curve,
                   fmt='%.4f',
                   delimiter=",")

    def plot_label_distribution(self):
        import warnings
        import matplotlib.cbook
        warnings.filterwarnings("ignore",
                                category=matplotlib.cbook.mplDeprecation)
        real_label = None
        pred_label = self.label_fig
        c = self.label_tag.shape[1]  # 类数
        real_label = np.argmax(self.label_tag, axis=1)
        n = pred_label.shape[0]  # 预测样本总数

        x = np.asarray(range(1, n + 1))
        real_label = real_label.reshape(-1, )
        pred_label = pred_label.reshape(-1, )

        fig = plt.figure(figsize=[32, 18])
        plt.style.use('ggplot')

        plt.yticks(range(c))

        ax1 = fig.add_subplot(111)
        ax1.scatter(x,
                    real_label,
                    alpha=0.75,
                    color='none',
                    edgecolor='red',
                    s=20,
                    label='test_label')
        ax1.scatter(x,
                    pred_label,
                    alpha=0.75,
                    color='none',
                    edgecolor='blue',
                    s=20,
                    label='pred_label')
        ax1.set_title("Label Distribution")
        ax1.set_xlabel('$point$')
        ax1.set_ylabel('$label$')
        ax1.legend(loc='upper right')

        if not os.path.exists('img'): os.makedirs('img')
        plt.savefig('img/label_distibution.png', bbox_inches='tight')
        if self.show_pic: plt.show()
        plt.close(fig)
Esempio n. 7
0
 def build_model(self): 
     """
     Pre-training
     """
     # 构建un_sae
     self.un_sae = unsupervised_sAE(
             en_func=self.en_func,
             loss_func=self.loss_func, # encoder:[sigmoid] || decoder:[sigmoid] with ‘cross_entropy’ | [relu] with ‘mse’
             ae_type=self.ae_type, # ae | dae | sae
             noise_type=self.noise_type, # Gaussian noise (gs) | Masking noise (mn)
             beta=self.beta,  # 惩罚因子权重(第二项损失的系数)
             p=self.p, # DAE:样本该维作为噪声的概率 / SAE稀疏性参数:期望的隐层平均活跃度(在训练批次上取平均)
             un_ae_struct=self.un_ae_struct,
             ae_epochs=self.ae_epochs,
             batch_size=self.batch_size,
             ae_lr=self.ae_lr)
     
     """
     Fine-tuning
     """
     with tf.name_scope('sup_sAE'):
         # feed 变量
         self.input_data = tf.placeholder(tf.float32, [None, self.sup_ae_struct[0]],name='X') # N等于batch_size(训练)或_num_examples(测试)
         self.label_data = tf.placeholder(tf.float32, [None, self.sup_ae_struct[-1]],name='Y') # N等于batch_size(训练)或_num_examples(测试)
         # 权值 变量(初始化)
         self.out_W = tf.Variable(tf.truncated_normal(shape=[self.sup_ae_struct[-2], self.sup_ae_struct[-1]], stddev=0.1), name='W-out')
         self.out_b = tf.Variable(tf.constant(0.1, shape=[self.sup_ae_struct[-1]]),name='b-out')
         # 构建sup_sae
         # 构建权值列表(sup_sae结构)
         self.parameter_list = list()
         for ae in self.un_sae.ae_list:
             self.parameter_list.append(ae.W)
             self.parameter_list.append(ae.by)
         self.parameter_list.append(self.out_W)
         self.parameter_list.append(self.out_b)
         
         # 损失函数
         self.pred=self.transform(self.input_data)
         _loss=Loss(label_data=self.label_data,
                  pred=self.pred,
                  output_act_func=self.out_func)
         self.loss=_loss.get_loss_func(self.loss_func)
         _optimization=Optimization(r=self.ae_lr,
                                    momentum=0.5)
         self.train_batch_bp=_optimization.trainer(algorithm='sgd').minimize(self.loss, var_list=self.parameter_list)
         # 正确率
         _ac=Accuracy(label_data=self.label_data,
                  pred=self.pred)
         self.accuracy=_ac.accuracy()
         
         #****************** 记录 ******************
         for i in range(len(self.parameter_list)):
             if i%2==1:continue
             k=int(i/2+1)
             W=self.parameter_list[i]
             b=self.parameter_list[i+1]
             Summaries.scalars_histogram('_W'+str(k),W)
             Summaries.scalars_histogram('_b'+str(k),b)
         tf.summary.scalar('loss',self.loss)
         tf.summary.scalar('accuracy',self.accuracy)
         self.merge = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES,tf.get_default_graph()._name_stack))
class Model(object):
    def __init__(self, name):
        self.name = name
        self.momentum = 0.5
        self.output_act_func = 'softmax'
        self.loss_func = 'mse'
        self.bp_algorithm = 'sgd'
        self.best_average_acc = 0
        self.pt_model = None
        self.loss = None
        self.accuracy = None
        self.train_batch = None
        self.merge = None

    def build_train_step(self):
        # 损失
        if self.loss is None:
            _loss = Loss(label_data=self.label_data,
                         pred=self.pred,
                         output_act_func=self.output_act_func)
            self.loss = _loss.get_loss_func(
                self.loss_func
            )  # + 0.5*tf.matrix_determinant(tf.matmul(self.out_W,tf.transpose(self.out_W)))
        # 正确率
        if self.accuracy is None:

            _ac = Accuracy(label_data=self.label_data, pred=self.pred)
            self.accuracy = _ac.accuracy()

        # 构建训练步
        if self.train_batch is None:
            if self.bp_algorithm == 'adam' or self.bp_algorithm == 'rmsp':
                self.global_step = None
                self.r = self.lr
            else:
                self.global_step = tf.Variable(
                    0, trainable=False)  # minimize 中会对 global_step 自加 1
                self.r = tf.train.exponential_decay(
                    learning_rate=self.lr,
                    global_step=self.global_step,
                    decay_steps=100,
                    decay_rate=0.96,
                    staircase=True)

            self._optimization = Optimization(r=self.r, momentum=self.momentum)
            self.train_batch = self._optimization.trainer(
                algorithm=self.bp_algorithm).minimize(
                    self.loss, global_step=self.global_step)

    def train_model(self,
                    train_X,
                    train_Y=None,
                    val_X=None,
                    val_Y=None,
                    sess=None,
                    summ=None,
                    load_saver=''):
        pt_save_path = '../saver/' + self.name + '/pre-train.ckpt'
        ft_save_path = '../saver/' + self.name + '/fine-tune.ckpt'
        saver = tf.train.Saver()
        if load_saver == 'load_f':
            # 加载训练好的模型
            print("Load Fine-tuned model...")
            saver.restore(sess, ft_save_path)
            return
        elif load_saver == 'load_p':
            # 加载预训练的模型
            print("Load Pre-trained model...")
            saver.restore(sess, pt_save_path)
        elif self.pt_model is not None:
            # 开始预训练
            print("Start Pre-training...")
            self.pt_model.train_model(train_X=train_X, sess=sess, summ=summ)
            print("Save Pre-trained model...")
            saver.save(sess, pt_save_path)
        # 开始微调
        print("Start Fine-tuning...")
        _data = Batch(images=train_X,
                      labels=train_Y,
                      batch_size=self.batch_size)
        n = train_X.shape[0]
        m = int(n / self.batch_size)
        mod = max(int(self.epochs * m / 1000), 1)

        # 迭代次数
        k = 0
        for i in range(self.epochs):
            sum_loss = 0
            sum_acc = 0
            for _ in range(m):
                k = k + 1
                batch_x, batch_y = _data.next_batch()
                # batch_x, batch_y= batch_x[:int(self.batch_size/4),:], batch_y[:int(self.batch_size/4),:]
                summary, loss, acc, _ = sess.run(
                    [self.merge, self.loss, self.accuracy, self.train_batch],
                    feed_dict={
                        self.input_data: batch_x,
                        self.label_data: batch_y,
                        self.keep_prob: 1 - self.dropout
                    })
                #**************** 写入 ******************
                if k % mod == 0: summ.train_writer.add_summary(summary, k)
                #****************************************
                sum_loss = sum_loss + loss
                sum_acc = sum_acc + acc
            loss = sum_loss / m
            acc = sum_acc / m
            print('>>> epoch = {} , loss = {:.4} , accuracy = {:.4}'.format(
                i + 1, loss, acc))
            if val_X is not None:
                self.validation_model(val_X, val_Y, sess)

        print("Save model...")
        saver.save(sess, ft_save_path)

    def unsupervised_train_model(self, train_X, sess, summ):
        _data = Batch(images=train_X, labels=None, batch_size=self.batch_size)
        n = train_X.shape[0]
        m = int(n / self.batch_size)
        mod = max(int(self.epochs * m / 1000), 1)

        # 迭代次数
        k = 0
        for i in range(self.epochs):
            sum_loss = 0
            for _ in range(m):
                k = k + 1
                batch_x = _data.next_batch()
                summary, loss, _ = sess.run(
                    [self.merge, self.loss, self.train_batch],
                    feed_dict={
                        self.input_data: batch_x,
                        self.label_data: batch_x
                    })
                #**************** 写入 ******************
                if k % mod == 0: summ.train_writer.add_summary(summary, k)
                #****************************************
                sum_loss = sum_loss + loss
            loss = sum_loss / m
            print('>>> epoch = {} , loss = {:.4}'.format(i + 1, loss))

    def test_model(self, test_X, test_Y, sess):
        if self.use_for == 'classification':
            acc, pred_y = sess.run(
                [self.accuracy, self.pred],
                feed_dict={
                    self.input_data: test_X,
                    self.label_data: test_Y,
                    self.keep_prob: 1.0
                })
            print('[Accuracy]: %f' % acc)
            return acc, pred_y
        else:
            mse, pred_y = sess.run(
                [self.loss, self.pred],
                feed_dict={
                    self.input_data: test_X,
                    self.label_data: test_Y,
                    self.keep_prob: 1.0
                })
            print('[MSE]: %f' % mse)
            return mse, pred_y

    def validation_model(self, val_X, val_Y, sess):
        if type(val_X) == list:
            n_class = len(val_X)
            acc = np.zeros(n_class)
            for i in range(n_class):
                if i == 3 or i == 9 or i == 15: continue
                acc[i] = sess.run(self.accuracy,
                                  feed_dict={
                                      self.input_data: val_X[i],
                                      self.label_data: val_Y[i],
                                      self.keep_prob: 1.0
                                  })
            average_acc = np.sum(acc) / 19
            print('    >>> validation accuracy = {:.4}'.format(average_acc))
            if average_acc > self.best_average_acc:
                self.best_average_acc = average_acc
                self.best_acc_array = acc