def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training, mapped by task_id
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        
        @return: trained predictors, mapped by task_id
        @rtype: dict<str, SVM>
        """

        # init container
        svms = {}

        # concatenate data
        data = PreparedMultitaskData(train_data, shuffle=False)

        # create svm
        svm = shogun_factory.create_initialized_svm(param, data.examples,
                                                    data.labels)

        print "starting training procedure"

        # train SVM
        svm.train()

        print "training done"

        # use a reference to the same svm several times
        for task_id in train_data.keys():
            svms[task_id] = svm

        return svms
Esempio n. 2
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=False)

        # create shogun data objects
        base_wdk = shogun_factory.create_kernel(data.examples, param)
        lab = shogun_factory.create_labels(data.labels)

        # fetch taxonomy from parameter object
        taxonomy = shogun_factory.create_taxonomy(param.taxonomy.data)

        # set normalizer
        normalizer = MultitaskKernelTreeNormalizer(data.task_vector_names,
                                                   data.task_vector_names,
                                                   taxonomy)

        ########################################################
        gammas = self.taxonomy_to_gammas(data, taxonomy)
        print "gammas before MKL:"
        print gammas
        ########################################################

        base_wdk.set_normalizer(normalizer)
        base_wdk.init_normalizer()

        svm = None

        num_subk = base_wdk.get_num_subkernels()

        print "num subkernels:", num_subk

        #print "subkernel weights:", base_wdk.get_subkernel_weights()

        self.additional_information["weights_before"] = [
            normalizer.get_beta(i) for i in range(num_subk)
        ]

        print "using MKL:", (param.transform >= 1.0)

        if param.transform >= 1.0:

            num_threads = 4

            svm = MKLClassification()

            svm.set_mkl_norm(param.transform)
            #svm.set_solver_type(ST_CPLEX) #GLPK) #DIRECT) #NEWTON)#ST_CPLEX)

            svm.set_kernel(base_wdk)
            svm.set_labels(lab)

            svm.parallel.set_num_threads(num_threads)
            svm.set_linadd_enabled(False)
            svm.set_batch_computation_enabled(False)

            if param.flags["normalize_cost"]:
                # normalize cost
                norm_c_pos = param.cost / float(
                    len([l for l in data.labels if l == 1]))
                norm_c_neg = param.cost / float(
                    len([l for l in data.labels if l == -1]))

                svm.set_C(norm_c_neg, norm_c_pos)
            else:
                svm.set_C(param.cost, param.cost)

            svm.train()

            #print "subkernel weights (after):", base_wdk.get_subkernel_weights()

        else:

            # create SVM (disable unsupported optimizations)
            svm = SVMLight(param.cost, base_wdk, lab)
            svm.set_linadd_enabled(False)
            svm.set_batch_computation_enabled(False)

            svm.train()

        print "svm objective:", svm.get_objective()

        self.additional_information["weights"] = [
            normalizer.get_beta(i) for i in range(num_subk)
        ]
        self.additional_information["gammas"] = self.taxonomy_to_gammas(
            data, taxonomy)

        print "debug weights:"
        print self.additional_information
        print ""

        # wrap up predictors
        svms = {}

        # use a reference to the same svm several times
        for task_id in train_data.keys():
            svms[task_id] = svm

        return svms
Esempio n. 3
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)

        # create shogun label
        lab = shogun_factory.create_labels(data.labels)

        ##################################################
        # define pockets
        ##################################################

        pockets = [0] * 9

        pockets[0] = [1, 5, 6, 7, 8, 31, 32, 33, 34]
        pockets[1] = [1, 2, 3, 4, 6, 7, 8, 9, 11, 21, 31]
        pockets[2] = [11, 20, 21, 22, 29, 31]
        pockets[3] = [8, 30, 31, 32]
        pockets[4] = [10, 11, 30]
        pockets[5] = [10, 11, 12, 13, 20, 29]
        pockets[6] = [10, 12, 20, 22, 26, 27, 28, 29]
        pockets[7] = [12, 14, 15, 26]
        pockets[8] = [13, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26]

        #new_pockets = []

        # merge neighboring pockets
        #for i in range(8):
        #    new_pockets.append(list(set(pockets[i]).union(set(pockets[i+1]))))

        #pockets = new_pockets

        ########################################################
        print "creating a kernel:"
        ########################################################

        # assemble combined kernel

        combined_kernel = CombinedKernel()

        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_INFO)

        base_features = shogun_factory.create_features(data.examples)

        combined_features = CombinedFeatures()

        ##################################################
        # intra-domain blocks

        #        intra_block_vec = PairiiVec()
        #
        #        for task_id in data.get_task_ids():
        #            intra_block_vec.push_back(Pairii(task_id, task_id))
        #
        #
        #
        #        # create mask-based normalizer
        #        normalizer = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, intra_block_vec)
        #        kernel = shogun_factory.create_empty_kernel(param)
        #        kernel.set_normalizer(normalizer)
        #
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel)
        #
        #        # append features
        #        combined_features.append_feature_obj(base_features)
        #
        #        print "------"
        #
        #        ##################################################
        #        # all blocks
        #
        #
        #        all_block_vec = PairiiVec()
        #
        #        for task_id_1 in data.get_task_ids():
        #            for task_id_2 in data.get_task_ids():
        #                all_block_vec.push_back(Pairii(task_id_1, task_id_2))
        #
        #
        #        # create mask-based normalizer
        #        normalizer_all = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, all_block_vec)
        #        kernel_all = shogun_factory.create_empty_kernel(param)
        #        kernel_all.set_normalizer(normalizer_all)
        #
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel_all)
        #
        #        # append features
        #        combined_features.append_feature_obj(base_features)

        ##################################################
        # add one kernel per similarity position

        # init seq handler
        pseudoseqs = SequencesHandler()

        for pocket in pockets:

            print "creating normalizer"
            #import pdb
            #pdb.set_trace()

            normalizer = MultitaskKernelNormalizer(data.task_vector_nums)

            print "processing pocket", pocket

            # set similarity
            for task_name_lhs in data.get_task_names():
                for task_name_rhs in data.get_task_names():

                    similarity = 0.0

                    for pseudo_seq_pos in pocket:
                        similarity += float(
                            pseudoseqs.get_similarity(task_name_lhs,
                                                      task_name_rhs,
                                                      pseudo_seq_pos - 1))

                    # normalize
                    similarity = similarity / float(len(pocket))

                    print "pocket %s (%s, %s) = %f" % (
                        str(pocket), task_name_lhs, task_name_rhs, similarity)

                    normalizer.set_task_similarity(
                        data.name_to_id(task_name_lhs),
                        data.name_to_id(task_name_rhs), similarity)

            print "creating empty kernel"
            kernel_pos = shogun_factory.create_empty_kernel(param)

            print "setting normalizer"
            kernel_pos.set_normalizer(normalizer)

            print "appending kernel"
            # append current kernel to CombinedKernel
            combined_kernel.append_kernel(kernel_pos)

            print "appending features"
            # append features
            combined_features.append_feature_obj(base_features)

        print "done constructing combined kernel"

        ##################################################
        # init combined kernel

        # init weights
        # combined_kernel.set_subkernel_weights([1.0/2.85]*combined_kernel.get_num_subkernels())

        combined_kernel.init(combined_features, combined_features)

        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None

        print "using MKL:", (param.transform >= 1.0)

        if param.transform >= 1.0:

            svm = MKLClassification()

            svm.set_mkl_norm(param.transform)
            #svm.set_solver_type(ST_CPLEX) #ST_GLPK) #DIRECT) #NEWTON)#ST_CPLEX) #auto

            svm.set_C(param.cost, param.cost)

            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)

        else:

            # create SVM (disable unsupported optimizations)
            combined_kernel.set_cache_size(500)

            svm = SVMLight(param.cost, combined_kernel, lab)

        # set up SVM
        num_threads = 8
        svm.io.enable_progress()
        #svm.io.set_loglevel(shogun.Classifier.MSG_INFO)
        svm.io.set_loglevel(shogun.Classifier.MSG_DEBUG)

        svm.parallel.set_num_threads(num_threads)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)

        #print "WARNING: custom epsilon set"
        #svm.set_epsilon(0.05)

        # normalize cost
        norm_c_pos = param.cost / float(len([l
                                             for l in data.labels if l == 1]))
        norm_c_neg = param.cost / float(
            len([l for l in data.labels if l == -1]))

        svm.set_C(norm_c_neg, norm_c_pos)

        # start training
        svm.train()

        # save additional info
        self.additional_information["svm_objective"] = svm.get_objective()
        self.additional_information[
            "svm num sv"] = svm.get_num_support_vectors()
        self.additional_information[
            "post_weights"] = combined_kernel.get_subkernel_weights()

        print self.additional_information

        # wrap up predictors
        svms = {}

        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name), combined_kernel,
                               svm)

        return svms
Esempio n. 4
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """


        assert(param.base_similarity >= 1)
        
        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=False)
        
        
        # create shogun data objects
        base_wdk = shogun_factory.create_kernel(data.examples, param)
        lab = shogun_factory.create_labels(data.labels)

        # set normalizer
        normalizer = MultitaskKernelNormalizer(data.task_vector_nums)
        
        # load data
        #f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_PseudoSeq_BlosumEnc_pearson.txt")
        f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/All_PseudoSeq_Hamming.txt")
        #f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_PseudoSeq_BlosumEnc_euklid.txt")
        #f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_RAxML.txt")
        
        num_lines = int(f.readline().strip())
        task_distances = numpy.zeros((num_lines, num_lines))
        name_to_id = {}
        for (i, line) in enumerate(f):
            tokens = line.strip().split("\t")
            name = str(tokens[0])
            name_to_id[name] = i
            entry = numpy.array([v for (j,v) in enumerate(tokens) if j!=0])
            assert len(entry)==num_lines, "len_entry %i, num_lines %i" % (len(entry), num_lines)
            task_distances[i,:] = entry
            
        
        # cut relevant submatrix
        active_ids = [name_to_id[name] for name in data.get_task_names()] 
        tmp_distances = task_distances[active_ids, :]
        tmp_distances = tmp_distances[:, active_ids]
        print "distances ", tmp_distances.shape

        
        # normalize distances
        task_distances = task_distances / numpy.max(tmp_distances)
        
        
        similarities = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))
                                
        
        # convert distance to similarity
        for task_name_lhs in data.get_task_names():
            for task_name_rhs in data.get_task_names():
                
                
                # convert similarity with simple transformation
                similarity = param.base_similarity - task_distances[name_to_id[task_name_lhs], name_to_id[task_name_rhs]]
                normalizer.set_task_similarity(data.name_to_id(task_name_lhs), data.name_to_id(task_name_rhs), similarity)
                
                # save for later
                similarities[data.name_to_id(task_name_lhs),data.name_to_id(task_name_rhs)] = similarity
                
                
        # set normalizer                
        base_wdk.set_normalizer(normalizer)
        base_wdk.init_normalizer()
        

        # set up svm
        svm = SVMLight(param.cost, base_wdk, lab)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)
        
        
        # normalize cost
        norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
        norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
        
        svm.set_C(norm_c_neg, norm_c_pos)
        
        
        # start training
        svm.train()


        # save additional information
        self.additional_information["svm objective"] = svm.get_objective()
        self.additional_information["num sv"] = svm.get_num_support_vectors()
        #self.additional_information["distances"] = distances
        self.additional_information["similarities"] = similarities


        # wrap up predictors
        svms = {}
        
        # use a reference to the same svm several times
        for task_name in data.get_task_names():
            
            task_num = data.name_to_id(task_name)
            
            # save svm and task_num
            svms[task_name] = (task_num, param, svm)

        return svms
Esempio n. 5
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """

        # split for training weak_learners and boosting
        (train_weak, train_boosting) = split_data(train_data, 4)
          
        # merge data sets
        data = PreparedMultitaskData(train_weak, shuffle=True)
        
        # create shogun label
        lab = shogun_factory.create_labels(data.labels)
        


        ##################################################
        # define pockets
        ##################################################
        
        pockets = [0]*9
        
        pockets[0] = [1, 5, 6, 7, 8, 31, 32, 33, 34]
        pockets[1] = [1, 2, 3, 4, 6, 7, 8, 9, 11, 21, 31]
        pockets[2] = [11, 20, 21, 22, 29, 31]
        pockets[3] = [8, 30, 31, 32]
        pockets[4] = [10, 11, 30]
        pockets[5] = [10, 11, 12, 13, 20, 29]
        pockets[6] = [10, 12, 20, 22, 26, 27, 28, 29]
        pockets[7] = [12, 14, 15, 26]
        pockets[8] = [13, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26]
        
        pockets = []
        for i in xrange(35):
            pockets.append([i])


        #new_pockets = []
        
        # merge neighboring pockets
        #for i in range(8):
        #    new_pockets.append(list(set(pockets[i]).union(set(pockets[i+1]))))
            
        #pockets = new_pockets
        
        
        ########################################################
        print "creating a kernel:"
        ########################################################
        
        
        # init seq handler 
        pseudoseqs = SequencesHandler()

        
        classifiers = []


        for pocket in pockets:

            print "creating normalizer"
            #import pdb
            #pdb.set_trace()
            
            normalizer = MultitaskKernelNormalizer(data.task_vector_nums)
            
            print "processing pocket", pocket

            # set similarity
            for task_name_lhs in data.get_task_names():
                for task_name_rhs in data.get_task_names():
                    
                    similarity = 0.0
                    
                    for pseudo_seq_pos in pocket:
                        similarity += float(pseudoseqs.get_similarity(task_name_lhs, task_name_rhs, pseudo_seq_pos-1))
                    
                    # normalize
                    similarity = similarity / float(len(pocket))
                    
                    print "pocket %s (%s, %s) = %f" % (str(pocket), task_name_lhs, task_name_rhs, similarity)
                    
                    normalizer.set_task_similarity(data.name_to_id(task_name_lhs), data.name_to_id(task_name_rhs), similarity)
               

            print "creating empty kernel"
            kernel = shogun_factory.create_kernel(data.examples, param)
            
            print "setting normalizer"
            kernel.set_normalizer(normalizer)

            print "training SVM for pocket", pocket
            svm = self._train_single_svm(param, kernel, lab)

            classifiers.append(svm)
        
        
        print "done obtaining weak learners"
            
        
        # save additional info
        #self.additional_information["svm_objective"] = svm.get_objective()
        #self.additional_information["svm num sv"] = svm.get_num_support_vectors()
        #self.additional_information["post_weights"] = combined_kernel.get_subkernel_weights()
        
        #print self.additional_information 
        


        ##################################################
        # combine weak learners for each task
        ##################################################
        
        
        # set constants
        
        some = 0.9
        import cvxmod
        
        
        # wrap up predictors
        svms = {}
            
        # use a reference to the same svm several times
        for task_name in train_boosting.keys():
            
            instances = train_boosting[task_name]
            
            N = len(instances)
            F = len(pockets)
            
            examples = [inst.example for inst in instances]
            labels = [inst.label for inst in instances]
            
            # dim = (F x N)
            out = cvxmod.zeros((N,F))
            
            for i in xrange(F):
                svm = classifiers[i]
                tmp_out = self._predict_weak(svm, examples, data.name_to_id(task_name))

                out[:,i] = numpy.sign(tmp_out)
                #out[:,i] = tmp_out
            

            #TODO: fix
            helper.save("/tmp/out_sparse", (out,labels))
            pdb.set_trace()
            
            weights = solve_boosting(out, labels, some, solver="mosek")
            
            
            
            svms[task_name] = (data.name_to_id(task_name), svm)

        
        return svms
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        
        
        for task_id in train_data.keys():
            print "task_id:", task_id

        # split data for training weak_learners and boosting
        (train_weak, train_boosting) = split_data(train_data, 4)
        
        # train on first part of dataset (evaluate on other)
        prepared_data_weak = PreparedMultitaskData(train_weak, shuffle=False)
        classifiers = self._inner_train(prepared_data_weak, param)

        # train on entire dataset
        prepared_data_final = PreparedMultitaskData(train_data, shuffle=False)
        final_classifiers = self._inner_train(prepared_data_final, param)


        print "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
        print "done training weak learners"

        #####################################################
        #    perform boosting and wrap things up    
        #####################################################

        # wrap up predictors for later use
        predictors = {}

        for task_name in train_boosting.keys():
            
            instances = train_boosting[task_name]
            
            N = len(instances)
            F = len(classifiers)
            
            examples = [inst.example for inst in instances]
            labels = [inst.label for inst in instances]
            
            # dim = (F x N)
            out = cvxmod.zeros((N,F))
            
            for i in xrange(F):
                    
                svm = classifiers[i]
                        
                tmp_out = self._predict_weak(svm, examples, prepared_data_weak.name_to_id(task_name), param)

                if param.flags["signum"]:
                    out[:,i] = numpy.sign(tmp_out)
                else:
                    out[:,i] = tmp_out
            
            
            if param.flags["boosting"] == "ones":
                weights = numpy.ones(F)/float(F)
            if param.flags["boosting"] == "L1":
                weights = solve_boosting(out, labels, param.transform, solver="glpk")
            if param.flags["boosting"] == "L2":            
                weights = solve_nu_svm(out, labels, param.transform, solver="glpk", reg=False)
            if param.flags["boosting"] == "L2_reg":            
                weights = solve_nu_svm(out, labels, param.transform, solver="glpk", reg=True)
            
            
            predictors[task_name] = (final_classifiers, weights, prepared_data_final.name_to_id(task_name), param)
            
            
            assert prepared_data_final.name_to_id(task_name)==prepared_data_weak.name_to_id(task_name), "name mappings don't match"
            
        
        #####################################################
        #    Some sanity checks
        ##################################################### 
        
        # make sure we have the same keys (potentiall in a different order)  
        sym_diff_keys = set(train_weak.keys()).symmetric_difference(set(predictors.keys()))
        assert len(sym_diff_keys)==0, "symmetric difference between keys non-empty: " + str(sym_diff_keys)  


        return predictors
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=False)

        # create shogun data objects
        base_wdk = shogun_factory.create_kernel(data.examples, param)
        lab = shogun_factory.create_labels(data.labels)

        # support
        support = numpy.linspace(0, 1, 5)

        # set normalizer
        normalizer = MultitaskKernelPlifNormalizer(support,
                                                   data.task_vector_nums)

        # fetch taxonomy from parameter object
        taxonomy = param.taxonomy.data

        taxonomy.plot()
        import os
        os.system("evince demo.png &")

        # compute distances
        distances = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))

        for (i, task_name_lhs) in enumerate(data.get_task_names()):
            for (j, task_name_rhs) in enumerate(data.get_task_names()):

                distances[i, j] = task_similarities.compute_hop_distance(
                    taxonomy, task_name_lhs, task_name_rhs)

        # normalize distances
        distances = distances / numpy.max(distances)

        # set distances
        for (i, task_name_lhs) in enumerate(data.get_task_names()):
            for (j, task_name_rhs) in enumerate(data.get_task_names()):

                normalizer.set_task_distance(i, j, distances[i, j])

        # assign normalizer
        base_wdk.set_normalizer(normalizer)
        base_wdk.init_normalizer()

        svm = None

        debug_weights = {}

        num_subk = base_wdk.get_num_subkernels()

        print "num subkernels:", num_subk

        #print "subkernel weights:", base_wdk.get_subkernel_weights()

        debug_weights["before"] = [
            normalizer.get_beta(i) for i in range(num_subk)
        ]

        print "using MKL:", (param.transform >= 1.0)

        if param.transform >= 1.0:

            num_threads = 4

            svm = MKLClassification()

            svm.set_mkl_norm(param.transform)
            #svm.set_solver_type(ST_CPLEX) #GLPK) #DIRECT) #NEWTON)#ST_CPLEX)

            svm.set_C(param.cost, param.cost)

            svm.set_kernel(base_wdk)
            svm.set_labels(lab)

            svm.parallel.set_num_threads(num_threads)
            svm.set_linadd_enabled(False)
            svm.set_batch_computation_enabled(False)

            svm.train()

            #print "subkernel weights (after):", base_wdk.get_subkernel_weights()

        else:

            # create SVM (disable unsupported optimizations)
            svm = SVMLight(param.cost, base_wdk, lab)
            svm.set_linadd_enabled(False)
            svm.set_batch_computation_enabled(False)

            svm.train()

        print "svm objective:", svm.get_objective()

        debug_weights["after"] = [
            normalizer.get_beta(i) for i in range(num_subk)
        ]

        # debugging output
        print "debug weights (before/after):"
        print debug_weights["before"]
        print debug_weights["after"]
        print ""

        # wrap up predictors
        svms = {}

        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (svm, data.name_to_id(task_name))

        return svms
Esempio n. 8
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training, mapped by task_id
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        
        @return: trained predictors, mapped by task_id
        @rtype: dict<str, SVM>
        """

        # init container
        svms = {}

        # concatenate data
        data = PreparedMultitaskData(train_data, shuffle=False)

        # fetch taxonomy
        taxonomy = param.taxonomy.data

        # compute distances
        distances = defaultdict(dict)
        for task_name_lhs in data.get_task_names():
            for task_name_rhs in data.get_task_names():
                distances[task_name_lhs][
                    task_name_rhs] = task_similarities.compute_hop_distance(
                        taxonomy, task_name_lhs, task_name_rhs)

        # use a reference to the same svm several times
        for task_name in train_data.keys():

            # create svm
            svm = shogun_factory.create_initialized_svm(
                param, data.examples, data.labels)

            print "starting training procedure"

            cost = []
            max_distance = max(distances[task_name].values())

            # set cost
            for i in xrange(data.num_examples):
                tmp_task_name = data.task_vector_names[i]

                distance = distances[task_name][tmp_task_name] / max_distance

                base_sim = 1.0
                similarity = base_sim - distance
                cost.append(similarity * param.cost)

            # set cost vector
            svm.set_cost(cost)

            # train SVM
            svm.train()

            print "training done"

            svms[task_name] = svm

        return svms
Esempio n. 9
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """


        assert(param.base_similarity >= 1)
        
        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=False)
        
        
        # create shogun data objects
        base_wdk = shogun_factory.create_kernel(data.examples, param)
        lab = shogun_factory.create_labels(data.labels)


        # create normalizer
        normalizer = MultitaskKernelNormalizer(data.task_vector_nums)

        # load hard-coded task-similarity
        task_similarity = helper.load("/fml/ag-raetsch/home/cwidmer/svn/projects/alt_splice_code/src/task_sim_tis.bz2")


        # set similarity
        similarities = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))
        
        for (i, task_name_lhs) in enumerate(data.get_task_names()):
            
            #max_value_row = max(task_similarity.get_row(task_name_lhs))
            max_value_row = 1.0
            
            for (j, task_name_rhs) in enumerate(data.get_task_names()):
                
                similarity = task_similarity.get_value(task_name_lhs, task_name_rhs) / max_value_row
                normalizer.set_task_similarity(i, j, similarity)
                similarities[i,j] = similarity
                
        
        pprint.pprint similarities
        
        # set normalizer
        #print "WARNING MTK disabled!!!!!!!!!!!!!!!!!!!!!"                
        base_wdk.set_normalizer(normalizer)
        base_wdk.init_normalizer()
        
        
        # set up svm
        param.flags["svm_type"] = "svmlight" #fix svm type
        
        svm = shogun_factory.create_svm(param, base_wdk, lab)
        
        # make sure these parameters are set correctly
        #print "WARNING MTK WONT WORK WITH THESE SETTINGS!!!!!!!!!!!!!!!!!!!!!"
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)
        

        assert svm.get_linadd_enabled() == False, "linadd should be disabled"
        assert svm.get_batch_computation_enabled == False, "batch compute should be disabled"
        
        # start training
        svm.train()
        
        
        # save additional information
        self.additional_information["svm objective"] = svm.get_objective()
        self.additional_information["num sv"] = svm.get_num_support_vectors()
        #self.additional_information["distances"] = distances
        self.additional_information["similarities"] = similarities
        
        
        # wrap up predictors
        svms = {}
        
        # use a reference to the same svm several times
        for task_name in data.get_task_names():
            
            task_num = data.name_to_id(task_name)
            
            # save svm and task_num
            svms[task_name] = (task_num, svm)

        return svms
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        

        #numpy.random.seed(1337)
        numpy.random.seed(666)

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)

                
        # create shogun label
        lab = shogun_factory.create_labels(data.labels)


        # assemble combined kernel
        combined_kernel = CombinedKernel()
        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_DEBUG)    
        # set kernel cache
        if param.flags.has_key("cache_size"):
            combined_kernel.set_cache_size(param.flags["cache_size"])
        

        # create features
        base_features = shogun_factory.create_features(data.examples)
        
        combined_features = CombinedFeatures()
        


        ########################################################
        print "creating a masked kernel for each node:"
        ########################################################
        

        # fetch taxonomy from parameter object
        taxonomy = param.taxonomy.data

        # create name to leaf map
        nodes = taxonomy.get_all_nodes()

        
        for node in nodes:
            
            print "creating kernel for ", node.name
            
            # fetch sub-tree
            active_task_ids = [data.name_to_id(leaf.name) for leaf in node.get_leaves()]
            
            print "masking all entries other than:", active_task_ids
            
        
            # create mask-based normalizer
            normalizer = MultitaskKernelMaskNormalizer(data.task_vector_nums, data.task_vector_nums, active_task_ids)
            
            # normalize trace
            if param.flags.has_key("normalize_trace") and param.flags["normalize_trace"]:
                norm_factor = len(node.get_leaves()) / len(active_task_ids)
                normalizer.set_normalization_constant(norm_factor)
            
            # create kernel
            kernel = shogun_factory.create_empty_kernel(param)
            kernel.set_normalizer(normalizer)
            
            
            # append current kernel to CombinedKernel
            combined_kernel.append_kernel(kernel)
        
            # append features
            combined_features.append_feature_obj(base_features)

            print "------"
        

        combined_kernel.init(combined_features, combined_features)                
        #combined_kernel.precompute_subkernels()
                
        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None
                        
        print "using MKL:", (param.flags["mkl_q"] >= 1.0)

        
        if param.flags["mkl_q"] >= 1.0:
            
            # set up MKL    
            svm = MKLClassification()

            # set the "q" in q-norm MKL
            svm.set_mkl_norm(param.flags["mkl_q"])
            
            # set interleaved optimization
            if param.flags.has_key("interleaved"):
                svm.set_interleaved_optimization_enabled(param.flags["interleaved"])
            
            # set solver type
            if param.flags.has_key("solver_type") and param.flags["solver_type"]:
                if param.flags["solver_type"] == "ST_CPLEX":
                    svm.set_solver_type(ST_CPLEX)
                if param.flags["solver_type"] == "ST_DIRECT":
                    svm.set_solver_type(ST_DIRECT)
                if param.flags["solver_type"] == "ST_NEWTON":
                    svm.set_solver_type(ST_NEWTON)
                if param.flags["solver_type"] == "ST_GLPK":
                    svm.set_solver_type(ST_GLPK)
            
            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)
            
        else:
            # create vanilla SVM 
            svm = SVMLight(param.cost, combined_kernel, lab)


        # optimization settings
        num_threads = 4
        svm.parallel.set_num_threads(num_threads)
        
        if param.flags.has_key("epsilon"):
            svm.set_epsilon(param.flags["epsilon"])
        
        
        # enable output        
        svm.io.enable_progress()
        svm.io.set_loglevel(shogun.Classifier.MSG_DEBUG)
        
        
        # disable unsupported optimizations (due to special normalizer)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)
        
        
        # set cost
        if param.flags["normalize_cost"]:
            
            norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
            norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
            svm.set_C(norm_c_neg, norm_c_pos)
            
        else:
            
            svm.set_C(param.cost, param.cost)
        
        
        # start training
        svm.train()


        ########################################################
        print "svm objective:"
        print svm.get_objective()
        ########################################################
        
        # store additional info
        self.additional_information["svm objective"] = svm.get_objective()
        self.additional_information["weights"] = combined_kernel.get_subkernel_weights()
        
        
        # wrap up predictors
        svms = {}
            
        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name), len(nodes), combined_kernel, svm)

        
        return svms
def test_data():

    ##################################################################
    # select MSS
    ##################################################################

    mss = expenv.MultiSplitSet.get(379)

    ##################################################################
    # data
    ##################################################################

    # fetch data
    instance_set = mss.get_train_data(-1)

    # prepare data
    data = PreparedMultitaskData(instance_set, shuffle=True)

    # set parameters
    param = Options()
    param.kernel = "WeightedDegreeStringKernel"
    param.wdk_degree = 4
    param.cost = 1.0
    param.transform = 1.0
    param.id = 666
    param.freeze()

    ##################################################################
    # taxonomy
    ##################################################################

    taxonomy = shogun_factory.create_taxonomy(mss.taxonomy.data)

    support = numpy.linspace(0, 100, 4)

    distances = [[0, 1, 2, 2], [1, 0, 2, 2], [2, 2, 0, 1], [2, 2, 1, 0]]

    # create tree normalizer
    tree_normalizer = MultitaskKernelPlifNormalizer(support,
                                                    data.task_vector_names)

    task_names = data.get_task_names()

    FACTOR = 1.0

    # init gamma matrix
    gammas = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))

    for t1_name in task_names:
        for t2_name in task_names:

            similarity = taxonomy.compute_node_similarity(
                taxonomy.get_id(t1_name), taxonomy.get_id(t2_name))
            gammas[data.name_to_id(t1_name),
                   data.name_to_id(t2_name)] = similarity

    helper.save("/tmp/gammas", gammas)

    gammas = gammas * FACTOR

    cost = param.cost * numpy.sqrt(FACTOR)

    print gammas

    ##########
    # regular normalizer

    normalizer = MultitaskKernelNormalizer(data.task_vector_nums)

    for t1_name in task_names:
        for t2_name in task_names:

            similarity = gammas[data.name_to_id(t1_name),
                                data.name_to_id(t2_name)]
            normalizer.set_task_similarity(data.name_to_id(t1_name),
                                           data.name_to_id(t2_name),
                                           similarity)

    ##################################################################
    # Train SVMs
    ##################################################################

    # create shogun objects
    wdk_tree = shogun_factory.create_kernel(data.examples, param)
    lab = shogun_factory.create_labels(data.labels)

    wdk_tree.set_normalizer(tree_normalizer)
    wdk_tree.init_normalizer()

    print "--->", wdk_tree.get_normalizer().get_name()

    svm_tree = SVMLight(cost, wdk_tree, lab)
    svm_tree.set_linadd_enabled(False)
    svm_tree.set_batch_computation_enabled(False)

    svm_tree.train()

    del wdk_tree
    del tree_normalizer

    print "finished training tree-norm SVM:", svm_tree.get_objective()

    wdk = shogun_factory.create_kernel(data.examples, param)
    wdk.set_normalizer(normalizer)
    wdk.init_normalizer()

    print "--->", wdk.get_normalizer().get_name()

    svm = SVMLight(cost, wdk, lab)
    svm.set_linadd_enabled(False)
    svm.set_batch_computation_enabled(False)

    svm.train()

    print "finished training manually set SVM:", svm.get_objective()

    alphas_tree = svm_tree.get_alphas()
    alphas = svm.get_alphas()

    assert (len(alphas_tree) == len(alphas))

    for i in xrange(len(alphas)):
        assert (abs(alphas_tree[i] - alphas[i]) < 0.0001)

    print "success: all alphas are the same"
##################################################################
# select MSS
##################################################################

mss = expenv.MultiSplitSet.get(379)

##################################################################
# data
##################################################################

# fetch data
instance_set = mss.get_train_data(-1)

# prepare data
data = PreparedMultitaskData(instance_set, shuffle=True)

# set parameters
param = Options()
param.kernel = "WeightedDegreeStringKernel"
param.wdk_degree = 4
param.cost = 1.0
param.transform = 1.0
param.id = 666
param.freeze()

##################################################################
# taxonomy
##################################################################

taxonomy = shogun_factory.create_taxonomy(mss.taxonomy.data)
Esempio n. 13
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=False)

        # create shogun data objects
        base_wdk = shogun_factory.create_empty_kernel(param)
        lab = shogun_factory.create_labels(data.labels)

        combined_kernel = CombinedKernel()
        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_INFO)
        base_features = shogun_factory.create_features(data.examples)
        combined_features = CombinedFeatures()

        # set normalizer
        normalizer = MultitaskKernelNormalizer(data.task_vector_nums)

        # load data
        #f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_PseudoSeq_BlosumEnc_pearson.txt")
        f = file(
            "/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/All_PseudoSeq_Hamming.txt"
        )
        #f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_PseudoSeq_BlosumEnc_euklid.txt")
        #f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_RAxML.txt")

        num_lines = int(f.readline().strip())
        task_distances = numpy.zeros((num_lines, num_lines))
        name_to_id = {}
        for (i, line) in enumerate(f):
            tokens = line.strip().split("\t")
            name = str(tokens[0])
            name_to_id[name] = i
            entry = numpy.array([v for (j, v) in enumerate(tokens) if j != 0])
            assert len(entry) == num_lines, "len_entry %i, num_lines %i" % (
                len(entry), num_lines)
            task_distances[i, :] = entry

        # cut relevant submatrix
        active_ids = [name_to_id[name] for name in data.get_task_names()]
        tmp_distances = task_distances[active_ids, :]
        tmp_distances = tmp_distances[:, active_ids]
        print "distances ", tmp_distances.shape

        # normalize distances
        task_distances = task_distances / numpy.max(tmp_distances)

        similarities = numpy.zeros(
            (data.get_num_tasks(), data.get_num_tasks()))

        # convert distance to similarity
        for task_name_lhs in data.get_task_names():
            for task_name_rhs in data.get_task_names():

                # convert similarity with simple transformation
                similarity = param.base_similarity - task_distances[
                    name_to_id[task_name_lhs], name_to_id[task_name_rhs]]
                normalizer.set_task_similarity(data.name_to_id(task_name_lhs),
                                               data.name_to_id(task_name_rhs),
                                               similarity)

                # save for later
                similarities[data.name_to_id(task_name_lhs),
                             data.name_to_id(task_name_rhs)] = similarity

        # set normalizer
        base_wdk.set_normalizer(normalizer)
        #base_wdk.init_normalizer()

        combined_features.append_feature_obj(base_features)
        combined_kernel.append_kernel(base_wdk)

        ##################################################
        # intra-domain blocks

        intra_block_vec = PairiiVec()

        for task_id in data.get_task_ids():
            intra_block_vec.push_back(Pairii(task_id, task_id))

        # create mask-based normalizer
        normalizer = MultitaskKernelMaskPairNormalizer(data.task_vector_nums,
                                                       intra_block_vec)
        kernel = shogun_factory.create_empty_kernel(param)
        kernel.set_normalizer(normalizer)

        # append current kernel to CombinedKernel
        combined_kernel.append_kernel(kernel)

        # append features
        combined_features.append_feature_obj(base_features)

        # set mixing factor (used if MKL is OFF)
        assert (param.base_similarity <= 1)
        assert (param.base_similarity >= 0)
        combined_kernel.set_subkernel_weights(
            [param.base_similarity, 1 - param.base_similarity])

        combined_kernel.init(combined_features, combined_features)

        svm = None

        print "using MKL:", (param.transform >= 1.0)

        if param.transform >= 1.0:

            svm = MKLClassification()

            svm.set_mkl_norm(param.transform)
            #svm.set_solver_type(ST_CPLEX) #ST_GLPK) #DIRECT) #NEWTON)#ST_CPLEX) #auto

            svm.set_C(param.cost, param.cost)

            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)

        else:

            # create SVM (disable unsupported optimizations)
            combined_kernel.set_cache_size(500)

            svm = SVMLight(param.cost, combined_kernel, lab)

        # set up SVM
        num_threads = 8
        svm.io.enable_progress()
        svm.io.set_loglevel(shogun.Classifier.MSG_DEBUG)

        svm.parallel.set_num_threads(num_threads)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)

        print "WARNING: custom epsilon set"
        svm.set_epsilon(0.05)

        # normalize cost
        norm_c_pos = param.cost / float(len([l
                                             for l in data.labels if l == 1]))
        norm_c_neg = param.cost / float(
            len([l for l in data.labels if l == -1]))

        svm.set_C(norm_c_neg, norm_c_pos)

        # start training
        svm.train()

        # save additional information
        self.additional_information["svm objective"] = svm.get_objective()
        self.additional_information["num sv"] = svm.get_num_support_vectors()
        self.additional_information["similarities"] = similarities
        self.additional_information[
            "post_weights"] = combined_kernel.get_subkernel_weights()

        # wrap up predictors
        svms = {}

        # use a reference to the same svm several times
        for task_name in data.get_task_names():

            task_num = data.name_to_id(task_name)

            # save svm and task_num
            svms[task_name] = (task_num, combined_kernel, svm)

        return svms
Esempio n. 14
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """

        import numpy
        numpy.random.seed(666)

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)

        # create shogun label
        lab = shogun_factory.create_labels(data.labels)

        # assemble combined kernel
        combined_kernel = CombinedKernel()
        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_DEBUG)
        # set kernel cache
        if param.flags.has_key("cache_size"):
            combined_kernel.set_cache_size(param.flags["cache_size"])

        # create features
        base_features = shogun_factory.create_features(data.examples, param)

        combined_features = CombinedFeatures()

        ########################################################
        print "creating a masked kernel for possible subset:"
        ########################################################

        power_set_tasks = power_set(data.get_task_ids())

        for active_task_ids in power_set_tasks:

            print "masking all entries other than:", active_task_ids

            # create mask-based normalizer
            normalizer = MultitaskKernelMaskNormalizer(data.task_vector_nums,
                                                       data.task_vector_nums,
                                                       active_task_ids)

            # normalize trace
            if param.flags.has_key(
                    "normalize_trace") and param.flags["normalize_trace"]:
                norm_factor = len(data.get_task_ids()) / len(active_task_ids)
                normalizer.set_normalization_constant(norm_factor)

            kernel = shogun_factory.create_empty_kernel(param)
            kernel.set_normalizer(normalizer)

            # append current kernel to CombinedKernel
            combined_kernel.append_kernel(kernel)

            # append features
            combined_features.append_feature_obj(base_features)

            print "------"

        combined_kernel.init(combined_features, combined_features)

        #combined_kernel.precompute_subkernels()

        self.additional_information[
            "weights before trainng"] = combined_kernel.get_subkernel_weights(
            )
        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None

        print "using MKL:", (param.flags["mkl_q"] >= 1.0)

        if param.flags["mkl_q"] >= 1.0:

            svm = MKLClassification()

            svm.set_mkl_norm(param.flags["mkl_q"])

            # set interleaved optimization
            if param.flags.has_key("interleaved"):
                svm.set_interleaved_optimization_enabled(
                    param.flags["interleaved"])

            # set solver type
            if param.flags.has_key(
                    "solver_type") and param.flags["solver_type"]:
                if param.flags["solver_type"] == "ST_CPLEX":
                    svm.set_solver_type(ST_CPLEX)
                if param.flags["solver_type"] == "ST_DIRECT":
                    svm.set_solver_type(ST_DIRECT)
                if param.flags["solver_type"] == "ST_NEWTON":
                    svm.set_solver_type(ST_NEWTON)
                if param.flags["solver_type"] == "ST_GLPK":
                    svm.set_solver_type(ST_GLPK)

            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)

        else:

            svm = SVMLight(param.cost, combined_kernel, lab)

        # optimization settings
        num_threads = 4
        svm.parallel.set_num_threads(num_threads)

        if param.flags.has_key("epsilon"):
            svm.set_epsilon(param.flags["epsilon"])

        # enable output
        svm.io.enable_progress()
        svm.io.set_loglevel(shogun.Classifier.MSG_DEBUG)

        # disable unsupported optimizations (due to special normalizer)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)

        # set cost
        if param.flags["normalize_cost"]:

            norm_c_pos = param.cost / float(
                len([l for l in data.labels if l == 1]))
            norm_c_neg = param.cost / float(
                len([l for l in data.labels if l == -1]))
            svm.set_C(norm_c_neg, norm_c_pos)

        else:

            svm.set_C(param.cost, param.cost)

        svm.train()

        # prepare mapping
        weight_map = {}
        weights = combined_kernel.get_subkernel_weights()
        for (i, pset) in enumerate(power_set_tasks):
            print pset
            subset_str = str([data.id_to_name(task_idx) for task_idx in pset])
            weight_map[subset_str] = weights[i]

        # store additional info
        self.additional_information["svm objective"] = svm.get_objective()
        self.additional_information["weight_map"] = weight_map

        # wrap up predictors
        svms = {}

        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name),
                               len(power_set_tasks), combined_kernel, svm,
                               param)

        return svms
Esempio n. 15
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        
          
        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=False)
        
        
        # create shogun data objects
        base_wdk = shogun_factory.create_kernel(data.examples, param)
        lab = shogun_factory.create_labels(data.labels)

        # set normalizer
        normalizer = MultitaskKernelNormalizer(data.task_vector_nums)

        ########################################################
        print "creating a kernel for each node:"
        ########################################################

        
        # init seq handler 
        task_kernel = SequencesHandlerRbf(1, param.base_similarity, data.get_task_names(), param.flags["wdk_rbf_on"])
        similarities = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))
        
        # convert distance to similarity
        for task_name_lhs in data.get_task_names():
            for task_name_rhs in data.get_task_names():
                
                
                 
                
                # convert similarity with simple transformation
                similarity = task_kernel.get_similarity(task_name_lhs, task_name_rhs)
                
                print similarity
                
                print "similarity (%s,%s)=%f" % (task_name_lhs, task_name_rhs, similarity)
                
                normalizer.set_task_similarity(data.name_to_id(task_name_lhs), data.name_to_id(task_name_rhs), similarity)
                
                # save for later
                similarities[data.name_to_id(task_name_lhs),data.name_to_id(task_name_rhs)] = similarity
                
                
        # set normalizer                
        base_wdk.set_normalizer(normalizer)
        base_wdk.init_normalizer()
        

        # set up svm
        svm = SVMLight(param.cost, base_wdk, lab)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)
        
        
        # normalize cost
        norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
        norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
        
        svm.set_C(norm_c_neg, norm_c_pos)
        
        
        # start training
        svm.train()


        # save additional information
        self.additional_information["svm objective"] = svm.get_objective()
        self.additional_information["num sv"] = svm.get_num_support_vectors()
        #self.additional_information["distances"] = distances
        self.additional_information["similarities"] = similarities


        # wrap up predictors
        svms = {}
        
        # use a reference to the same svm several times
        for task_name in data.get_task_names():
            
            task_num = data.name_to_id(task_name)
            
            # save svm and task_num
            svms[task_name] = (task_num, param, svm)

        return svms
Esempio n. 16
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        
                
        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=False)

                
        # create shogun data objects
        base_wdk = shogun_factory.create_kernel(data.examples, param)
        kernel_matrix = base_wdk.get_kernel_matrix()
        lab = shogun_factory.create_labels(data.labels)
        

        # fetch taxonomy from parameter object
        taxonomy = param.taxonomy.data

        # create name to leaf map
        nodes = taxonomy.get_all_nodes()


        ########################################################
        print "creating a kernel for each node:"
        ########################################################


        # assemble combined kernel
        from shogun.Kernel import CombinedKernel, CustomKernel
        
        combined_kernel = CombinedKernel()
        
        # indicator to which task each example belongs
        task_vector = data.task_vector_names
        
        for node in nodes:
            
            print "creating kernel for ", node.name
            
            # fetch sub-tree
            leaf_names = [leaf.name for leaf in node.get_leaves()]
            
            print "masking all entries other than:", leaf_names
            
            # init matrix
            kernel_matrix_node = numpy.zeros(kernel_matrix.shape)
            
            # fill matrix for node
            for (i, task_lhs) in enumerate(task_vector):
                for (j, task_rhs) in enumerate(task_vector):
                    
                    # only copy values, if both tasks are present in subtree
                    if task_lhs in leaf_names and task_rhs in leaf_names:
                        kernel_matrix_node[i,j] = kernel_matrix[i,j]
                    
            # create custom kernel
            kernel_node = CustomKernel()
            kernel_node.set_full_kernel_matrix_from_full(kernel_matrix_node)
            
            
            # append custom kernel to CombinedKernel
            combined_kernel.append_kernel(kernel_node)                
            
            print "------"
        

        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None
                
        
        print "using MKL:", (param.transform >= 1.0)
        
        if param.transform >= 1.0:
        
        
            num_threads = 4

            
            svm = MKLClassification()
            
            svm.set_mkl_norm(param.transform)
            svm.set_solver_type(ST_GLPK) #DIRECT) #NEWTON)#ST_CPLEX)
        
            svm.set_C(param.cost, param.cost)
            
            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)
            
            svm.parallel.set_num_threads(num_threads)
            #svm.set_linadd_enabled(False)
            #svm.set_batch_computation_enabled(False)
            
            svm.train()
        
            print "subkernel weights (after):", combined_kernel.get_subkernel_weights()    
            
        else:
            
            # create SVM (disable unsupported optimizations)
            svm = SVMLight(param.cost, combined_kernel, lab)
            svm.set_linadd_enabled(False)
            svm.set_batch_computation_enabled(False)
            
            svm.train()


        ########################################################
        print "svm objective:"
        print svm.get_objective()
        ########################################################
        
        
        # wrap up predictors
        svms = {}
            
        # use a reference to the same svm several times
        for task_id in train_data.keys():
            svms[task_id] = svm


        return svms
Esempio n. 17
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        
          
        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)
        
        # create shogun label
        lab = shogun_factory.create_labels(data.labels)
        


        ########################################################
        print "creating a kernel for each node:"
        ########################################################


        # assemble combined kernel
        
        combined_kernel = CombinedKernel()
        
        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_INFO)
        
        
        base_features = shogun_factory.create_features(data.examples)
        
        combined_features = CombinedFeatures()
        
        
        
        
        ##################################################
        # intra-domain blocks
        
        
        #        intra_block_vec = PairiiVec()
        #        
        #        for task_id in data.get_task_ids():
        #            intra_block_vec.push_back(Pairii(task_id, task_id))
        #        
        #        
        #        
        #        # create mask-based normalizer
        #        normalizer = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, intra_block_vec)        
        #        kernel = shogun_factory.create_empty_kernel(param)
        #        kernel.set_normalizer(normalizer)
        #        
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel)
        #    
        #        # append features
        #        combined_features.append_feature_obj(base_features)
        #
        #        print "------"
        #        
        #        ##################################################
        #        # all blocks
        #        
        #        
        #        all_block_vec = PairiiVec()
        #        
        #        for task_id_1 in data.get_task_ids():
        #            for task_id_2 in data.get_task_ids():
        #                all_block_vec.push_back(Pairii(task_id_1, task_id_2))
        #                
        #        
        #        # create mask-based normalizer
        #        normalizer_all = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, all_block_vec)        
        #        kernel_all = shogun_factory.create_empty_kernel(param)
        #        kernel_all.set_normalizer(normalizer_all)
        #                
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel_all)
        #    
        #        # append features
        #        combined_features.append_feature_obj(base_features)

        
        ##################################################
        # add one kernel per similarity position
        
        
        # init seq handler 
        pseudoseqs = SequencesHandler()
        pseudoseq_length = pseudoseqs.seq_length


        for pos in range(pseudoseq_length):
            
            print "appending kernel for pos %i" % (pos)
        
            print "nums", data.task_vector_nums

    
            pos_block_vec = PairiiVec()
    
            # set similarity
            for task_name_lhs in data.get_task_names():
                for task_name_rhs in data.get_task_names():
                    
                    similarity = pseudoseqs.get_similarity(task_name_lhs, task_name_rhs, pos)
                    #print "computing similarity for tasks (%s, %s) = %i" % (task_name_lhs, task_name_rhs, similarity)
                    
                    if similarity == 1:                    
                        tmp_pair = Pairii(data.name_to_id(task_name_lhs), data.name_to_id(task_name_rhs))
                        pos_block_vec.push_back(tmp_pair)

            print "creating normalizer"
            normalizer_pos = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, pos_block_vec)   

            print "creating empty kernel"
            kernel_pos = shogun_factory.create_empty_kernel(param)
            
            print "setting normalizer"
            kernel_pos.set_normalizer(normalizer_pos)
                
            print "appending kernel"
            # append current kernel to CombinedKernel
            combined_kernel.append_kernel(kernel_pos)
    
            print "appending features"
            # append features
            combined_features.append_feature_obj(base_features)
        
        
        print "done constructing combined kernel"
        
        ##################################################
        # init combined kernel
        
        combined_kernel.init(combined_features, combined_features)    
        
            

                
        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None
                
        
        print "using MKL:", (param.transform >= 1.0)
        
        if param.transform >= 1.0:
            
            svm = MKLClassification()
            
            svm.set_mkl_norm(param.transform)
            #svm.set_solver_type(ST_CPLEX) #ST_GLPK) #DIRECT) #NEWTON)#ST_CPLEX) #auto
        
            svm.set_C(param.cost, param.cost)
            
            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)
            
                
        else:
            
            # create SVM (disable unsupported optimizations)
            combined_kernel.set_cache_size(500)
            
            svm = SVMLight(param.cost, combined_kernel, lab)


        # set up SVM
        num_threads = 8
        svm.io.enable_progress()
        #svm.io.set_loglevel(shogun.Classifier.MSG_INFO)
        svm.io.set_loglevel(shogun.Classifier.MSG_DEBUG)
        
        svm.parallel.set_num_threads(num_threads)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)
        
        print "WARNING: custom epsilon set"
        svm.set_epsilon(0.05)    
        
        # normalize cost
        norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
        norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
        
        svm.set_C(norm_c_neg, norm_c_pos)
        
        
        # start training
        svm.train()
    
        
        # save additional info
        self.additional_information["svm_objective"] = svm.get_objective()
        self.additional_information["svm num sv"] = svm.get_num_support_vectors()
        self.additional_information["mkl weights post-training"] = combined_kernel.get_subkernel_weights()
        
        print self.additional_information 
        
        
        
        # wrap up predictors
        svms = {}
            
        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name), combined_kernel, svm)

        
        return svms
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        
        # dict to save additional information for later analysis
        self.additional_information = {}
        
          
        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)

                
        # create shogun label
        lab = shogun_factory.create_labels(data.labels)
        


        ########################################################
        print "creating a kernel for each node:"
        ########################################################


        # assemble combined kernel
        
        combined_kernel = CombinedKernel()
        
        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_INFO)
        
        
        base_features = shogun_factory.create_features(data.examples, param)
        
        combined_features = CombinedFeatures()
        
        
        
        
        ##################################################
        # intra-domain blocks (dirac kernel)
        
        
        intra_block_vec = PairiiVec()
        
        for task_id in data.get_task_ids():
            intra_block_vec.push_back(Pairii(task_id, task_id))
        
        
        
        # create mask-based normalizer
        normalizer = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, intra_block_vec)        
        kernel = shogun_factory.create_empty_kernel(param)
        kernel.set_normalizer(normalizer)
        
        # append current kernel to CombinedKernel
        combined_kernel.append_kernel(kernel)
    
        # append features
        combined_features.append_feature_obj(base_features)

        print "------"
        
        ##################################################
        # all blocks (full kernel matrix)
        
        
        all_block_vec = PairiiVec()
        
        for task_id_1 in data.get_task_ids():
            for task_id_2 in data.get_task_ids():
                all_block_vec.push_back(Pairii(task_id_1, task_id_2))
                
        
        # create mask-based normalizer
        normalizer_all = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, all_block_vec)        
        kernel_all = shogun_factory.create_empty_kernel(param)
        kernel_all.set_normalizer(normalizer_all)
                
        # append current kernel to CombinedKernel
        combined_kernel.append_kernel(kernel_all)
    
        # append features
        combined_features.append_feature_obj(base_features)

        
        ##################################################
        # hack
        
        
        #        hack_block_vec = PairiiVec()
        #        
        #        for task_id_1 in data.get_task_ids():
        #            for task_id_2 in data.get_task_ids():
        #                hack_block_vec.push_back(Pairii(task_id_1, task_id_2))
        #        
        #        hack_block_vec.push_back(Pairii(data.name_to_id("B_2705"), data.name_to_id("B_4001")))
        #        other_group = ["B_0702", "B_1501", "B_5801"]
        #        for task_id_1 in other_group:
        #            for task_id_2 in other_group:
        #                hack_block_vec.push_back(Pairii(data.name_to_id(task_id_1), data.name_to_id(task_id_2)))
        #        
        #        
        #        
        #        # create mask-based normalizer
        #        normalizer_hack = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, hack_block_vec)        
        #        kernel_hack = shogun_factory.create_empty_kernel(param)
        #        kernel_hack.set_normalizer(normalizer_hack)
        #                
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel_hack)
        #    
        #        # append features
        #        combined_features.append_feature_obj(base_features)
        
        
        
            
        ##################################################
        # init combined kernel
        
        combined_kernel.init(combined_features, combined_features)    
        
            
        #combined_kernel.precompute_subkernels()
        self.additional_information["mkl weights before"] = combined_kernel.get_subkernel_weights()
        
        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None
                
        
        print "using MKL:", (param.flags["mkl_q"] >= 1.0)
        
        if param.flags["mkl_q"] >= 1.0:
            
            svm = MKLClassification()
            
            svm.set_mkl_norm(param.flags["mkl_q"])
            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)
        
        else:
            
            # create SVM (disable unsupported optimizations)
            combined_kernel.set_cache_size(500)
            svm = SVMLight(param.cost, combined_kernel, lab)


        num_threads = 8
        svm.io.enable_progress()
        svm.io.set_loglevel(shogun.Classifier.MSG_INFO)
        
        svm.parallel.set_num_threads(num_threads)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)
    
        svm.set_epsilon(0.03)
        
        # set cost
        if param.flags["normalize_cost"]:
            
            norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
            norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
            svm.set_C(norm_c_neg, norm_c_pos)
            
        else:

            svm.set_C(param.cost, param.cost)
        
        svm.train()
    
    
        print "subkernel weights (after):", combined_kernel.get_subkernel_weights()

        ########################################################
        print "svm objective:"
        print svm.get_objective()
        
        
        self.additional_information["svm_objective"] = svm.get_objective()
        self.additional_information["svm num sv"] = svm.get_num_support_vectors()
        self.additional_information["mkl weights post-training"] = combined_kernel.get_subkernel_weights()
         
        ########################################################
        
        
        # wrap up predictors
        svms = {}
            
        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name), combined_kernel, svm, param)

        
        return svms
Esempio n. 19
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        
          
        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)
        
        # create shogun label
        lab = shogun_factory.create_labels(data.labels)
        


        ##################################################
        # define pockets
        ##################################################
        
        pockets = [0]*9
        
        pockets[0] = [1, 5, 6, 7, 8, 31, 32, 33, 34]
        pockets[1] = [1, 2, 3, 4, 6, 7, 8, 9, 11, 21, 31]
        pockets[2] = [11, 20, 21, 22, 29, 31]
        pockets[3] = [8, 30, 31, 32]
        pockets[4] = [10, 11, 30]
        pockets[5] = [10, 11, 12, 13, 20, 29]
        pockets[6] = [10, 12, 20, 22, 26, 27, 28, 29]
        pockets[7] = [12, 14, 15, 26]
        pockets[8] = [13, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26]
        

        #new_pockets = []
        
        # merge neighboring pockets
        #for i in range(8):
        #    new_pockets.append(list(set(pockets[i]).union(set(pockets[i+1]))))
            
        #pockets = new_pockets
        
        
        ########################################################
        print "creating a kernel:"
        ########################################################


        # assemble combined kernel
        
        combined_kernel = CombinedKernel()
        
        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_INFO)
        
        
        base_features = shogun_factory.create_features(data.examples)
        
        combined_features = CombinedFeatures()
        
        
        
        ##################################################
        # intra-domain blocks
        
        
        #        intra_block_vec = PairiiVec()
        #        
        #        for task_id in data.get_task_ids():
        #            intra_block_vec.push_back(Pairii(task_id, task_id))
        #        
        #        
        #        
        #        # create mask-based normalizer
        #        normalizer = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, intra_block_vec)        
        #        kernel = shogun_factory.create_empty_kernel(param)
        #        kernel.set_normalizer(normalizer)
        #        
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel)
        #    
        #        # append features
        #        combined_features.append_feature_obj(base_features)
        #
        #        print "------"
        #        
        #        ##################################################
        #        # all blocks
        #        
        #        
        #        all_block_vec = PairiiVec()
        #        
        #        for task_id_1 in data.get_task_ids():
        #            for task_id_2 in data.get_task_ids():
        #                all_block_vec.push_back(Pairii(task_id_1, task_id_2))
        #                
        #        
        #        # create mask-based normalizer
        #        normalizer_all = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, all_block_vec)        
        #        kernel_all = shogun_factory.create_empty_kernel(param)
        #        kernel_all.set_normalizer(normalizer_all)
        #                
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel_all)
        #    
        #        # append features
        #        combined_features.append_feature_obj(base_features)

        
        ##################################################
        # add one kernel per similarity position
        
        
        # init seq handler 
        pseudoseqs = SequencesHandler()



        for pocket in pockets:

            print "creating normalizer"
            #import pdb
            #pdb.set_trace()
            
            normalizer = MultitaskKernelNormalizer(data.task_vector_nums)
            
            print "processing pocket", pocket


            # set similarity
            for task_name_lhs in data.get_task_names():
                for task_name_rhs in data.get_task_names():
                    
                    similarity = 0.0
                    
                    for pseudo_seq_pos in pocket:
                        similarity += float(pseudoseqs.get_similarity(task_name_lhs, task_name_rhs, pseudo_seq_pos-1))
                    
                    # normalize
                    similarity = similarity / float(len(pocket))
                    
                    print "pocket %s (%s, %s) = %f" % (str(pocket), task_name_lhs, task_name_rhs, similarity)
                    
                    normalizer.set_task_similarity(data.name_to_id(task_name_lhs), data.name_to_id(task_name_rhs), similarity)
               

            print "creating empty kernel"
            kernel_pos = shogun_factory.create_empty_kernel(param)
            
            print "setting normalizer"
            kernel_pos.set_normalizer(normalizer)
                
            print "appending kernel"
            # append current kernel to CombinedKernel
            combined_kernel.append_kernel(kernel_pos)
    
            print "appending features"
            # append features
            combined_features.append_feature_obj(base_features)

        
        
        print "done constructing combined kernel"
        
        ##################################################
        # init combined kernel

        
        # init weights
        # combined_kernel.set_subkernel_weights([1.0/2.85]*combined_kernel.get_num_subkernels())
        
        
        combined_kernel.init(combined_features, combined_features)    
        
        

                
        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None
                
        
        print "using MKL:", (param.transform >= 1.0)
        
        if param.transform >= 1.0:
            
            svm = MKLClassification()
            
            svm.set_mkl_norm(param.transform)
            #svm.set_solver_type(ST_CPLEX) #ST_GLPK) #DIRECT) #NEWTON)#ST_CPLEX) #auto
        
            svm.set_C(param.cost, param.cost)
            
            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)
            
                
        else:
            
            # create SVM (disable unsupported optimizations)
            combined_kernel.set_cache_size(500)
            
            svm = SVMLight(param.cost, combined_kernel, lab)


        # set up SVM
        num_threads = 8
        svm.io.enable_progress()
        #svm.io.set_loglevel(shogun.Classifier.MSG_INFO)
        svm.io.set_loglevel(shogun.Classifier.MSG_DEBUG)
        
        svm.parallel.set_num_threads(num_threads)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)
        
        #print "WARNING: custom epsilon set"
        #svm.set_epsilon(0.05)    
        
        # normalize cost
        norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
        norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
        
        svm.set_C(norm_c_neg, norm_c_pos)
        
        
        # start training
        svm.train()
    
        
        # save additional info
        self.additional_information["svm_objective"] = svm.get_objective()
        self.additional_information["svm num sv"] = svm.get_num_support_vectors()
        self.additional_information["post_weights"] = combined_kernel.get_subkernel_weights()
        
        print self.additional_information 
        
        
        
        # wrap up predictors
        svms = {}
            
        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name), combined_kernel, svm)

        
        return svms
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """

        # dict to save additional information for later analysis
        self.additional_information = {}

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)

        # create shogun label
        lab = shogun_factory.create_labels(data.labels)

        ########################################################
        print "creating a kernel for each node:"
        ########################################################

        # assemble combined kernel

        combined_kernel = CombinedKernel()

        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_INFO)

        base_features = shogun_factory.create_features(data.examples, param)

        combined_features = CombinedFeatures()

        ##################################################
        # intra-domain blocks (dirac kernel)

        intra_block_vec = PairiiVec()

        for task_id in data.get_task_ids():
            intra_block_vec.push_back(Pairii(task_id, task_id))

        # create mask-based normalizer
        normalizer = MultitaskKernelMaskPairNormalizer(data.task_vector_nums,
                                                       intra_block_vec)
        kernel = shogun_factory.create_empty_kernel(param)
        kernel.set_normalizer(normalizer)

        # append current kernel to CombinedKernel
        combined_kernel.append_kernel(kernel)

        # append features
        combined_features.append_feature_obj(base_features)

        print "------"

        ##################################################
        # all blocks (full kernel matrix)

        all_block_vec = PairiiVec()

        for task_id_1 in data.get_task_ids():
            for task_id_2 in data.get_task_ids():
                all_block_vec.push_back(Pairii(task_id_1, task_id_2))

        # create mask-based normalizer
        normalizer_all = MultitaskKernelMaskPairNormalizer(
            data.task_vector_nums, all_block_vec)
        kernel_all = shogun_factory.create_empty_kernel(param)
        kernel_all.set_normalizer(normalizer_all)

        # append current kernel to CombinedKernel
        combined_kernel.append_kernel(kernel_all)

        # append features
        combined_features.append_feature_obj(base_features)

        ##################################################
        # hack

        #        hack_block_vec = PairiiVec()
        #
        #        for task_id_1 in data.get_task_ids():
        #            for task_id_2 in data.get_task_ids():
        #                hack_block_vec.push_back(Pairii(task_id_1, task_id_2))
        #
        #        hack_block_vec.push_back(Pairii(data.name_to_id("B_2705"), data.name_to_id("B_4001")))
        #        other_group = ["B_0702", "B_1501", "B_5801"]
        #        for task_id_1 in other_group:
        #            for task_id_2 in other_group:
        #                hack_block_vec.push_back(Pairii(data.name_to_id(task_id_1), data.name_to_id(task_id_2)))
        #
        #
        #
        #        # create mask-based normalizer
        #        normalizer_hack = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, hack_block_vec)
        #        kernel_hack = shogun_factory.create_empty_kernel(param)
        #        kernel_hack.set_normalizer(normalizer_hack)
        #
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel_hack)
        #
        #        # append features
        #        combined_features.append_feature_obj(base_features)

        ##################################################
        # init combined kernel

        combined_kernel.init(combined_features, combined_features)

        #combined_kernel.precompute_subkernels()
        self.additional_information[
            "mkl weights before"] = combined_kernel.get_subkernel_weights()

        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None

        print "using MKL:", (param.flags["mkl_q"] >= 1.0)

        if param.flags["mkl_q"] >= 1.0:

            svm = MKLClassification()

            svm.set_mkl_norm(param.flags["mkl_q"])
            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)

        else:

            # create SVM (disable unsupported optimizations)
            combined_kernel.set_cache_size(500)
            svm = SVMLight(param.cost, combined_kernel, lab)

        num_threads = 8
        svm.io.enable_progress()
        svm.io.set_loglevel(shogun.Classifier.MSG_INFO)

        svm.parallel.set_num_threads(num_threads)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)

        svm.set_epsilon(0.03)

        # set cost
        if param.flags["normalize_cost"]:

            norm_c_pos = param.cost / float(
                len([l for l in data.labels if l == 1]))
            norm_c_neg = param.cost / float(
                len([l for l in data.labels if l == -1]))
            svm.set_C(norm_c_neg, norm_c_pos)

        else:

            svm.set_C(param.cost, param.cost)

        svm.train()

        print "subkernel weights (after):", combined_kernel.get_subkernel_weights(
        )

        ########################################################
        print "svm objective:"
        print svm.get_objective()

        self.additional_information["svm_objective"] = svm.get_objective()
        self.additional_information[
            "svm num sv"] = svm.get_num_support_vectors()
        self.additional_information[
            "mkl weights post-training"] = combined_kernel.get_subkernel_weights(
            )

        ########################################################

        # wrap up predictors
        svms = {}

        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name), combined_kernel,
                               svm, param)

        return svms
Esempio n. 21
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """

        assert (param.base_similarity >= 1)

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=False)

        # create shogun data objects
        base_wdk = shogun_factory.create_kernel(data.examples, param)
        lab = shogun_factory.create_labels(data.labels)

        # set normalizer
        normalizer = MultitaskKernelNormalizer(data.task_vector_nums)

        # load data
        #f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_PseudoSeq_BlosumEnc_pearson.txt")
        f = file(
            "/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/All_PseudoSeq_Hamming.txt"
        )
        #f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_PseudoSeq_BlosumEnc_euklid.txt")
        #f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_RAxML.txt")

        num_lines = int(f.readline().strip())
        task_distances = numpy.zeros((num_lines, num_lines))
        name_to_id = {}
        for (i, line) in enumerate(f):
            tokens = line.strip().split("\t")
            name = str(tokens[0])
            name_to_id[name] = i
            entry = numpy.array([v for (j, v) in enumerate(tokens) if j != 0])
            assert len(entry) == num_lines, "len_entry %i, num_lines %i" % (
                len(entry), num_lines)
            task_distances[i, :] = entry

        # cut relevant submatrix
        active_ids = [name_to_id[name] for name in data.get_task_names()]
        tmp_distances = task_distances[active_ids, :]
        tmp_distances = tmp_distances[:, active_ids]
        print "distances ", tmp_distances.shape

        # normalize distances
        task_distances = task_distances / numpy.max(tmp_distances)

        similarities = numpy.zeros(
            (data.get_num_tasks(), data.get_num_tasks()))

        # convert distance to similarity
        for task_name_lhs in data.get_task_names():
            for task_name_rhs in data.get_task_names():

                # convert similarity with simple transformation
                similarity = param.base_similarity - task_distances[
                    name_to_id[task_name_lhs], name_to_id[task_name_rhs]]
                normalizer.set_task_similarity(data.name_to_id(task_name_lhs),
                                               data.name_to_id(task_name_rhs),
                                               similarity)

                # save for later
                similarities[data.name_to_id(task_name_lhs),
                             data.name_to_id(task_name_rhs)] = similarity

        # set normalizer
        base_wdk.set_normalizer(normalizer)
        base_wdk.init_normalizer()

        # set up svm
        svm = SVMLight(param.cost, base_wdk, lab)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)

        # normalize cost
        norm_c_pos = param.cost / float(len([l
                                             for l in data.labels if l == 1]))
        norm_c_neg = param.cost / float(
            len([l for l in data.labels if l == -1]))

        svm.set_C(norm_c_neg, norm_c_pos)

        # start training
        svm.train()

        # save additional information
        self.additional_information["svm objective"] = svm.get_objective()
        self.additional_information["num sv"] = svm.get_num_support_vectors()
        #self.additional_information["distances"] = distances
        self.additional_information["similarities"] = similarities

        # wrap up predictors
        svms = {}

        # use a reference to the same svm several times
        for task_name in data.get_task_names():

            task_num = data.name_to_id(task_name)

            # save svm and task_num
            svms[task_name] = (task_num, param, svm)

        return svms
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        
                
        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=False)
        
        # create shogun data objects
        base_wdk = shogun_factory.create_kernel(data.examples, param)
        lab = shogun_factory.create_labels(data.labels)

        # support
        support = numpy.linspace(0, 1, 5)

        # set normalizer
        normalizer = MultitaskKernelPlifNormalizer(support, data.task_vector_nums) 
        
        # fetch taxonomy from parameter object
        taxonomy = param.taxonomy.data

        taxonomy.plot()
        import os
        os.system("evince demo.png &")
        
        # compute distances
        distances = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))
        
        for (i,task_name_lhs) in enumerate(data.get_task_names()):
            for (j, task_name_rhs) in enumerate(data.get_task_names()):
                
                distances[i,j] = task_similarities.compute_hop_distance(taxonomy, task_name_lhs, task_name_rhs)

                
        # normalize distances
        distances = distances / numpy.max(distances)

        
        # set distances
        for (i,task_name_lhs) in enumerate(data.get_task_names()):
            for (j, task_name_rhs) in enumerate(data.get_task_names()):
                        
                normalizer.set_task_distance(i, j, distances[i,j])

        
        # assign normalizer
        base_wdk.set_normalizer(normalizer)
        base_wdk.init_normalizer()

        svm = None
        
        debug_weights = {}
                
        num_subk = base_wdk.get_num_subkernels()
        
        print "num subkernels:", num_subk
        
        #print "subkernel weights:", base_wdk.get_subkernel_weights()
        
        debug_weights["before"] = [normalizer.get_beta(i) for i in range(num_subk)]        
        
        print "using MKL:", (param.transform >= 1.0)
        
        if param.transform >= 1.0:
        
        
            num_threads = 4

            
            svm = MKLClassification()
            
            svm.set_mkl_norm(param.transform)
            #svm.set_solver_type(ST_CPLEX) #GLPK) #DIRECT) #NEWTON)#ST_CPLEX) 
        
            svm.set_C(param.cost, param.cost)
            
            svm.set_kernel(base_wdk)
            svm.set_labels(lab)
            
            svm.parallel.set_num_threads(num_threads)
            svm.set_linadd_enabled(False)
            svm.set_batch_computation_enabled(False)
            
            svm.train()
        
            #print "subkernel weights (after):", base_wdk.get_subkernel_weights()    
            
        else:
            
            # create SVM (disable unsupported optimizations)
            svm = SVMLight(param.cost, base_wdk, lab)
            svm.set_linadd_enabled(False)
            svm.set_batch_computation_enabled(False)
            
            svm.train()
        
        
        print "svm objective:", svm.get_objective()     
        


        debug_weights["after"] = [normalizer.get_beta(i) for i in range(num_subk)]            
        
        # debugging output
        print "debug weights (before/after):"
        print debug_weights["before"]
        print debug_weights["after"]
        print ""
        
        
        # wrap up predictors
        svms = {}
            
        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (svm, data.name_to_id(task_name))


        return svms
Esempio n. 23
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        
        
        for task_id in train_data.keys():
            print "task_id:", task_id

        # split data for training weak_learners and boosting
        (train_weak, train_boosting) = split_data(train_data, 4)
        
        # train on first part of dataset (evaluate on other)
        prepared_data_weak = PreparedMultitaskData(train_weak, shuffle=False)
        classifiers = self._inner_train(prepared_data_weak, param)

        # train on entire dataset
        prepared_data_final = PreparedMultitaskData(train_data, shuffle=False)
        final_classifiers = self._inner_train(prepared_data_final, param)


        print "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
        print "done training weak learners"

        #####################################################
        #    perform boosting and wrap things up    
        #####################################################

        # wrap up predictors for later use
        predictors = {}

        for task_name in train_boosting.keys():
                        
            instances = train_boosting[task_name]
            
            N = len(instances)
            F = len(classifiers)
            
            examples = [inst.example for inst in instances]
            labels = [inst.label for inst in instances]
            
            # dim = (F x N)
            out = cvxmod.zeros((N,F))
            
            for i in xrange(F):
                    
                svm = classifiers[i]
                        
                tmp_out = self._predict_weak(svm, examples, prepared_data_weak.name_to_id(task_name))

                if param.flags["signum"]:
                    out[:,i] = numpy.sign(tmp_out)
                else:
                    out[:,i] = tmp_out
            
            
            if param.flags["boosting"] == "ones":
                weights = numpy.ones(F)/float(F)
            if param.flags["boosting"] == "L1":
                weights = solve_boosting(out, labels, param.transform, solver="glpk")
            if param.flags["boosting"] == "L2":            
                weights = solve_nu_svm(out, labels, param.transform, solver="glpk", reg=False)
            if param.flags["boosting"] == "L2_reg":            
                weights = solve_nu_svm(out, labels, param.transform, solver="glpk", reg=True)
            
            
            predictors[task_name] = (final_classifiers, weights, prepared_data_final.name_to_id(task_name))
            
            
            assert prepared_data_final.name_to_id(task_name)==prepared_data_weak.name_to_id(task_name), "name mappings don't match"
            
        
        #####################################################
        #    Some sanity checks
        ##################################################### 
        
        # make sure we have the same keys (potentiall in a different order)  
        sym_diff_keys = set(train_weak.keys()).symmetric_difference(set(predictors.keys()))
        assert len(sym_diff_keys)==0, "symmetric difference between keys non-empty: " + str(sym_diff_keys)  


        return predictors
def test_data():
    
    ##################################################################
    # select MSS
    ##################################################################
    
    mss = expenv.MultiSplitSet.get(379)
    
    
    
    ##################################################################
    # data
    ##################################################################
    
    # fetch data
    instance_set = mss.get_train_data(-1)
    
    # prepare data
    data = PreparedMultitaskData(instance_set, shuffle=True)
    
    # set parameters
    param = Options()
    param.kernel = "WeightedDegreeStringKernel"
    param.wdk_degree = 4
    param.cost = 1.0
    param.transform = 1.0
    param.id = 666
    param.freeze()
    
    
    
    
    ##################################################################
    # taxonomy
    ##################################################################
    
    
    taxonomy = shogun_factory.create_taxonomy(mss.taxonomy.data)
    
    
    support = numpy.linspace(0, 100, 4)
    
    
    distances = [[0, 1, 2, 2], [1, 0, 2, 2], [2, 2, 0, 1], [2, 2, 1, 0]]
    
    # create tree normalizer 
    tree_normalizer = MultitaskKernelPlifNormalizer(support, data.task_vector_names)
    
    
    
    
    task_names = data.get_task_names()
    
    
    FACTOR = 1.0
    
    
    # init gamma matrix
    gammas = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))
    
    for t1_name in task_names:
        for t2_name in task_names:
            
            similarity = taxonomy.compute_node_similarity(taxonomy.get_id(t1_name), taxonomy.get_id(t2_name))        
            gammas[data.name_to_id(t1_name), data.name_to_id(t2_name)] = similarity
    
    helper.save("/tmp/gammas", gammas)
    
    
    gammas = gammas * FACTOR
    
    cost = param.cost * numpy.sqrt(FACTOR) 
    
    print gammas
    
    
    ##########
    # regular normalizer
    
    normalizer = MultitaskKernelNormalizer(data.task_vector_nums)
    
    for t1_name in task_names:
        for t2_name in task_names:
                    
            similarity = gammas[data.name_to_id(t1_name), data.name_to_id(t2_name)]
            normalizer.set_task_similarity(data.name_to_id(t1_name), data.name_to_id(t2_name), similarity)
    
                
    ##################################################################
    # Train SVMs
    ##################################################################
    
    # create shogun objects
    wdk_tree = shogun_factory.create_kernel(data.examples, param)
    lab = shogun_factory.create_labels(data.labels)
    
    wdk_tree.set_normalizer(tree_normalizer)
    wdk_tree.init_normalizer()
    
    print "--->",wdk_tree.get_normalizer().get_name()
    
    svm_tree = SVMLight(cost, wdk_tree, lab)
    svm_tree.set_linadd_enabled(False)
    svm_tree.set_batch_computation_enabled(False)
    
    svm_tree.train()
    
    del wdk_tree
    del tree_normalizer
    
    print "finished training tree-norm SVM:", svm_tree.get_objective()
    
    
    wdk = shogun_factory.create_kernel(data.examples, param)
    wdk.set_normalizer(normalizer)
    wdk.init_normalizer()
    
    print "--->",wdk.get_normalizer().get_name()
    
    svm = SVMLight(cost, wdk, lab)
    svm.set_linadd_enabled(False)
    svm.set_batch_computation_enabled(False)
    
    svm.train()
    
    print "finished training manually set SVM:", svm.get_objective()
    
    
    alphas_tree = svm_tree.get_alphas()
    alphas = svm.get_alphas()
    
    assert(len(alphas_tree)==len(alphas))
    
    for i in xrange(len(alphas)):
        assert(abs(alphas_tree[i] - alphas[i]) < 0.0001)
        
    print "success: all alphas are the same"
Esempio n. 25
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=False)

        # create shogun data objects
        base_wdk = shogun_factory.create_kernel(data.examples, param)
        lab = shogun_factory.create_labels(data.labels)

        # set normalizer
        normalizer = MultitaskKernelNormalizer(data.task_vector_nums)

        ########################################################
        print "creating a kernel for each node:"
        ########################################################

        # init seq handler
        task_kernel = SequencesHandlerRbf(1, param.base_similarity,
                                          data.get_task_names(),
                                          param.flags["wdk_rbf_on"])
        similarities = numpy.zeros(
            (data.get_num_tasks(), data.get_num_tasks()))

        # convert distance to similarity
        for task_name_lhs in data.get_task_names():
            for task_name_rhs in data.get_task_names():

                # convert similarity with simple transformation
                similarity = task_kernel.get_similarity(
                    task_name_lhs, task_name_rhs)

                print similarity

                print "similarity (%s,%s)=%f" % (task_name_lhs, task_name_rhs,
                                                 similarity)

                normalizer.set_task_similarity(data.name_to_id(task_name_lhs),
                                               data.name_to_id(task_name_rhs),
                                               similarity)

                # save for later
                similarities[data.name_to_id(task_name_lhs),
                             data.name_to_id(task_name_rhs)] = similarity

        # set normalizer
        base_wdk.set_normalizer(normalizer)
        base_wdk.init_normalizer()

        # set up svm
        svm = SVMLight(param.cost, base_wdk, lab)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)

        # normalize cost
        norm_c_pos = param.cost / float(len([l
                                             for l in data.labels if l == 1]))
        norm_c_neg = param.cost / float(
            len([l for l in data.labels if l == -1]))

        svm.set_C(norm_c_neg, norm_c_pos)

        # start training
        svm.train()

        # save additional information
        self.additional_information["svm objective"] = svm.get_objective()
        self.additional_information["num sv"] = svm.get_num_support_vectors()
        #self.additional_information["distances"] = distances
        self.additional_information["similarities"] = similarities

        # wrap up predictors
        svms = {}

        # use a reference to the same svm several times
        for task_name in data.get_task_names():

            task_num = data.name_to_id(task_name)

            # save svm and task_num
            svms[task_name] = (task_num, param, svm)

        return svms
# select MSS
##################################################################

mss = expenv.MultiSplitSet.get(379)



##################################################################
# data
##################################################################

# fetch data
instance_set = mss.get_train_data(-1)

# prepare data
data = PreparedMultitaskData(instance_set, shuffle=True)

# set parameters
param = Options()
param.kernel = "WeightedDegreeStringKernel"
param.wdk_degree = 4
param.cost = 1.0
param.transform = 1.0
param.id = 666
param.freeze()




##################################################################
# taxonomy
Esempio n. 27
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """

        # split for training weak_learners and boosting
        (train_weak, train_boosting) = split_data(train_data, 4)
          
        # merge data sets
        data = PreparedMultitaskData(train_weak, shuffle=True)
        
        # create shogun label
        lab = shogun_factory.create_labels(data.labels)
        


        
        
        ########################################################
        print "creating a kernel:"
        ########################################################
        
        
        # init seq handler 
        pseudoseqs = SequencesHandler()

        
        classifiers = []


        for pocket in pockets:

            print "creating normalizer"
            #import pdb
            #pdb.set_trace()
            
            normalizer = MultitaskKernelNormalizer(data.task_vector_nums)
            
            print "processing pocket", pocket

            # set similarity
            for task_name_lhs in data.get_task_names():
                for task_name_rhs in data.get_task_names():
                    
                    similarity = 0.0
                    
                    for pseudo_seq_pos in pocket:
                        similarity += float(pseudoseqs.get_similarity(task_name_lhs, task_name_rhs, pseudo_seq_pos-1))
                    
                    # normalize
                    similarity = similarity / float(len(pocket))
                    
                    print "pocket %s (%s, %s) = %f" % (str(pocket), task_name_lhs, task_name_rhs, similarity)
                    
                    normalizer.set_task_similarity(data.name_to_id(task_name_lhs), data.name_to_id(task_name_rhs), similarity)
               

            print "creating empty kernel"
            kernel = shogun_factory.create_kernel(data.examples, param)
            
            print "setting normalizer"
            kernel.set_normalizer(normalizer)

            print "training SVM for pocket", pocket
            svm = self._train_single_svm(param, kernel, lab)

            classifiers.append(svm)
        
        
        print "done obtaining weak learners"
            
        
        # save additional info
        #self.additional_information["svm_objective"] = svm.get_objective()
        #self.additional_information["svm num sv"] = svm.get_num_support_vectors()
        #self.additional_information["post_weights"] = combined_kernel.get_subkernel_weights()
        
        #print self.additional_information 
        


        ##################################################
        # combine weak learners for each task
        ##################################################
        
        
        # set constants
        
        some = 0.9
        import cvxmod
        
        
        # wrap up predictors
        svms = {}
            
        # use a reference to the same svm several times
        for task_name in train_boosting.keys():
            
            instances = train_boosting[task_name]
            
            N = len(instances)
            F = len(pockets)
            
            examples = [inst.example for inst in instances]
            labels = [inst.label for inst in instances]
            
            # dim = (F x N)
            out = cvxmod.zeros((N,F))
            
            for i in xrange(F):
                svm = classifiers[i]
                tmp_out = self._predict_weak(svm, examples, data.name_to_id(task_name))

                out[:,i] = numpy.sign(tmp_out)
                #out[:,i] = tmp_out
            

            #TODO: fix
            helper.save("/tmp/out_sparse", (out,labels))
            pdb.set_trace()
            
            weights = solve_boosting(out, labels, some, solver="mosek")
            
            
            
            svms[task_name] = (data.name_to_id(task_name), svm)

        
        return svms