Esempio n. 1
0
def detect():
    # dataset = ImagenetVidVRD('./vidvrd-dataset', './vidvrd-dataset/videos', ['train', 'test'])
    # dataset = VidOR('./vidor-dataset/annotation', './vidor-dataset/video', ['training', 'validation'])

    with open(os.path.join(get_model_path(), 'baseline_setting.json'),
              'r') as fin:
        param = json.load(fin)
    short_term_relations = model.predict(dataset, param)
    # group short term relations by video
    video_st_relations = defaultdict(list)
    for index, st_rel in short_term_relations.items():
        vid = index[0]
        video_st_relations[vid].append((index, st_rel))
    # video-level visual relation detection by relational association
    print('greedy relational association ...')
    video_relations = dict()
    for vid in tqdm(video_st_relations.keys()):
        video_relations[vid] = association.greedy_relational_association(
            dataset, video_st_relations[vid], max_traj_num_in_clip=100)
    # save detection result
    with open(
            os.path.join(get_model_path(),
                         'baseline_relation_prediction.json'), 'w') as fout:
        output = {'version': 'VERSION 1.0', 'results': video_relations}
        json.dump(output, fout)
Esempio n. 2
0
def detect(re_detect=True, save_path='my_test_relation_prediction.json',
           top_tree=10, overlap=0.3, iou_thr=0.3):
    dataset = VidVRD(anno_rpath=anno_rpath,
                     video_rpath=video_rpath,
                     splits=splits)
    with open(os.path.join(get_model_path(), 'baseline_setting.json'), 'r') as fin:
        param = json.load(fin)

    if re_detect:
        short_term_relations = model.predict(dataset, param)
        with open(short_term_predication_path, 'w+') as stp_out_f:
            stp_out_f.write(json.dumps(short_term_relations))
        print("Successfully save short-term predication to: " + short_term_predication_path)

    else:
        with open(short_term_predication_path, 'r') as stp_in_f:
            short_term_relations = json.load(stp_in_f)

    # print('greedy relational association ...')
    print('origin mht association...')
    video_relations = dict()
    for vid in tqdm(short_term_relations.keys()):
        # res = association.greedy_relational_association(short_term_relations[vid], param['seg_topk'])
        res = origin_mht_relational_association(short_term_relations[vid], param['seg_topk'],
                                                top_tree=top_tree, overlap=overlap, iou_thr=iou_thr)
        res = sorted(res, key=lambda r: r['score'], reverse=True)[:param['video_topk']]
        video_relations[vid] = res
    # save detection result
    with open(os.path.join(get_model_path(), save_path), 'w+') as fout:
        output = {
            'version': 'VERSION 1.0',
            'results': video_relations
        }
        json.dump(output, fout)
Esempio n. 3
0
def detect():
    dataset = Dataset()
    with open(os.path.join(get_model_path(), 'baseline_setting.json'), 'r') as fin:
        param = json.load(fin)
    short_term_relations = model.predict(dataset, param)
    # group short term relations by video
    video_st_relations = defaultdict(list)
    for index, st_rel in short_term_relations.items():
        vid = index[0]
        video_st_relations[vid].append((index, st_rel))
    # video-level vid_features relation detection by relational association
    print('greedy relational association ...')
    video_relations = dict()
    for vid in tqdm(video_st_relations.keys()):
        video_relations[vid] = association.greedy_relational_association(
            dataset, video_st_relations[vid], max_traj_num_in_clip=100)
    # save detection result
    with open(os.path.join(get_model_path(), 'baseline_video_relations.json'), 'w') as fout:
        json.dump(video_relations, fout)
Esempio n. 4
0
def eval_short_term_relation():
    """
    Evaluate short-term relation prediction
    """
    anno_rpath = 'baseline/vidvrd-dataset'
    video_rpath = 'baseline/vidvrd-dataset/videos'
    splits = ['train', 'test']
    st_prediction = 'baseline/vidvrd-dataset/vidvrd-baseline-output/short-term-predication.json'
    test_st_pred = '/home/daivd/Downloads/pad_result_24000_test_predicate_-1_pair_nms_0.4_rpn_nms_0.7_0.255_union.json'

    res_path = test_st_pred

    dataset = VidVRD(anno_rpath=anno_rpath,
                     video_rpath=video_rpath,
                     splits=splits)

    with open(os.path.join(get_model_path(), 'baseline_setting.json'), 'r') as fin:
        param = json.load(fin)

    if os.path.exists(res_path):
        with open(res_path, 'r') as fin:
            short_term_relations = json.load(fin)
    else:
        short_term_relations = model.predict(dataset, param)
        with open(res_path, 'w') as fout:
            json.dump(short_term_relations, fout)

    short_term_gt = dict()
    short_term_pred = dict()
    video_indices = dataset.get_index(split='test')
    for vid in video_indices:
        anno = dataset.get_anno(vid)
        segs = segment_video(0, anno['frame_count'])
        video_gts = dataset.get_relation_insts(vid)

        if 'results' in short_term_relations.keys():
            video_preds = short_term_relations['results'][vid]
        else:
            video_preds = short_term_relations[vid]

        for fstart, fend in segs:
            vsig = get_segment_signature(vid, fstart, fend)

            segment_gts = []
            for r in video_gts:
                s = max(r['duration'][0], fstart)
                e = min(r['duration'][1], fend)
                if s < e:
                    sub_trac = r['sub_traj'][s - r['duration'][0]: e - r['duration'][0]]
                    obj_trac = r['obj_traj'][s - r['duration'][0]: e - r['duration'][0]]
                    segment_gts.append({
                        "triplet": r['triplet'],
                        "subject_tid": r['subject_tid'],
                        "object_tid": r['object_tid'],
                        "duration": [s, e],
                        "sub_traj": sub_trac,
                        "obj_traj": obj_trac
                    })
            short_term_gt[vsig] = segment_gts

            segment_preds = []
            for r in video_preds:
                if fstart <= r['duration'][0] and r['duration'][1] <= fend:
                    s = max(r['duration'][0], fstart)
                    e = min(r['duration'][1], fend)
                    sub_trac = r['sub_traj'][s - r['duration'][0]: e - r['duration'][0]]
                    obj_trac = r['obj_traj'][s - r['duration'][0]: e - r['duration'][0]]
                    segment_preds.append({
                        "triplet": r['triplet'],
                        "score": r['score'],
                        "duration": [s, e],
                        "sub_traj": sub_trac,
                        "obj_traj": obj_trac
                    })
            short_term_pred[vsig] = segment_preds

    for each_vsig in short_term_gt.keys():
        if each_vsig not in short_term_pred.keys():
            short_term_pred[each_vsig] = []

    mean_ap, rec_at_n, mprec_at_n = eval_visual_relation(short_term_gt, short_term_pred)

    print('detection mean AP (used in challenge): {}'.format(mean_ap))
    print('detection recall@50: {}'.format(rec_at_n[50]))
    print('detection recall@100: {}'.format(rec_at_n[100]))
    print('tagging precision@1: {}'.format(mprec_at_n[1]))
    print('tagging precision@5: {}'.format(mprec_at_n[5]))
    print('tagging precision@10: {}'.format(mprec_at_n[10]))