reranker.train(text_seqs, da_seqs, scores, log_probs, cfg["epoch"], cfg["valid_size"], cfg["num_ranks"], cfg.get("only_bottom", False), cfg.get("only_top", False), cfg.get("min_training_passes", 5)) if cfg["show_reranker_post_training_stats"]: test_das = get_test_das() test_texts = get_true_sents() final_beam_path = TEST_BEAM_SAVE_FORMAT.format(10) if not os.path.exists(final_beam_path): print("Creating final beams file") models = TGEN_Model(da_embedder, text_embedder, cfg['tgen_seq2seq_config']) models.load_models() scorer = get_score_function('identity', cfg, models, None, 10) run_beam_search_with_rescorer(scorer, models, test_das, 10, only_rerank_final=True, save_final_beam_path=final_beam_path) bleu = BLEUScore() test_da_embs = da_embedder.get_embeddings(test_das) final_beam = pickle.load(open(final_beam_path, 'rb+')) all_reals = [] all_preds = [] for da_emb, beam, true in zip(test_da_embs, final_beam, test_texts): real_scores = []
def get_scores_ordered_beam(cfg, da_embedder, text_embedder, beam_save_path=None): print("Loading Training Data") beam_size = cfg["beam_size"] train_texts, train_das = get_multi_reference_training_variables() if beam_save_path is None: beam_save_path = TRAIN_BEAM_SAVE_FORMAT.format( beam_size, cfg["tgen_seq2seq_config"].split('.')[0].split('/')[-1]) if not os.path.exists(beam_save_path): models = TGEN_Model(da_embedder, text_embedder, cfg["tgen_seq2seq_config"]) models.load_models() print("Creating test final beams") scorer = get_score_function('identity', cfg, models, None, beam_size) run_beam_search_with_rescorer(scorer, models, train_das, beam_size, cfg, only_rerank_final=True, save_final_beam_path=beam_save_path) bleu = BLEUScore() final_beam = pickle.load(open(beam_save_path, "rb")) text_seqs = [] da_seqs = [] scores = [] log_probs = [] with_ref_train_flag = cfg["with_refs_train"] num_ranks = cfg["num_ranks"] cut_offs = get_section_cutoffs(num_ranks) regression_vals = get_regression_vals(num_ranks, with_ref_train_flag) if cfg["output_type"] != 'pair': print("Cut off values:", cut_offs) print("Regression vals:", regression_vals) only_top = cfg.get("only_top", False) only_bottom = cfg.get("only_bottom", False) merge_middles = cfg["merge_middle_sections"] if only_top: print("Only using top value") if merge_middles and only_top: print("Ignoring only top since have merge_middle_sections set") training_vals = list(zip(final_beam, train_texts, train_das)) training_vals = training_vals[:cfg.get("use_size", len(training_vals))] for beam, real_texts, da in tqdm(training_vals): beam_scores = [] if with_ref_train_flag: # I am not sure how to do log probs? text_seqs.extend(real_texts) da_seqs.extend([da for _ in real_texts]) scores.extend([0 for _ in real_texts]) for i, path in enumerate(beam): bleu.reset() hyp = [ x for x in text_embedder.reverse_embedding(path[1]) if x not in [START_TOK, END_TOK, PAD_TOK] ] bleu.append( hyp, [x for x in real_texts if x not in [START_TOK, END_TOK]]) beam_scores.append((bleu.score(), hyp, path)) # log_probs.append(i) for i, (score, hyp, path) in enumerate(sorted(beam_scores, reverse=True)): text_seqs.append([START_TOK] + hyp + [END_TOK]) da_seqs.append(da) if cfg["output_type"] in ['bleu', 'pair']: scores.append(score) elif cfg["output_type"] == 'order_discrete': scores.append(to_categorical([i], num_classes=beam_size)) elif cfg["output_type"] in [ 'regression_ranker', 'regression_reranker_relative' ]: scores.append(i / (beam_size - 1)) elif cfg["output_type"] in [ 'regression_sections', 'binary_classif' ]: val = (i / (beam_size - 1)) regression_val = get_section_value(val, cut_offs, regression_vals, merge_middles, only_top, only_bottom) scores.append( regression_val ) # converts range from [0,1] to [-1,1] (which has mean of 0) else: raise ValueError("Unknown output type") log_probs.append([path[0]]) text_seqs = np.array( text_embedder.get_embeddings(text_seqs, pad_from_end=False)) da_seqs = np.array(da_embedder.get_embeddings(da_seqs)) if cfg["output_type"] in [ 'regression_ranker', 'bleu', 'regression_reranker_relative', 'pair', 'regression_sections', 'binary_classif' ]: # print("SCORES: ", Counter(scores)) scores = np.array(scores).reshape((-1, 1)) elif cfg["output_type"] == 'order_discrete': scores = np.array(scores).reshape((-1, beam_size)) log_probs = np.array(log_probs) return text_seqs, da_seqs, scores, log_probs
if cfg_path is None: filenames = os.listdir(CONFIGS_MODEL_DIR) filepaths = [ os.path.join(CONFIGS_MODEL_DIR, filename) for filename in filenames ] mod_times = [(os.path.getmtime(x), i) for i, x in enumerate(filepaths)] cfg_path = filepaths[max(mod_times)[1]] cfg = yaml.safe_load(open(cfg_path, 'r')) texts, das = get_training_variables() text_embedder = TokEmbeddingSeq2SeqExtractor(texts) da_embedder = DAEmbeddingSeq2SeqExtractor(das) texts_mr, da_mr = get_multi_reference_training_variables() # train_text = np.array(text_embedder.get_embeddings(texts, pad_from_end=True) + [text_embedder.empty_embedding]) # da_embs = da_embedder.get_embeddings(das) + [da_embedder.empty_embedding] seq2seq = TGEN_Model(da_embedder, text_embedder, cfg_path) seq2seq.load_models() seq2seq.full_model.summary() if "use_prop" in cfg: da_mr = da_mr[:int(len(da_mr) * cfg['use_prop'])] texts_mr = texts_mr[:int(len(da_mr) * cfg['use_prop'])] seq2seq.train(da_seq=da_mr, text_seq=texts_mr, n_epochs=cfg["epoch"], valid_size=cfg["valid_size"], early_stop_point=cfg["min_epoch"], minimum_stop_point=20, multi_ref=True)