Esempio n. 1
0
    def __init__(self, sess):
        print("Initializing the agent...")

        self.sess = sess
        self.env = Environment()
        self.state_size = self.env.get_state_size()
        self.action_size = self.env.get_action_size()

        print("Creation of the main QNetwork...")
        self.mainQNetwork = QNetwork(self.state_size, self.action_size, 'main')
        print("Main QNetwork created !\n")

        print("Creation of the target QNetwork...")
        self.targetQNetwork = QNetwork(self.state_size, self.action_size,
                                       'target')
        print("Target QNetwork created !\n")

        self.buffer = PrioritizedReplayBuffer(parameters.BUFFER_SIZE,
                                              parameters.ALPHA)

        self.epsilon = parameters.EPSILON_START
        self.beta = parameters.BETA_START

        self.initial_learning_rate = parameters.LEARNING_RATE

        trainables = tf.trainable_variables()
        self.update_target_ops = updateTargetGraph(trainables)

        self.nb_ep = 1
        self.best_run = -1e10
Esempio n. 2
0
 def __init__(
     self,
     max_replay_buffer_size,
     alpha,
 ):
     self.underlying = PrioritizedReplayBuffer(max_replay_buffer_size,
                                               alpha)
Esempio n. 3
0
    def __init__(self, sess, gui, displayer, saver):
        """
        Build a new instance of Environment and QNetwork.

        Args:
            sess     : the tensorflow session in which to build the network
            gui      : a GUI instance to manage the control of the agent
            displayer: a Displayer instance to keep track of the episode rewards
            saver    : a Saver instance to save periodically the network
        """
        print("Initializing the agent...")

        self.sess = sess
        self.gui = gui
        self.displayer = displayer
        self.saver = saver

        self.env = Environment()
        self.QNetwork = QNetwork(sess)
        self.buffer = PrioritizedReplayBuffer(Settings.BUFFER_SIZE,
                                              Settings.ALPHA)
        self.epsilon = Settings.EPSILON_START
        self.beta = Settings.BETA_START

        self.delta_z = (Settings.MAX_Q - Settings.MIN_Q) / (Settings.NB_ATOMS -
                                                            1)
        self.z = np.linspace(Settings.MIN_Q, Settings.MAX_Q, Settings.NB_ATOMS)

        self.best_run = -1e10
        self.n_gif = 0

        print("Agent initialized !\n")
Esempio n. 4
0
    def __init__(self,
                 state_size,
                 action_size,
                 path="Learning/Weights/weights.h5",
                 new_weights=True,
                 memory_size=100000,
                 replay_start_size=6000,
                 epsilon=1,
                 epsilon_min=.05,
                 max_step_for_epsilon_decay=125000*3,
                 prioritized_replay=False,
                 alpha=0.6,
                 beta=0.4,
                 beta_inc=0.0000005):

        self.state_size = state_size
        self.action_size = action_size
        self.path = path

        self.use_prio_buffer = prioritized_replay
        if not prioritized_replay:
            self.memory = deque(maxlen=memory_size)
        else:
            self.prio_memory = PrioritizedReplayBuffer(memory_size, alpha)
            self.beta = beta
            self.beta_inc = beta_inc
            # self.beta_schedule = LinearSchedule(max_step_for_epsilon_decay,
            #                                     1,
            #                                     0.4)

        self.gamma = 0.95    # discount rate
        self.epsilon = epsilon  # exploration rate
        self.epsilon_min = epsilon_min
        self.epsilon_decay = 0.995
        self.max_step_for_lin_epsilon_decay = max_step_for_epsilon_decay

        self.epsilon_decay_linear = self.epsilon / self.max_step_for_lin_epsilon_decay

        self.learning_rate = 0.00025
        self.replay_start_size = replay_start_size
        self.model = self._build_model()
        self.target_model = clone_model(self.model) #self._build_model()
        self.target_model.compile(optimizer='sgd', loss='mse')

        self.step = 0

        if not new_weights:
            self.model.load_weights(path)

        self.update_target()

        self.callback = Evaluation.create_tensorboard()
Esempio n. 5
0
    def initialize(self):
        # Create the replay buffer
        if self.prioritized_replay:
            self.replay_buffer = PrioritizedReplayBuffer(
                self.buffer_size, alpha=self.prioritized_replay_alpha)
            if self.prioritized_replay_beta_iters is None:
                self.prioritized_replay_beta_iters = self.max_timesteps
            self.beta_schedule = LinearSchedule(
                self.prioritized_replay_beta_iters,
                initial_p=self.prioritized_replay_beta0,
                final_p=1.0)
        else:
            self.replay_buffer = ReplayBuffer(self.buffer_size)
            self.beta_schedule = None
        # Create the schedule for exploration starting from 1.
        # self.exploration = LinearSchedule(schedule_timesteps=int(self.exploration_fraction * self.max_timesteps),
        #                                   initial_p=1.0,
        #                                   final_p=self.exploration_final_eps)

        self.exploration = ConstantSchedule(self.exploration_final_eps)
        # Initialize the parameters and copy them to the target network.
        U.initialize()
        self.update_target()

        return 'initialize() complete'
    def __init__(self,
                 mem_queue,
                 max_timesteps=1000000,
                 buffer_size=50000,
                 batch_size=32,
                 prioritized_replay=False,
                 prioritized_replay_alpha=0.6,
                 prioritized_replay_beta0=0.4,
                 prioritized_replay_beta_iters=None,
                 prioritized_replay_eps=1e-6):

        threading.Thread.__init__(self)
        self.mem_queue = mem_queue
        self.prioritized_replay = prioritized_replay
        self.batch_size = batch_size
        self.batch_idxes = None
        self.prioritized_replay_eps = prioritized_replay_eps

        # Create the replay buffer
        if prioritized_replay:
            self.replay_buffer = PrioritizedReplayBuffer(
                buffer_size, alpha=prioritized_replay_alpha)
            if prioritized_replay_beta_iters is None:
                prioritized_replay_beta_iters = max_timesteps
            self.beta_schedule = LinearSchedule(
                prioritized_replay_beta_iters,
                initial_p=prioritized_replay_beta0,
                final_p=1.0)
        else:
            self.replay_buffer = ReplayBuffer(buffer_size)
            self.beta_schedule = None
def create_replay_buffer(buffer_type, size):
    if buffer_type == 'PER':
        replay_buffer = PrioritizedReplayBuffer(size, 0.5)
    elif buffer_type == 'ER':
        replay_buffer = ReplayBuffer(size)
    else:
        replay_buffer = None
    return replay_buffer
Esempio n. 8
0
class BaselinesPERBuffer(SimpleReplayBuffer):
    def __init__(
        self,
        max_replay_buffer_size,
        alpha,
    ):
        self.underlying = PrioritizedReplayBuffer(max_replay_buffer_size,
                                                  alpha)

    def add_sample(self, observation, action, reward, terminal,
                   next_observation, **kwargs):
        self.underlying.add(observation, action, reward, next_observation,
                            terminal)

    def random_batch(self, batch_size, beta):
        return self.underlying.sample(batch_size, beta)

    def num_steps_can_sample(self):
        return len(self.underlying)

    def update_priorities(self, *args, **kwargs):
        self.underlying.update_priorities(*args, **kwargs)
Esempio n. 9
0
    def __init__(self, sess):
        print("Initializing the agent...")

        self.sess = sess
        self.env = Environment()
        self.state_size = self.env.get_state_size()[0]
        self.action_size = self.env.get_action_size()
        self.low_bound, self.high_bound = self.env.get_bounds()

        self.buffer = PrioritizedReplayBuffer(parameters.BUFFER_SIZE,
                                              parameters.ALPHA)

        print("Creation of the actor-critic network...")
        self.network = Network(self.state_size, self.action_size,
                               self.low_bound, self.high_bound)
        print("Network created !\n")

        self.epsilon = parameters.EPSILON_START
        self.beta = parameters.BETA_START

        self.best_run = -1e10

        self.sess.run(tf.global_variables_initializer())
Esempio n. 10
0
 def make_replay_buffer(self):
     if self.config["prioritized_replay"]:
         self.replay_buffer = PrioritizedReplayBuffer(
             self.config["buffer_size"],
             alpha=self.config["prioritized_replay_alpha"])
         if self.config["prioritized_replay_beta_iters"] is None:
             self.config["prioritized_replay_beta_iters"] = self.config[
                 "max_timesteps"]
         self.beta_schedule = LinearSchedule(
             self.config["prioritized_replay_beta_iters"],
             initial_p=self.config["prioritized_replay_beta0"],
             final_p=1.0)
     else:
         self.replay_buffer = ReplayBuffer(self.config["buffer_size"])
         self.beta_schedule = None
Esempio n. 11
0
    def __init__(self, identifier, actions, observation_shape, num_steps, x=0.0, y=0.0):
        self.id = identifier
        self.actions = actions
        self.x = x
        self.y = y
        self.yellow_steps = 0
        self.postponed_action = None
        self.obs = None
        self.current_action = None
        self.weights = np.ones(32)
        self.td_errors = np.ones(32)

        self.pre_train = 2500
        self.prioritized = False
        self.prioritized_eps = 1e-4
        self.batch_size = 32
        self.buffer_size = 30000
        self.learning_freq = 500
        self.target_update = 5000

        # Create all the functions necessary to train the model
        self.act, self.train, self.update_target, self.debug = deepq.build_train(
            make_obs_ph=lambda name: TrafficTfInput(observation_shape, name=name),
            q_func=dueling_model,
            num_actions=len(actions),
            optimizer=tf.train.AdamOptimizer(learning_rate=1e-4, epsilon=1e-4),
            gamma=0.99,
            double_q=True,
            scope="deepq" + identifier
        )

        # Create the replay buffer
        if self.prioritized:
            self.replay_buffer = PrioritizedReplayBuffer(size=self.buffer_size, alpha=0.6)
            self.beta_schedule = LinearSchedule(num_steps // 4, initial_p=0.4, final_p=1.0)
        else:
            self.replay_buffer = ReplayBuffer(self.buffer_size)

        # Create the schedule for exploration starting from 1 (every action is random) down to
        # 0.02 (98% of actions are selected according to values predicted by the model).
        self.exploration = LinearSchedule(schedule_timesteps=int(num_steps * 0.1), initial_p=1.0, final_p=0.01)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        self.update_target()
Esempio n. 12
0
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=args.lr,
                                             epsilon=1e-4),
            gamma=0.99,
            grad_norm_clipping=10,
            double_q=args.double_q,
            param_noise=args.param_noise)

        approximate_num_iters = args.num_steps / 4
        exploration = PiecewiseSchedule([(0, 1.0),
                                         (approximate_num_iters / 50, 0.1),
                                         (approximate_num_iters / 5, 0.01)],
                                        outside_value=0.01)

        if args.prioritized:
            replay_buffer = PrioritizedReplayBuffer(args.replay_buffer_size,
                                                    args.prioritized_alpha)
            beta_schedule = LinearSchedule(approximate_num_iters,
                                           initial_p=args.prioritized_beta0,
                                           final_p=1.0)
        else:
            replay_buffer = ReplayBuffer(args.replay_buffer_size)

        U.initialize()
        update_target()
        num_iters = 0

        # Load the model
        state = maybe_load_model(savedir, container)
        if state is not None:
            num_iters, replay_buffer = state["num_iters"], state[
                "replay_buffer"],
Esempio n. 13
0
            optimizer=tf.train.AdamOptimizer(learning_rate=args.lr, epsilon=1e-4),
            gamma=0.99,
            grad_norm_clipping=10,
            double_q=args.double_q,
            param_noise=args.param_noise
        )

        approximate_num_iters = args.num_steps / 4
        exploration = PiecewiseSchedule([
            (0, 1.0),
            (approximate_num_iters / 50, 0.1),
            (approximate_num_iters / 5, 0.01)
        ], outside_value=0.01)

        if args.prioritized:
            replay_buffer = PrioritizedReplayBuffer(args.replay_buffer_size, args.prioritized_alpha)
            beta_schedule = LinearSchedule(approximate_num_iters, initial_p=args.prioritized_beta0, final_p=1.0)
        else:
            replay_buffer = ReplayBuffer(args.replay_buffer_size)

        U.initialize()
        update_target()
        num_iters = 0

        # Load the model
        state = maybe_load_model(savedir, container)
        if state is not None:
            num_iters, replay_buffer = state["num_iters"], state["replay_buffer"],
            monitored_env.set_state(state["monitor_state"])

        start_time, start_steps = None, None
Esempio n. 14
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          thompson=True,
          prior="no prior",
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    blr_params = BLRParams()

    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    # q_func = build_q_func(network, **network_kwargs)
    q_func = build_q_func_and_features(network,
                                       hiddens=[blr_params.feat_dim],
                                       **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    #deep mind optimizer
    # dm_opt = tf.train.RMSPropOptimizer(learning_rate=0.00025,decay=0.95,momentum=0.0,epsilon=0.00001,centered=True)
    act, train, update_target, debug, blr_additions = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(
            learning_rate=lr
        ),  #tf.train.RMSPropOptimizer(learning_rate=lr,momentum=0.95),#
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        thompson=thompson,
        double_q=thompson)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        # replay_buffer = ReplayBuffer(buffer_size)
        replay_buffer = ReplayBufferPerActionNew(buffer_size,
                                                 env.action_space.n)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    num_actions = env.action_space.n
    if thompson:
        # Create parameters for Bayesian Regression
        feat_dim = blr_additions['feat_dim']
        num_models = 5
        print("num models is: {}".format(num_models))
        w_sample = np.random.normal(loc=0,
                                    scale=blr_params.sigma,
                                    size=(num_actions, num_models, feat_dim))
        w_mu = np.zeros((num_actions, feat_dim))
        w_cov = np.zeros((num_actions, feat_dim, feat_dim))
        for i in range(num_actions):
            w_cov[i] = blr_params.sigma * np.eye(feat_dim)

        phiphiT = np.zeros((num_actions, feat_dim, feat_dim), dtype=np.float32)
        phiphiT_inv = np.zeros((num_actions, feat_dim, feat_dim),
                               dtype=np.float32)
        for i in range(num_actions):
            phiphiT[i] = (1 / blr_params.sigma) * np.eye(feat_dim)
            phiphiT_inv[i] = blr_params.sigma * np.eye(feat_dim)
        old_phiphiT_inv = [phiphiT_inv for i in range(5)]

        phiY = np.zeros((num_actions, feat_dim), dtype=np.float32)
        YY = np.zeros(num_actions)

        model_idx = np.random.randint(0, num_models, size=num_actions)
        blr_ops = blr_additions['blr_ops']
        blr_ops_old = blr_additions['blr_ops_old']

        last_layer_weights = np.zeros((feat_dim, num_actions))
        phiphiT0 = np.copy(phiphiT)

        invgamma_a = [blr_params.a0 for _ in range(num_actions)]
        invgamma_b = [blr_params.a0 for _ in range(num_actions)]
    # Initialize the parameters and copy them to the target network.
    U.initialize()
    # update_target()
    if thompson:
        blr_additions['update_old']()

        if isinstance(blr_additions['update_old_target'], list):
            for update_net in reversed(blr_additions['update_old_target']):
                update_net()
        else:
            blr_additions['update_old_target']()

        if blr_additions['old_networks'] is not None:
            for key in blr_additions['old_networks'].keys():
                blr_additions['old_networks'][key]["update"]()

    episode_rewards = [0.0]
    # episode_Q_estimates = [0.0]
    unclipped_episode_rewards = [0.0]
    # eval_rewards = [0.0]

    old_networks_num = 5
    # episode_pseudo_count = [[0.0] for i in range(old_networks_num)]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        actions_hist = [0 for _ in range(num_actions)]
        actions_hist_total = [0 for _ in range(num_actions)]
        last_layer_weights_decaying_average = None
        blr_counter = 0
        action_buffers_size = 512
        action_buffers = [
            ReplayBuffer(action_buffers_size) for _ in range(num_actions)
        ]
        eval_flag = False
        eval_counter = 0
        for t in tqdm(range(total_timesteps)):

            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            if thompson:
                # for each action sample one of the num_models samples of w
                model_idx = np.random.randint(0, num_models, size=num_actions)
                cur_w = np.zeros((num_actions, feat_dim))
                for i in range(num_actions):
                    cur_w[i] = w_sample[i, model_idx[i]]
                action, estimate = act(np.array(obs)[None], cur_w[None])
                actions_hist[int(action)] += 1
                actions_hist_total[int(action)] += 1
            else:
                action, estimate = act(np.array(obs)[None],
                                       update_eps=update_eps,
                                       **kwargs)
            env_action = action
            reset = False
            new_obs, unclipped_rew, done_list, _ = env.step(env_action)
            if isinstance(done_list, list):
                done, real_done = done_list
            else:
                done, real_done = done_list, done_list
            rew = np.sign(unclipped_rew)

            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            action_buffers[action].add(obs, action, rew, new_obs, float(done))
            if action_buffers[action]._next_idx == 0:
                obses_a, actions_a, rewards_a, obses_tp1_a, dones_a = replay_buffer.get_samples(
                    [i for i in range(action_buffers_size)])
                phiphiT_a, phiY_a, YY_a = blr_ops_old(obses_a, actions_a,
                                                      rewards_a, obses_tp1_a,
                                                      dones_a)
                phiphiT[action] += phiphiT_a
                phiY[action] += phiY_a
                YY[action] += YY_a

                precision = phiphiT[action] + phiphiT0[action]
                cov = np.linalg.pinv(precision)
                mu = np.array(
                    np.dot(cov, (phiY[action] + np.dot(
                        phiphiT0[action], last_layer_weights[:, action]))))
                invgamma_a[action] += 0.5 * action_buffers_size
                b_upd = 0.5 * YY[action]
                b_upd += 0.5 * np.dot(
                    last_layer_weights[:, action].T,
                    np.dot(phiphiT0[action], last_layer_weights[:, action]))
                b_upd -= 0.5 * np.dot(mu.T, np.dot(precision, mu))
                invgamma_b[action] += b_upd

                # old_phiphiT_inv_a = [np.tile(oppTi[action], (action_buffers_size,1,1)) for oppTi in old_phiphiT_inv]
                # old_pseudo_count = blr_additions['old_pseudo_counts'](obses_a, *old_phiphiT_inv_a)
                # old_pseudo_count = np.sum(old_pseudo_count, axis=-1)
                # for i in range(old_networks_num):
                #     idx = ((blr_counter-1)-i) % old_networks_num # arrange networks from newest to oldest
                #     episode_pseudo_count[i][-1] += old_pseudo_count[idx]

            # if real_done:
            #     for a in range(num_actions):
            #         if action_buffers[a]._next_idx != 0:
            #             obses_a, actions_a, rewards_a, obses_tp1_a, dones_a = replay_buffer.get_samples([i for i in range(action_buffers[a]._next_idx)])
            #             nk = obses_a.shape[0]
            #
            #             # old_phiphiT_inv_a = [np.tile(oppTi[action],(nk,1,1)) for oppTi in old_phiphiT_inv]
            #             # old_pseudo_count = blr_additions['old_pseudo_counts'](obses_a, *old_phiphiT_inv_a)
            #             # old_pseudo_count = np.sum(old_pseudo_count, axis=-1)
            #             # for i in range(old_networks_num):
            #             #     idx = ((blr_counter-1)-i) % old_networks_num # arrange networks from newest to oldest
            #             #     episode_pseudo_count[i][-1] += old_pseudo_count[idx]
            #
            #             phiphiT_a, phiY_a, YY_a = blr_ops_old(obses_a, actions_a, rewards_a, obses_tp1_a, dones_a)
            #             phiphiT[a] += phiphiT_a
            #             phiY[a] += phiY_a
            #             YY[a] += YY_a
            #
            #             action_buffers[a]._next_idx = 0

            obs = new_obs
            episode_rewards[-1] += rew
            # episode_Q_estimates[-1] += estimate
            unclipped_episode_rewards[-1] += unclipped_rew

            if t % 250000 == 0 and t > 0:
                eval_flag = True

            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                # episode_Q_estimates.append(0.0)
                reset = True
                if real_done:
                    unclipped_episode_rewards.append(0.0)
                    # for i in range(old_networks_num):
                    #     episode_pseudo_count[i].append(0.0)
                    # every time full episode ends run eval episode
                    if eval_flag:
                        te = 0
                        print("running evaluation")
                        eval_rewards = [0.0]
                        while te < 125000:
                            # for te in range(125000):
                            real_done = False
                            print(te)
                            while not real_done:
                                action, _ = blr_additions['eval_act'](
                                    np.array(obs)[None])
                                new_obs, unclipped_rew, done_list, _ = env.step(
                                    action)
                                if isinstance(done_list, list):
                                    done, real_done = done_list
                                else:
                                    done, real_done = done_list, done_list
                                eval_rewards[-1] += unclipped_rew
                                obs = new_obs
                                te += 1
                                if done:
                                    obs = env.reset()
                                if real_done:
                                    eval_rewards.append(0.0)
                        obs = env.reset()
                        eval_rewards.pop()
                        mean_reward_eval = round(np.mean(eval_rewards), 2)
                        logger.record_tabular("mean eval episode reward",
                                              mean_reward_eval)
                        logger.dump_tabular()
                        eval_flag = False
                    # eval_counter += 1
                    # if eval_counter % 10 == 0:
                    #     if t > learning_starts:
                    #         real_done = False
                    #         while not real_done:
                    #             action, _ = blr_additions['eval_act'](np.array(obs)[None])
                    #             new_obs, unclipped_rew, done_list, _ = env.step(action)
                    #             done, real_done = done_list
                    #             eval_rewards[-1] += unclipped_rew
                    #             obs = new_obs
                    #         eval_rewards.append(0.0)
                    #         obs = env.reset()

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if thompson:
                if t > learning_starts and t % (
                        blr_params.update_w * target_network_update_freq) == 0:
                    phiphiT_inv = np.zeros_like(phiphiT)
                    for i in range(num_actions):
                        try:
                            phiphiT_inv[i] = np.linalg.inv(phiphiT[i])
                        except:
                            phiphiT_inv[i] = np.linalg.pinv(phiphiT[i])
                    old_phiphiT_inv[blr_counter % 5] = phiphiT_inv
                    llw = sess.run(blr_additions['last_layer_weights'])
                    phiphiT, phiY, phiphiT0, last_layer_weights, YY, invgamma_a, invgamma_b = BayesRegression(
                        phiphiT,
                        phiY,
                        replay_buffer,
                        blr_additions['feature_extractor'],
                        blr_additions['target_feature_extractor'],
                        num_actions,
                        blr_params,
                        w_mu,
                        w_cov,
                        llw,
                        prior=prior,
                        blr_ops=blr_additions['blr_ops'],
                        sdp_ops=blr_additions['sdp_ops'],
                        old_networks=blr_additions['old_networks'],
                        blr_counter=blr_counter,
                        old_feat=blr_additions['old_feature_extractor'],
                        a=invgamma_a)
                    blr_counter += 1
                    if seed is not None:
                        print('seed is {}'.format(seed))
                    blr_additions['update_old']()
                    if isinstance(blr_additions['update_old_target'], list):
                        for update_net in reversed(
                                blr_additions['update_old_target']):
                            update_net()
                    else:
                        blr_additions['update_old_target']()
                    if blr_additions['old_networks'] is not None:
                        blr_additions['old_networks'][blr_counter %
                                                      5]["update"]()

            if thompson:
                if t > 0 and t % blr_params.sample_w == 0:
                    # sampling num_models samples of w
                    if debug:
                        print(actions_hist)
                    else:
                        if t % 10000 == 0:
                            print(actions_hist)
                    actions_hist = [0 for _ in range(num_actions)]
                    # if t > 1000000:
                    adaptive_sigma = True
                    # else:
                    #     adaptive_sigma = False
                    cov_norms = []
                    cov_norms_no_sigma = []
                    sampled_sigmas = []
                    for i in range(num_actions):
                        if prior == 'no prior' or last_layer_weights is None:
                            cov = np.linalg.inv(phiphiT[i])
                            mu = np.array(np.dot(cov, phiY[i]))
                        elif prior == 'last layer':
                            cov = np.linalg.inv(phiphiT[i])
                            mu = np.array(
                                np.dot(cov, (phiY[i] + (1 / blr_params.sigma) *
                                             last_layer_weights[:, i])))
                        elif prior == 'single sdp':
                            try:
                                cov = np.linalg.inv(phiphiT[i] + phiphiT0)
                            except:
                                print("singular matrix using pseudo inverse")
                                cov = np.linalg.pinv(phiphiT[i] + phiphiT0)
                            mu = np.array(
                                np.dot(cov, (phiY[i] + np.dot(
                                    phiphiT0, last_layer_weights[:, i]))))
                        elif prior == 'sdp' or prior == 'linear':
                            try:
                                cov = np.linalg.inv(phiphiT[i] + phiphiT0[i])
                            except:
                                # print("singular matrix")
                                cov = np.linalg.pinv(phiphiT[i] + phiphiT0[i])
                            mu = np.array(
                                np.dot(cov, (phiY[i] + np.dot(
                                    phiphiT0[i], last_layer_weights[:, i]))))
                        else:
                            print("No valid prior")
                            exit(0)

                        for j in range(num_models):
                            if adaptive_sigma:
                                sigma = invgamma_b[i] * invgamma.rvs(
                                    invgamma_a[i])
                            else:
                                sigma = blr_params.sigma
                            try:
                                w_sample[i, j] = np.random.multivariate_normal(
                                    mu, sigma * cov)
                            except:
                                w_sample[i, j] = mu

                        cov_norms.append(np.linalg.norm(sigma * cov))
                        cov_norms_no_sigma.append(np.linalg.norm(cov))
                        sampled_sigmas.append(sigma)

                    if t % 7 == 0:
                        for i, cov_norm in enumerate(cov_norms):
                            print(
                                "cov*sigma norm for action {}: {}, visits: {}".
                                format(i, cov_norm,
                                       len(replay_buffer.buffers[i])))

            # if t > learning_starts and t % target_network_update_freq == 0:
            # Update target network periodically.
            # print(update_target)
            # update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            mean_10ep_reward = round(np.mean(episode_rewards[-11:-1]), 1)
            mean_100ep_reward_unclipped = round(
                np.mean(unclipped_episode_rewards[-101:-1]), 1)
            mean_10ep_reward_unclipped = round(
                np.mean(unclipped_episode_rewards[-11:-1]), 1)
            # mean_100ep_reward_eval = round(np.mean(eval_rewards[-101:-1]), 1)
            # mean_10ep_reward_eval = round(np.mean(eval_rewards[-11:-1]), 1)
            # mean_100ep_est = round(np.mean(episode_Q_estimates[-101:-1]), 1)
            # mean_10ep_est = round(np.mean(episode_Q_estimates[-11:-1]), 1)
            num_episodes = len(episode_rewards)
            # mean_10ep_pseudo_count = [0.0 for _ in range(old_networks_num)]
            # mean_100ep_pseudo_count = [0.0 for _ in range(old_networks_num)]
            # for i in range(old_networks_num):
            #     mean_10ep_pseudo_count[i] = round(np.log(np.mean(episode_pseudo_count[i][-11:-1])), 1)
            #     mean_100ep_pseudo_count[i] = round(np.log(np.mean(episode_pseudo_count[i][-101:-1])), 1)

            # if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
            if t % 10000 == 0 and t > 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("mean 10 episode reward",
                                      mean_10ep_reward)
                logger.record_tabular("mean 100 unclipped episode reward",
                                      mean_100ep_reward_unclipped)
                logger.record_tabular("mean 10 unclipped episode reward",
                                      mean_10ep_reward_unclipped)
                # logger.record_tabular("mean 100 eval episode reward", mean_100ep_reward_eval)
                # logger.record_tabular("mean 10 eval episode reward", mean_10ep_reward_eval)
                # for i in range(old_networks_num):
                #     logger.record_tabular("mean 10 episode pseudo count for -{} net".format(i+1), mean_10ep_pseudo_count[i])
                #     logger.record_tabular("mean 100 episode pseudo count for -{} net".format(i+1), mean_100ep_pseudo_count[i])
                # logger.record_tabular("mean 100 episode Q estimates", mean_100ep_est)
                # logger.record_tabular("mean 10 episode Q estimates", mean_10ep_est)
                logger.dump_tabular()
                if t % 7 == 0:
                    print("len(unclipped_episode_rewards)")
                    print(len(unclipped_episode_rewards))
                    print("len(episode_rewards)")
                    print(len(episode_rewards))

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
Esempio n. 15
0
def learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = tf.Session()
    sess.__enter__()

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space_shape = env.observation_space.shape
    def make_obs_ph(name):
        return BatchInput(observation_space_shape, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            load_state(model_file)

    return act
Esempio n. 16
0
class Agent:

    def __init__(self, sess):
        print("Initializing the agent...")

        self.sess = sess
        self.env = Environment()
        self.state_size = self.env.get_state_size()
        self.action_size = self.env.get_action_size()

        print("Creation of the main QNetwork...")
        self.mainQNetwork = QNetwork(self.state_size, self.action_size, 'main')
        print("Main QNetwork created !\n")

        print("Creation of the target QNetwork...")
        self.targetQNetwork = QNetwork(self.state_size, self.action_size,
                                       'target')
        print("Target QNetwork created !\n")

        self.buffer = PrioritizedReplayBuffer(parameters.BUFFER_SIZE,
                                              parameters.ALPHA)

        self.epsilon = parameters.EPSILON_START
        self.beta = parameters.BETA_START

        self.initial_learning_rate = parameters.LEARNING_RATE

        trainables = tf.trainable_variables()
        self.update_target_ops = updateTargetGraph(trainables)

        self.nb_ep = 1
        self.best_run = -1e10

    def pre_train(self):
        print("Beginning of the pre-training...")

        for i in range(parameters.PRE_TRAIN_STEPS):

            s = self.env.reset()
            done = False
            episode_step = 0
            episode_reward = 0

            while episode_step < parameters.MAX_EPISODE_STEPS and not done:

                a = random.randint(0, self.action_size - 1)
                s_, r, done, info = self.env.act(a)
                self.buffer.add(s, a, r, s_, done)

                s = s_
                episode_reward += r
                episode_step += 1

            if i % 100 == 0:
                print("\tPre-train step n", i)

            self.best_run = max(self.best_run, episode_reward)

        print("End of the pre training !")

    def run(self):
        print("Beginning of the run...")

        self.pre_train()

        self.total_steps = 0
        self.nb_ep = 1

        while self.nb_ep < parameters.TRAINING_STEPS:

            self.learning_rate = self.initial_learning_rate * \
                (parameters.TRAINING_STEPS - self.nb_ep) / \
                parameters.TRAINING_STEPS

            s = self.env.reset()
            episode_reward = 0
            done = False

            memory = deque()
            discount_R = 0

            episode_step = 0
            max_step = parameters.MAX_EPISODE_STEPS + \
                self.nb_ep // parameters.EP_ELONGATION

            # Render parameters
            self.env.set_render(self.nb_ep % parameters.RENDER_FREQ == 0)

            while episode_step < max_step and not done:

                if random.random() < self.epsilon:
                    a = random.randint(0, self.action_size - 1)
                else:
                    a = self.sess.run(self.mainQNetwork.predict,
                                      feed_dict={self.mainQNetwork.inputs: [s]})
                    a = a[0]

                s_, r, done, info = self.env.act(a)
                episode_reward += r

                memory.append((s, a, r, s_, done))

                if len(memory) > parameters.N_STEP_RETURN:
                    s_mem, a_mem, r_mem, ss_mem, done_mem = memory.popleft()
                    discount_R = r_mem
                    for i, (si, ai, ri, s_i, di) in enumerate(memory):
                        discount_R += ri * parameters.DISCOUNT ** (i + 1)
                    self.buffer.add(s_mem, a_mem, discount_R, s_, done)

                if episode_step % parameters.TRAINING_FREQ == 0:

                    train_batch = self.buffer.sample(parameters.BATCH_SIZE,
                                                     self.beta)
                    # Incr beta
                    if self.beta <= parameters.BETA_STOP:
                        self.beta += parameters.BETA_INCR

                    feed_dict = {self.mainQNetwork.inputs: train_batch[0]}
                    oldQvalues = self.sess.run(self.mainQNetwork.Qvalues,
                                               feed_dict=feed_dict)
                    tmp = [0] * len(oldQvalues)
                    for i, oldQvalue in enumerate(oldQvalues):
                        tmp[i] = oldQvalue[train_batch[1][i]]
                    oldQvalues = tmp

                    feed_dict = {self.mainQNetwork.inputs: train_batch[3]}
                    mainQaction = self.sess.run(self.mainQNetwork.predict,
                                                feed_dict=feed_dict)

                    feed_dict = {self.targetQNetwork.inputs: train_batch[3]}
                    targetQvalues = self.sess.run(self.targetQNetwork.Qvalues,
                                                  feed_dict=feed_dict)

                    # Done multiplier :
                    # equals 0 if the episode was done
                    # equals 1 else
                    done_multiplier = (1 - train_batch[4])
                    doubleQ = targetQvalues[range(parameters.BATCH_SIZE),
                                            mainQaction]
                    targetQvalues = train_batch[2] + \
                        parameters.DISCOUNT * doubleQ * done_multiplier

                    errors = np.square(targetQvalues - oldQvalues) + 1e-6
                    self.buffer.update_priorities(train_batch[6], errors)

                    feed_dict = {self.mainQNetwork.inputs: train_batch[0],
                                 self.mainQNetwork.Qtarget: targetQvalues,
                                 self.mainQNetwork.actions: train_batch[1],
                                 self.mainQNetwork.learning_rate: self.learning_rate}
                    _ = self.sess.run(self.mainQNetwork.train,
                                      feed_dict=feed_dict)

                    update_target(self.update_target_ops, self.sess)

                s = s_
                episode_step += 1
                self.total_steps += 1

            # Decay epsilon
            if self.epsilon > parameters.EPSILON_STOP:
                self.epsilon -= parameters.EPSILON_DECAY

            DISPLAYER.add_reward(episode_reward)
            # if episode_reward > self.best_run and \
            #         self.nb_ep > 50:
            #     self.best_run = episode_reward
            #     print("Save best", episode_reward)
            #     SAVER.save('best')
            #     self.play(1)

            self.total_steps += 1

            if self.nb_ep % parameters.DISP_EP_REWARD_FREQ == 0:
                print('Episode %2i, Reward: %7.3f, Steps: %i, Epsilon: %.3f'
                      ', Max steps: %i, Learning rate: %g' % (
                          self.nb_ep, episode_reward, episode_step,
                          self.epsilon, max_step, self.learning_rate))

            # Save the model
            if self.nb_ep % parameters.SAVE_FREQ == 0:
                SAVER.save(self.nb_ep)

            self.nb_ep += 1

    def play(self, number_run):
        print("Playing for", number_run, "runs")

        try:
            for i in range(number_run):

                self.env.set_render(True)

                s = self.env.reset()
                episode_reward = 0
                done = False

                episode_step = 0
                max_step = parameters.MAX_EPISODE_STEPS + \
                    self.nb_ep // parameters.EP_ELONGATION

                while episode_step < max_step and not done:
                    a = self.sess.run(self.mainQNetwork.predict,
                                      feed_dict={self.mainQNetwork.inputs: [s]})
                    a = a[0]
                    s, r, done, info = self.env.act(a)

                    episode_reward += r
                    episode_step += 1

                print("Episode reward :", episode_reward)

        except KeyboardInterrupt as e:
            pass

        except Exception as e:
            print("Exception :", e)

        finally:
            self.env.set_render(False)
            print("End of the demo")
            self.env.close()

    def stop(self):
        self.env.close()
Esempio n. 17
0
    def __init__(self,
                 env,
                 gamma,
                 total_timesteps,
                 network='mlp',
                 lr=5e-4,
                 buffer_size=50000,
                 exploration_fraction=0.1,
                 exploration_final_eps=0.02,
                 train_freq=1,
                 batch_size=32,
                 learning_starts=1000,
                 target_network_update_freq=500,
                 prioritized_replay=False,
                 prioritized_replay_alpha=0.6,
                 prioritized_replay_beta0=0.4,
                 prioritized_replay_beta_iters=None,
                 prioritized_replay_eps=1e-6,
                 param_noise=False,
                 **network_kwargs):
        """DQN wrapper to train option policies

        Parameters
        -------
        env: gym.Env
            environment to train on
        gamma: float
            discount factor
        network: string or a function
            neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
            (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
            will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
        total_timesteps: int
            number of env steps to optimizer for
        lr: float
            learning rate for adam optimizer
        buffer_size: int
            size of the replay buffer
        exploration_fraction: float
            fraction of entire training period over which the exploration rate is annealed
        exploration_final_eps: float
            final value of random action probability
        train_freq: int
            update the model every `train_freq` steps.
        batch_size: int
            size of a batch sampled from replay buffer for training
        learning_starts: int
            how many steps of the model to collect transitions for before learning starts
        target_network_update_freq: int
            update the target network every `target_network_update_freq` steps.
        prioritized_replay: True
            if True prioritized replay buffer will be used.
        prioritized_replay_alpha: float
            alpha parameter for prioritized replay buffer
        prioritized_replay_beta0: float
            initial value of beta for prioritized replay buffer
        prioritized_replay_beta_iters: int
            number of iterations over which beta will be annealed from initial value
            to 1.0. If set to None equals to total_timesteps.
        prioritized_replay_eps: float
            epsilon to add to the TD errors when updating priorities.
        param_noise: bool
            whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
        **network_kwargs
            additional keyword arguments to pass to the network builder.
        """

        # Adjusting hyper-parameters by considering the number of options policies to learn
        num_options = env.get_number_of_options()
        buffer_size = num_options * buffer_size
        batch_size = num_options * batch_size

        q_func = build_q_func(network, **network_kwargs)

        # capture the shape outside the closure so that the env object is not serialized
        # by cloudpickle when serializing make_obs_ph

        observation_space = env.option_observation_space

        def make_obs_ph(name):
            return ObservationInput(observation_space, name=name)

        self.num_actions = env.option_action_space.n

        act, train, update_target, debug = deepq.build_train(
            make_obs_ph=make_obs_ph,
            q_func=q_func,
            num_actions=self.num_actions,
            optimizer=tf.train.AdamOptimizer(learning_rate=lr),
            gamma=gamma,
            grad_norm_clipping=10,
            param_noise=param_noise,
            scope="options")

        act_params = {
            'make_obs_ph': make_obs_ph,
            'q_func': q_func,
            'num_actions': self.num_actions,
        }

        act = ActWrapper(act, act_params)

        # Create the replay buffer
        if prioritized_replay:
            replay_buffer = PrioritizedReplayBuffer(
                buffer_size, alpha=prioritized_replay_alpha)
            if prioritized_replay_beta_iters is None:
                prioritized_replay_beta_iters = total_timesteps
            beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                           initial_p=prioritized_replay_beta0,
                                           final_p=1.0)
        else:
            replay_buffer = ReplayBuffer(buffer_size)
            beta_schedule = None
        # Create the schedule for exploration starting from 1.
        exploration = LinearSchedule(schedule_timesteps=int(
            exploration_fraction * total_timesteps),
                                     initial_p=1.0,
                                     final_p=exploration_final_eps)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()

        # Variables that are used during learning
        self.act = act
        self.train = train
        self.update_target = update_target
        self.replay_buffer = replay_buffer
        self.beta_schedule = beta_schedule
        self.exploration = exploration
        self.param_noise = param_noise
        self.train_freq = train_freq
        self.batch_size = batch_size
        self.learning_starts = learning_starts
        self.target_network_update_freq = target_network_update_freq

        self.prioritized_replay = prioritized_replay
        self.prioritized_replay_alpha = prioritized_replay_alpha
        self.prioritized_replay_beta0 = prioritized_replay_beta0
        self.prioritized_replay_beta_iters = prioritized_replay_beta_iters
        self.prioritized_replay_eps = prioritized_replay_eps
def learn(env,
          q_func,
          num_actions=4,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None):
  """Train a deepq model.

Parameters
-------
env: pysc2.env.SC2Env
    environment to train on
q_func: (tf.Variable, int, str, bool) -> tf.Variable
    the model that takes the following inputs:
        observation_in: object
            the output of observation placeholder
        num_actions: int
            number of actions
        scope: str
        reuse: bool
            should be passed to outer variable scope
    and returns a tensor of shape (batch_size, num_actions) with values of every action.
lr: float
    learning rate for adam optimizer
max_timesteps: int
    number of env steps to optimizer for
buffer_size: int
    size of the replay buffer
exploration_fraction: float
    fraction of entire training period over which the exploration rate is annealed
exploration_final_eps: float
    final value of random action probability
train_freq: int
    update the model every `train_freq` steps.
    set to None to disable printing
batch_size: int
    size of a batched sampled from replay buffer for training
print_freq: int
    how often to print out training progress
    set to None to disable printing
checkpoint_freq: int
    how often to save the model. This is so that the best version is restored
    at the end of the training. If you do not wish to restore the best version at
    the end of the training set this variable to None.
learning_starts: int
    how many steps of the model to collect transitions for before learning starts
gamma: float
    discount factor
target_network_update_freq: int
    update the target network every `target_network_update_freq` steps.
prioritized_replay: True
    if True prioritized replay buffer will be used.
prioritized_replay_alpha: float
    alpha parameter for prioritized replay buffer
prioritized_replay_beta0: float
    initial value of beta for prioritized replay buffer
prioritized_replay_beta_iters: int
    number of iterations over which beta will be annealed from initial value
    to 1.0. If set to None equals to max_timesteps.
prioritized_replay_eps: float
    epsilon to add to the TD errors when updating priorities.
num_cpu: int
    number of cpus to use for training
callback: (locals, globals) -> None
    function called at every steps with state of the algorithm.
    If callback returns true training stops.

Returns
-------
act: ActWrapper
    Wrapper over act function. Adds ability to save it and load it.
    See header of baselines/deepq/categorical.py for details on the act function.
"""
  # Create all the functions necessary to train the model

  sess = U.make_session(num_cpu=num_cpu)
  sess.__enter__()

  def make_obs_ph(name):
    return U.BatchInput((32, 32), name=name)

  act, train, update_target, debug = deepq.build_train(
    make_obs_ph=make_obs_ph,
    q_func=q_func,
    num_actions=num_actions,
    optimizer=tf.train.AdamOptimizer(learning_rate=lr),
    gamma=gamma,
    grad_norm_clipping=10,
    scope="deepq")
  #
  # act_y, train_y, update_target_y, debug_y = deepq.build_train(
  #   make_obs_ph=make_obs_ph,
  #   q_func=q_func,
  #   num_actions=num_actions,
  #   optimizer=tf.train.AdamOptimizer(learning_rate=lr),
  #   gamma=gamma,
  #   grad_norm_clipping=10,
  #   scope="deepq_y"
  # )

  act_params = {
    'make_obs_ph': make_obs_ph,
    'q_func': q_func,
    'num_actions': num_actions,
  }

  # Create the replay buffer
  if prioritized_replay:
    replay_buffer = PrioritizedReplayBuffer(
      buffer_size, alpha=prioritized_replay_alpha)
    # replay_buffer_y = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)

    if prioritized_replay_beta_iters is None:
      prioritized_replay_beta_iters = max_timesteps
    beta_schedule = LinearSchedule(
      prioritized_replay_beta_iters,
      initial_p=prioritized_replay_beta0,
      final_p=1.0)

    # beta_schedule_y = LinearSchedule(prioritized_replay_beta_iters,
    #                                  initial_p=prioritized_replay_beta0,
    #                                  final_p=1.0)
  else:
    replay_buffer = ReplayBuffer(buffer_size)
    # replay_buffer_y = ReplayBuffer(buffer_size)

    beta_schedule = None
    # beta_schedule_y = None
  # Create the schedule for exploration starting from 1.
  exploration = LinearSchedule(
    schedule_timesteps=int(exploration_fraction * max_timesteps),
    initial_p=1.0,
    final_p=exploration_final_eps)

  # Initialize the parameters and copy them to the target network.
  U.initialize()
  update_target()
  # update_target_y()

  episode_rewards = [0.0]
  saved_mean_reward = None

  obs = env.reset()
  # Select all marines first
  obs = env.step(
    actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])

  player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

  screen = (player_relative == _PLAYER_NEUTRAL).astype(int)  #+ path_memory

  player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
  player = [int(player_x.mean()), int(player_y.mean())]

  if (player[0] > 16):
    screen = shift(LEFT, player[0] - 16, screen)
  elif (player[0] < 16):
    screen = shift(RIGHT, 16 - player[0], screen)

  if (player[1] > 16):
    screen = shift(UP, player[1] - 16, screen)
  elif (player[1] < 16):
    screen = shift(DOWN, 16 - player[1], screen)

  reset = True
  with tempfile.TemporaryDirectory() as td:
    model_saved = False
    model_file = os.path.join("model/", "mineral_shards")
    print(model_file)

    for t in range(max_timesteps):
      if callback is not None:
        if callback(locals(), globals()):
          break
      # Take action and update exploration to the newest value
      kwargs = {}
      if not param_noise:
        update_eps = exploration.value(t)
        update_param_noise_threshold = 0.
      else:
        update_eps = 0.
        if param_noise_threshold >= 0.:
          update_param_noise_threshold = param_noise_threshold
        else:
          # Compute the threshold such that the KL divergence between perturbed and non-perturbed
          # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
          # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
          # for detailed explanation.
          update_param_noise_threshold = -np.log(
            1. - exploration.value(t) +
            exploration.value(t) / float(num_actions))
        kwargs['reset'] = reset
        kwargs[
          'update_param_noise_threshold'] = update_param_noise_threshold
        kwargs['update_param_noise_scale'] = True

      action = act(
        np.array(screen)[None], update_eps=update_eps, **kwargs)[0]

      # action_y = act_y(np.array(screen)[None], update_eps=update_eps, **kwargs)[0]

      reset = False

      coord = [player[0], player[1]]
      rew = 0

      if (action == 0):  #UP

        if (player[1] >= 8):
          coord = [player[0], player[1] - 8]
          #path_memory_[player[1] - 16 : player[1], player[0]] = -1
        elif (player[1] > 0):
          coord = [player[0], 0]
          #path_memory_[0 : player[1], player[0]] = -1
          #else:
          #  rew -= 1

      elif (action == 1):  #DOWN

        if (player[1] <= 23):
          coord = [player[0], player[1] + 8]
          #path_memory_[player[1] : player[1] + 16, player[0]] = -1
        elif (player[1] > 23):
          coord = [player[0], 31]
          #path_memory_[player[1] : 63, player[0]] = -1
          #else:
          #  rew -= 1

      elif (action == 2):  #LEFT

        if (player[0] >= 8):
          coord = [player[0] - 8, player[1]]
          #path_memory_[player[1], player[0] - 16 : player[0]] = -1
        elif (player[0] < 8):
          coord = [0, player[1]]
          #path_memory_[player[1], 0 : player[0]] = -1
          #else:
          #  rew -= 1

      elif (action == 3):  #RIGHT

        if (player[0] <= 23):
          coord = [player[0] + 8, player[1]]
          #path_memory_[player[1], player[0] : player[0] + 16] = -1
        elif (player[0] > 23):
          coord = [31, player[1]]
          #path_memory_[player[1], player[0] : 63] = -1

      if _MOVE_SCREEN not in obs[0].observation["available_actions"]:
        obs = env.step(actions=[
          sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
        ])

      new_action = [
        sc2_actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, coord])
      ]

      # else:
      #   new_action = [sc2_actions.FunctionCall(_NO_OP, [])]

      obs = env.step(actions=new_action)

      player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
      new_screen = (player_relative == _PLAYER_NEUTRAL).astype(
        int)  #+ path_memory

      player_y, player_x = (
        player_relative == _PLAYER_FRIENDLY).nonzero()
      player = [int(player_x.mean()), int(player_y.mean())]

      if (player[0] > 16):
        new_screen = shift(LEFT, player[0] - 16, new_screen)
      elif (player[0] < 16):
        new_screen = shift(RIGHT, 16 - player[0], new_screen)

      if (player[1] > 16):
        new_screen = shift(UP, player[1] - 16, new_screen)
      elif (player[1] < 16):
        new_screen = shift(DOWN, 16 - player[1], new_screen)

      rew = obs[0].reward

      done = obs[0].step_type == environment.StepType.LAST

      # Store transition in the replay buffer.
      replay_buffer.add(screen, action, rew, new_screen, float(done))
      # replay_buffer_y.add(screen, action_y, rew, new_screen, float(done))

      screen = new_screen

      episode_rewards[-1] += rew
      reward = episode_rewards[-1]

      if done:
        obs = env.reset()
        player_relative = obs[0].observation["screen"][
          _PLAYER_RELATIVE]

        screen = (player_relative == _PLAYER_NEUTRAL).astype(
          int)  #+ path_memory

        player_y, player_x = (
          player_relative == _PLAYER_FRIENDLY).nonzero()
        player = [int(player_x.mean()), int(player_y.mean())]

        # Select all marines first
        env.step(actions=[
          sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
        ])
        episode_rewards.append(0.0)
        #episode_minerals.append(0.0)

        reset = True

      if t > learning_starts and t % train_freq == 0:
        # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
        if prioritized_replay:

          experience = replay_buffer.sample(
            batch_size, beta=beta_schedule.value(t))
          (obses_t, actions, rewards, obses_tp1, dones, weights,
           batch_idxes) = experience

          # experience_y = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
          # (obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y, weights_y, batch_idxes_y) = experience_y
        else:

          obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
            batch_size)
          weights, batch_idxes = np.ones_like(rewards), None

          # obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y = replay_buffer_y.sample(batch_size)
          # weights_y, batch_idxes_y = np.ones_like(rewards_y), None

        td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                          weights)

        # td_errors_y = train_x(obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y, weights_y)

        if prioritized_replay:
          new_priorities = np.abs(td_errors) + prioritized_replay_eps
          # new_priorities = np.abs(td_errors) + prioritized_replay_eps
          replay_buffer.update_priorities(batch_idxes,
                                          new_priorities)
          # replay_buffer.update_priorities(batch_idxes, new_priorities)

      if t > learning_starts and t % target_network_update_freq == 0:
        # Update target network periodically.
        update_target()
        # update_target_y()

      mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
      num_episodes = len(episode_rewards)
      if done and print_freq is not None and len(
          episode_rewards) % print_freq == 0:
        logger.record_tabular("steps", t)
        logger.record_tabular("episodes", num_episodes)
        logger.record_tabular("reward", reward)
        logger.record_tabular("mean 100 episode reward",
                              mean_100ep_reward)
        logger.record_tabular("% time spent exploring",
                              int(100 * exploration.value(t)))
        logger.dump_tabular()

      if (checkpoint_freq is not None and t > learning_starts
          and num_episodes > 100 and t % checkpoint_freq == 0):
        if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
          if print_freq is not None:
            logger.log(
              "Saving model due to mean reward increase: {} -> {}".
                format(saved_mean_reward, mean_100ep_reward))
          U.save_state(model_file)
          model_saved = True
          saved_mean_reward = mean_100ep_reward
    if model_saved:
      if print_freq is not None:
        logger.log("Restored model with mean reward: {}".format(
          saved_mean_reward))
      U.load_state(model_file)

  return ActWrapper(act)
Esempio n. 19
0
    def __init__(
            self,
            env,
            # observation_space,
            # action_space,
            network=None,
            scope='deepq',
            seed=None,
            lr=None,  # Was 5e-4
            lr_mc=5e-4,
            total_episodes=None,
            total_timesteps=100000,
            buffer_size=50000,
            exploration_fraction=0.1,
            exploration_final_eps=None,  # was 0.02
            train_freq=1,
            train_log_freq=100,
            batch_size=32,
            print_freq=100,
            checkpoint_freq=10000,
            # checkpoint_path=None,
            learning_starts=1000,
            gamma=None,
            target_network_update_freq=500,
            prioritized_replay=False,
            prioritized_replay_alpha=0.6,
            prioritized_replay_beta0=0.4,
            prioritized_replay_beta_iters=None,
            prioritized_replay_eps=1e-6,
            save_path=None,
            load_path=None,
            save_reward_threshold=None,
            **network_kwargs):
        super().__init__(env, seed)
        if train_log_freq % train_freq != 0:
            raise ValueError(
                'Train log frequency should be a multiple of train frequency')
        elif checkpoint_freq % train_log_freq != 0:
            raise ValueError(
                'Checkpoint freq should be a multiple of train log frequency, or model saving will not be logged properly'
            )
        print('init dqnlearningagent')
        self.train_log_freq = train_log_freq
        self.scope = scope
        self.learning_starts = learning_starts
        self.save_reward_threshold = save_reward_threshold
        self.batch_size = batch_size
        self.train_freq = train_freq
        self.total_episodes = total_episodes
        self.total_timesteps = total_timesteps
        # TODO: scope not doing anything.
        if network is None and 'lunar' in env.unwrapped.spec.id.lower():
            if lr is None:
                lr = 1e-3
            if exploration_final_eps is None:
                exploration_final_eps = 0.02
            #exploration_fraction = 0.1
            #exploration_final_eps = 0.02
            target_network_update_freq = 1500
            #print_freq = 100
            # num_cpu = 5
            if gamma is None:
                gamma = 0.99

            network = 'mlp'
            network_kwargs = {
                'num_layers': 2,
                'num_hidden': 64,
            }

        self.target_network_update_freq = target_network_update_freq
        self.gamma = gamma

        get_session()
        # set_global_seeds(seed)
        # TODO: Check whether below is ok to substitue for set_global_seeds.
        try:
            import tensorflow as tf
            tf.set_random_seed(seed)
        except ImportError:
            pass

        self.q_func = build_q_func(network, **network_kwargs)

        # capture the shape outside the closure so that the env object is not serialized
        # by cloudpickle when serializing make_obs_ph

        def make_obs_ph(name):
            return ObservationInput(env.observation_space, name=name)

        act, self.train, self.train_mc, self.update_target, debug = deepq.build_train(
            make_obs_ph=make_obs_ph,
            q_func=self.q_func,
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=lr),
            optimizer_mc=tf.train.AdamOptimizer(learning_rate=lr_mc),
            gamma=gamma,
            grad_norm_clipping=10,
            param_noise=False,
            scope=scope,
            # reuse=reuse,
        )

        act_params = {
            'make_obs_ph': make_obs_ph,
            'q_func': self.q_func,
            'num_actions': env.action_space.n,
        }

        self._act = ActWrapper(act, act_params)

        self.print_freq = print_freq
        self.checkpoint_freq = checkpoint_freq
        # Create the replay buffer
        self.prioritized_replay = prioritized_replay
        self.prioritized_replay_eps = prioritized_replay_eps

        if self.prioritized_replay:
            self.replay_buffer = PrioritizedReplayBuffer(
                buffer_size,
                alpha=prioritized_replay_alpha,
            )
            if prioritized_replay_beta_iters is None:
                if total_episodes is not None:
                    raise NotImplementedError(
                        'Need to check how to set exploration based on episodes'
                    )
                prioritized_replay_beta_iters = total_timesteps
            self.beta_schedule = LinearSchedule(
                prioritized_replay_beta_iters,
                initial_p=prioritized_replay_beta0,
                final_p=1.0,
            )
        else:
            self.replay_buffer = ReplayBuffer(buffer_size)
            self.replay_buffer_mc = ReplayBuffer(buffer_size)
            self.beta_schedule = None
        # Create the schedule for exploration starting from 1.
        self.exploration = LinearSchedule(
            schedule_timesteps=int(
                exploration_fraction *
                total_timesteps if total_episodes is None else total_episodes),
            initial_p=1.0,
            final_p=exploration_final_eps,
        )

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        self.update_target()

        self.episode_lengths = [0]
        self.episode_rewards = [0.0]
        self.discounted_episode_rewards = [0.0]
        self.start_values = [None]
        self.lunar_crashes = [0]
        self.lunar_goals = [0]
        self.saved_mean_reward = None

        self.td = None
        if save_path is None:
            self.td = tempfile.mkdtemp()
            outdir = self.td
            self.model_file = os.path.join(outdir, "model")
        else:
            outdir = os.path.dirname(save_path)
            os.makedirs(outdir, exist_ok=True)
            self.model_file = save_path
        print('DQN agent saving to:', self.model_file)
        self.model_saved = False

        if tf.train.latest_checkpoint(outdir) is not None:
            # TODO: Check scope addition
            load_variables(self.model_file, scope=self.scope)
            # load_variables(self.model_file)
            logger.log('Loaded model from {}'.format(self.model_file))
            self.model_saved = True
            raise Exception('Check that we want to load previous model')
        elif load_path is not None:
            # TODO: Check scope addition
            load_variables(load_path, scope=self.scope)
            # load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        self.train_log_file = None
        if save_path and load_path is None:
            self.train_log_file = self.model_file + '.log.csv'
            with open(self.train_log_file, 'w') as f:
                cols = [
                    'episode',
                    't',
                    'td_max',
                    'td_mean',
                    '100ep_r_mean',
                    '100ep_r_mean_discounted',
                    '100ep_v_mean',
                    '100ep_n_crashes_mean',
                    '100ep_n_goals_mean',
                    'saved_model',
                    'smoothing',
                ]
                f.write(','.join(cols) + '\n')

        self.training_episode = 0
        self.t = 0
        self.episode_t = 0
        """
        n = observation_space.n
        m = action_space.n
        self.Q = np.zeros((n, m))

        self._lr_schedule = lr_schedule
        self._eps_schedule = eps_schedule
        self._boltzmann_schedule = boltzmann_schedule
        """

        # Make placeholder for Q values
        self.q_values = debug['q_values']
Esempio n. 20
0

if __name__ == '__main__':
    with U.make_session(8):
        # Create the environment
        env = gym.make("CartPole-v0")
        # Create all the functions necessary to train the model
        act, train, update_target, debug = deepq.build_train(
            make_obs_ph=lambda name: U.BatchInput(env.observation_space.shape, name=name),
            q_func=model,
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=5e-4),
            param_noise=False
        )
        # Create the replay buffer
        replay_buffer = PrioritizedReplayBuffer(50000, alpha=0.6)
        # Create the schedule for exploration starting from 1 (every action is random) down to
        # 0.02 (98% of actions are selected according to values predicted by the model).
        exploration = LinearSchedule(schedule_timesteps=10000, initial_p=1.0, final_p=0.02)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()

        tvars = tf.trainable_variables()
        tvars_vals = U.get_session().run(tvars)

        for var, val in zip(tvars, tvars_vals):
            print(var.name, val)

        episode_rewards = [0.0]
Esempio n. 21
0
def learn(env,
          q_func,
          beta1=0.9,
          beta2=0.999,
          epsilon=1e-8,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          exploration_schedule=None,
          start_lr=5e-4,
          end_lr=5e-4,
          start_step=0,
          end_step=1,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          model_directory=None,
          lamda=0.1):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    beta1: float
        beta1 parameter for adam
    beta2: float
        beta2 parameter for adam
    epsilon: float
        epsilon parameter for adam
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    exploration_schedule: Schedule
        a schedule for exploration chance
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = tf.Session()
    sess.__enter__()

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space_shape = env.observation_space.shape

    def make_obs_ph(name):
        return ObservationInput(env.observation_space, name=name)

    global_step = tf.Variable(0, trainable=False)
    lr = interpolated_decay(start_lr, end_lr, global_step, start_step,
                            end_step)
    act, train, update_target, debug = multiheaded_build_graph.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr,
                                         beta1=beta1,
                                         beta2=beta2,
                                         epsilon=epsilon),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        global_step=global_step,
        lamda=lamda,
    )
    tf.summary.FileWriter(logger.get_dir(), graph_def=sess.graph_def)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    if exploration_schedule is None:
        exploration = LinearSchedule(schedule_timesteps=int(
            exploration_fraction * max_timesteps),
                                     initial_p=1.0,
                                     final_p=exploration_final_eps)
    else:
        exploration = exploration_schedule

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        if model_directory is None:
            model_directory = pathlib.Path(td)
        model_file = str(model_directory / "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            if isinstance(env.action_space, gym.spaces.MultiBinary):
                env_action = np.zeros(env.action_space.n)
                env_action[action] = 1
            else:
                env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    act.save(str(model_directory / "act_model.pkl"))
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U.load_state(model_file)

    return act
Esempio n. 22
0
def learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None):
    sess = tf.Session()
    sess.__enter__()

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    if(env.is_single):
        observation_space_shape = env.observation_space.shape
        num_actions = env.action_space.n
    else:
        observation_space_shape = env.observation_space[0].shape
        num_actions = env.action_space[0].n
    num_agents=env.agentSize
    def make_obs_ph(name):
        return BatchInput(observation_space_shape, name=name)


    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise
    )
    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size*num_agents, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size*num_agents)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(
                    1. - exploration.value(t) + exploration.value(t) / float(num_actions))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action=[]
            qval=[]
            for i in range(num_agents):
                prediction=act(np.array(obs[i])[None], update_eps=update_eps, **kwargs)
                #print(prediction[0],prediction[1][0])
                action.append(prediction[0][0])
                qval.append(prediction[1][0])
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action,qval)
            # Store transition in the replay buffer.
            for i in range(num_agents):
                replay_buffer.add(obs[i], action[i], rew, new_obs[i], float(done))
            obs = new_obs
            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t*num_agents % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                #print(obses_t.shape,actions.shape,rewards.shape,obses_tp1.shape,dones.shape)
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                            saved_mean_reward, mean_100ep_reward))
                    save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            load_state(model_file)

    return act,episode_rewards
Esempio n. 23
0
def pok_learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=1000, #DP DEL 000
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          learning_starts=1500,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = tf.Session()
    sess.__enter__()

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space_shape = env.observation_space.shape #ok
    def make_obs_ph(name):
        return U.BatchInput(observation_space_shape, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n, #ok
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n, #ok
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1. #DP - don't need this
    # exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
    #                              initial_p=1.0,
    #                              final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    td_error_list = []
    saved_mean_reward = None
    saved_td_error = None
    obs = env.reset() #ok
    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()): #DP this somehow uses exploration
                    break
            #DP - not needed
            # Take action and update exploration to the newest value
            # kwargs = {}
            # if not param_noise:
            #     update_eps = exploration.value(t)
            #     update_param_noise_threshold = 0.
            # else:
            #     update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                
                           
                # update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
                # kwargs['reset'] = reset
                # kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                # kwargs['update_param_noise_scale'] = True
            action = np.int64(env.action_space.sample()) #act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] #DP this is what we replace - what does act do??
            env_action = action #DP action
            reset = False
            new_obs, rew, done, _ = env.step(env_action) #ok
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True
                
            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                # #DP EDIT
                # print("at step t " + str(t))
                # print("printing obses_t, actions, rewards, obses_tp1, dones, weights")
                # print(obses_t, actions, rewards, obses_tp1, dones, weights)
                # print("%"*30)
                
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                td_error_list.append(np.mean(np.abs(td_errors)))
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

                

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            #DP - convert to TD errors?
            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            if len(td_error_list) > 1000 / batch_size:
                mean_1000step_tderror = round(np.mean(td_error_list[-int(round(100/batch_size)):-1]),5)

            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward (how to interpret)?", mean_100ep_reward)
                if len(td_error_list) > 1000 / batch_size:
                    logger.record_tabular("mean abs 1000 td errs", mean_1000step_tderror) #DP
                logger.record_tabular("0% time spent exploring since using handlogs", 0) #int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_td_error is None or mean_1000step_tderror < saved_td_error: #mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to new avg trailing td error: {} -> {}".format( #DP
                                   saved_mean_reward, mean_1000step_tderror))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
                    saved_td_error = mean_1000step_tderror
                    import pdb; pdb.set_trace()
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward & error: {} and {}".format(saved_mean_reward, saved_td_error))
            U.load_state(model_file)

    return act
Esempio n. 24
0
class Agent:
    def __init__(self, sess):
        print("Initializing the agent...")

        self.sess = sess
        self.env = Environment()
        self.state_size = self.env.get_state_size()[0]
        self.action_size = self.env.get_action_size()
        self.low_bound, self.high_bound = self.env.get_bounds()

        self.buffer = PrioritizedReplayBuffer(parameters.BUFFER_SIZE,
                                              parameters.ALPHA)

        print("Creation of the actor-critic network...")
        self.network = Network(self.state_size, self.action_size,
                               self.low_bound, self.high_bound)
        print("Network created !\n")

        self.epsilon = parameters.EPSILON_START
        self.beta = parameters.BETA_START

        self.best_run = -1e10

        self.sess.run(tf.global_variables_initializer())

    def run(self):

        self.nb_ep = 1
        self.total_steps = 0

        for self.nb_ep in range(1, parameters.TRAINING_STEPS + 1):

            episode_reward = 0
            episode_step = 0
            done = False
            memory = deque()

            # Initial state
            s = self.env.reset()
            max_steps = parameters.MAX_EPISODE_STEPS + self.nb_ep // parameters.EP_ELONGATION

            while episode_step < max_steps and not done:

                if random.random() < self.epsilon:
                    a = self.env.random()
                else:
                    # choose action based on deterministic policy
                    a, = self.sess.run(self.network.actions,
                                       feed_dict={self.network.state_ph: [s]})

                # Decay epsilon
                if self.epsilon > parameters.EPSILON_STOP:
                    self.epsilon -= parameters.EPSILON_DECAY

                s_, r, done, info = self.env.act(a)
                memory.append((s, a, r, s_, 0.0 if done else 1.0))

                if len(memory) > parameters.N_STEP_RETURN:
                    s_mem, a_mem, r_mem, ss_mem, done_mem = memory.popleft()
                    discount_R = 0
                    for i, (si, ai, ri, s_i, di) in enumerate(memory):
                        discount_R += ri * parameters.DISCOUNT**(i + 1)
                    self.buffer.add(s_mem, a_mem, discount_R, s_, done)

                # update network weights to fit a minibatch of experience
                if self.total_steps % parameters.TRAINING_FREQ == 0 and \
                        len(self.buffer) >= parameters.BATCH_SIZE:

                    minibatch = self.buffer.sample(parameters.BATCH_SIZE,
                                                   self.beta)

                    if self.beta <= parameters.BETA_STOP:
                        self.beta += parameters.BETA_INCR

                    td_errors, _, _ = self.sess.run(
                        [
                            self.network.td_errors,
                            self.network.critic_train_op,
                            self.network.actor_train_op
                        ],
                        feed_dict={
                            self.network.state_ph: minibatch[0],
                            self.network.action_ph: minibatch[1],
                            self.network.reward_ph: minibatch[2],
                            self.network.next_state_ph: minibatch[3],
                            self.network.is_not_terminal_ph: minibatch[4]
                        })

                    self.buffer.update_priorities(minibatch[6],
                                                  td_errors + 1e-6)
                    # update target networks
                    _ = self.sess.run(self.network.update_slow_targets_op)

                episode_reward += r
                s = s_
                episode_step += 1
                self.total_steps += 1

            self.nb_ep += 1

            if self.nb_ep % parameters.DISP_EP_REWARD_FREQ == 0:
                print(
                    'Episode %2i, Reward: %7.3f, Steps: %i, Epsilon : %7.3f, Max steps : %i'
                    % (self.nb_ep, episode_reward, episode_step, self.epsilon,
                       max_steps))

            DISPLAYER.add_reward(episode_reward)

            if episode_reward > self.best_run and self.nb_ep > 100:
                self.best_run = episode_reward
                print("Best agent ! ", episode_reward)
                SAVER.save('best')

            if self.nb_ep % parameters.SAVE_FREQ == 0:
                SAVER.save(self.nb_ep)

    def play(self, number_run):
        print("Playing for", number_run, "runs")

        try:
            for i in range(number_run):

                s = self.env.reset()
                episode_reward = 0
                done = False

                while not done:

                    a, = self.sess.run(self.network.actions,
                                       feed_dict={self.network.state_ph: [s]})

                    s_, r, done, info = self.env.act(a)
                    episode_reward += r

                print("Episode reward :", episode_reward)

        except KeyboardInterrupt as e:
            pass

        except Exception as e:
            print("Exception :", e)

        finally:
            print("End of the demo")
            self.env.close()

    def close(self):
        self.env.close()
Esempio n. 25
0
def learn(env,
          q_func,
          num_actions=64*64,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None):
  """Train a deepq model.

  Parameters
  -------
  env: pysc2.env.SC2Env
      environment to train on
  q_func: (tf.Variable, int, str, bool) -> tf.Variable
      the model that takes the following inputs:
          observation_in: object
              the output of observation placeholder
          num_actions: int
              number of actions
          scope: str
          reuse: bool
              should be passed to outer variable scope
      and returns a tensor of shape (batch_size, num_actions) with values of every action.
  lr: float
      learning rate for adam optimizer
  max_timesteps: int
      number of env steps to optimizer for
  buffer_size: int
      size of the replay buffer
  exploration_fraction: float
      fraction of entire training period over which the exploration rate is annealed
  exploration_final_eps: float
      final value of random action probability
  train_freq: int
      update the model every `train_freq` steps.
      set to None to disable printing
  batch_size: int
      size of a batched sampled from replay buffer for training
  print_freq: int
      how often to print out training progress
      set to None to disable printing
  checkpoint_freq: int
      how often to save the model. This is so that the best version is restored
      at the end of the training. If you do not wish to restore the best version at
      the end of the training set this variable to None.
  learning_starts: int
      how many steps of the model to collect transitions for before learning starts
  gamma: float
      discount factor
  target_network_update_freq: int
      update the target network every `target_network_update_freq` steps.
  prioritized_replay: True
      if True prioritized replay buffer will be used.
  prioritized_replay_alpha: float
      alpha parameter for prioritized replay buffer
  prioritized_replay_beta0: float
      initial value of beta for prioritized replay buffer
  prioritized_replay_beta_iters: int
      number of iterations over which beta will be annealed from initial value
      to 1.0. If set to None equals to max_timesteps.
  prioritized_replay_eps: float
      epsilon to add to the TD errors when updating priorities.
  num_cpu: int
      number of cpus to use for training
  callback: (locals, globals) -> None
      function called at every steps with state of the algorithm.
      If callback returns true training stops.

  Returns
  -------
  act: ActWrapper
      Wrapper over act function. Adds ability to save it and load it.
      See header of baselines/deepq/categorical.py for details on the act function.
  """
  # Create all the functions necessary to train the model

  sess = U.make_session(num_cpu=num_cpu)
  sess.__enter__()

  # Set up summary Ops
  summary_ops, summary_vars = build_summaries()
  writer = tf.summary.FileWriter(SUMMARY_DIR, sess.graph)


  def make_obs_ph(name):
    return U.BatchInput((64, 64), name=name)

  act, train, update_target, debug = deepq.build_train(
    make_obs_ph=make_obs_ph,
    q_func=q_func,
    num_actions=num_actions,
    optimizer=tf.train.AdamOptimizer(learning_rate=lr),
    gamma=gamma,
    grad_norm_clipping=10
  )
  act_params = {
    'make_obs_ph': make_obs_ph,
    'q_func': q_func,
    'num_actions': num_actions,
  }

  # Create the replay buffer
  if prioritized_replay:
    replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
    if prioritized_replay_beta_iters is None:
      prioritized_replay_beta_iters = max_timesteps
    beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                   initial_p=prioritized_replay_beta0,
                                   final_p=1.0)
  else:
    replay_buffer = ReplayBuffer(buffer_size)
    beta_schedule = None
  # Create the schedule for exploration starting from 1.
  exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                               initial_p=1.0,
                               final_p=exploration_final_eps)

  # Initialize the parameters and copy them to the target network.
  U.initialize()
  update_target()

  episode_rewards = [0.0]
  episode_minerals = [0.0]
  saved_mean_reward = None

  path_memory = np.zeros((64,64))

  obs = env.reset()
  # Select all marines first
  step_result = env.step(actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])

  player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

  obs = player_relative + path_memory

  player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
  player = [int(player_x.mean()), int(player_y.mean())]

  if(player[0]>32):
    obs = shift(LEFT, player[0]-32, obs)
  elif(player[0]<32):
    obs = shift(RIGHT, 32 - player[0], obs)

  if(player[1]>32):
    obs = shift(UP, player[1]-32, obs)
  elif(player[1]<32):
    obs = shift(DOWN, 32 - player[1], obs)

  reset = True
  with tempfile.TemporaryDirectory() as td:
    model_saved = False
    model_file = os.path.join(td, "model")

    for t in range(max_timesteps):
      if callback is not None:
        if callback(locals(), globals()):
          break
      # Take action and update exploration to the newest value
      kwargs = {}
      if not param_noise:
        update_eps = exploration.value(t)
        update_param_noise_threshold = 0.
      else:
        update_eps = 0.
        if param_noise_threshold >= 0.:
          update_param_noise_threshold = param_noise_threshold
        else:
          # Compute the threshold such that the KL divergence between perturbed and non-perturbed
          # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
          # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
          # for detailed explanation.
          update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(num_actions))
        kwargs['reset'] = reset
        kwargs['update_param_noise_threshold'] = update_param_noise_threshold
        kwargs['update_param_noise_scale'] = True
      action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
      reset = False

      coord = [player[0], player[1]]
      rew = 0

      path_memory_ = np.array(path_memory, copy=True)
      if(action == 0): #UP

        if(player[1] >= 16):
          coord = [player[0], player[1] - 16]
          path_memory_[player[1] - 16 : player[1], player[0]] = -1
        elif(player[1] > 0):
          coord = [player[0], 0]
          path_memory_[0 : player[1], player[0]] = -1
        else:
          rew -= 1

      elif(action == 1): #DOWN

        if(player[1] <= 47):
          coord = [player[0], player[1] + 16]
          path_memory_[player[1] : player[1] + 16, player[0]] = -1
        elif(player[1] > 47):
          coord = [player[0], 63]
          path_memory_[player[1] : 63, player[0]] = -1
        else:
          rew -= 1

      elif(action == 2): #LEFT

        if(player[0] >= 16):
          coord = [player[0] - 16, player[1]]
          path_memory_[player[1], player[0] - 16 : player[0]] = -1
        elif(player[0] < 16):
          coord = [0, player[1]]
          path_memory_[player[1], 0 : player[0]] = -1
        else:
          rew -= 1

      elif(action == 3): #RIGHT

        if(player[0] <= 47):
          coord = [player[0] + 16, player[1]]
          path_memory_[player[1], player[0] : player[0] + 16] = -1
        elif(player[0] > 47):
          coord = [63, player[1]]
          path_memory_[player[1], player[0] : 63] = -1
        else:
          rew -= 1

      else:
        #Cannot move, give minus reward
        rew -= 1

      if(path_memory[coord[1],coord[0]] != 0):
        rew -= 0.5

      path_memory = np.array(path_memory_)
      #print("action : %s Coord : %s" % (action, coord))

      new_action = [sc2_actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, coord])]

      step_result = env.step(actions=new_action)

      player_relative = step_result[0].observation["screen"][_PLAYER_RELATIVE]
      new_obs = player_relative + path_memory

      player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
      player = [int(player_x.mean()), int(player_y.mean())]

      if(player[0]>32):
        new_obs = shift(LEFT, player[0]-32, new_obs)
      elif(player[0]<32):
        new_obs = shift(RIGHT, 32 - player[0], new_obs)

      if(player[1]>32):
        new_obs = shift(UP, player[1]-32, new_obs)
      elif(player[1]<32):
        new_obs = shift(DOWN, 32 - player[1], new_obs)

      rew += step_result[0].reward * 10

      done = step_result[0].step_type == environment.StepType.LAST

      # Store transition in the replay buffer.
      replay_buffer.add(obs, action, rew, new_obs, float(done))
      obs = new_obs

      episode_rewards[-1] += rew
      episode_minerals[-1] += step_result[0].reward

      if done:
        obs = env.reset()
        player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

        obs = player_relative + path_memory

        player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
        player = [int(player_x.mean()), int(player_y.mean())]

        if(player[0]>32):
          obs = shift(LEFT, player[0]-32, obs)
        elif(player[0]<32):
          obs = shift(RIGHT, 32 - player[0], obs)

        if(player[1]>32):
          obs = shift(UP, player[1]-32, obs)
        elif(player[1]<32):
          obs = shift(DOWN, 32 - player[1], obs)

        # Select all marines first
        env.step(actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])
        episode_rewards.append(0.0)
        episode_minerals.append(0.0)

        path_memory = np.zeros((64,64))

        reset = True

      if t > learning_starts and t % train_freq == 0:
        # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
        if prioritized_replay:
          experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
          (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
        else:
          obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
          weights, batch_idxes = np.ones_like(rewards), None
        td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
        if prioritized_replay:
          new_priorities = np.abs(td_errors) + prioritized_replay_eps
          replay_buffer.update_priorities(batch_idxes, new_priorities)

      if t > learning_starts and t % target_network_update_freq == 0:
        # Update target network periodically.
        update_target()

      mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
      mean_100ep_mineral = round(np.mean(episode_minerals[-101:-1]), 1)
      num_episodes = len(episode_rewards)
      if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
        summary_str = sess.run(summary_ops, feed_dict={
          summary_vars[0]: mean_100ep_reward,
          summary_vars[1]: mean_100ep_mineral
        })

        writer.add_summary(summary_str, num_episodes)
        writer.flush()
        logger.record_tabular("steps", t)
        logger.record_tabular("episodes", num_episodes)
        logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
        logger.record_tabular("mean 100 episode mineral", mean_100ep_mineral)
        logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
        logger.dump_tabular()

      if (checkpoint_freq is not None and t > learning_starts and
              num_episodes > 100 and t % checkpoint_freq == 0):
        if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
          if print_freq is not None:
            logger.log("Saving model due to mean reward increase: {} -> {}".format(
              saved_mean_reward, mean_100ep_reward))
          U.save_state(model_file)
          model_saved = True
          saved_mean_reward = mean_100ep_reward
    if model_saved:
      if print_freq is not None:
        logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
      U.load_state(model_file)

  return ActWrapper(act)
Esempio n. 26
0
def main():
    with tf_util.make_session(4) as session:
        act_fn, train_fn, target_update_fn, debug_fn = deepq.build_train(
            make_obs_ph=lambda name: Uint8Input([input_height, input_width], name=name),
            q_func=q_function_nn,
            num_actions=action_space_size,
            optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
            gamma=0.99,
            grad_norm_clipping=10,
            double_q=False)

        epsilon = PiecewiseSchedule([(0, 1.0),
                                     (10000, 1.0), # since we start training at 10000 steps
                                     (20000, 0.4),
                                     (50000, 0.2),
                                     (100000, 0.1),
                                     (500000, 0.05)], outside_value=0.01)
        replay_memory = PrioritizedReplayBuffer(replay_memory_size, replay_alpha)
        beta = LinearSchedule(int(NUM_STEPS/4), initial_p=replay_beta, final_p=1.0)
        tf_util.initialize()
        target_update_fn()

        state = env.reset()
        state = preprocess_frame(state)
        watch_train = False
        dq = [] # a queue to store episode rewards
        start_step = 1
        episode = 1
        if is_load_model:
            dict_state = load_model()
            replay_memory = dict_state["replay_memory"]
            dq = dict_state["dq"]
            start_step = dict_state["step"] + 1

        for step in itertools.count(start=start_step):
            action = act_fn(state[np.newaxis], update_eps=epsilon.value(step))[0]
            state_tplus1, reward, is_finished, _ = env.step(action)
            dq.append(reward)
            if watch_flag:
                env.render()
                time.sleep(1.0/fps)
            state_tplus1 = preprocess_frame(state_tplus1)
            replay_memory.add(state, action, reward, state_tplus1, float(is_finished))
            state = state_tplus1
            if is_finished:
                ep_reward = sum(dq)
                log.logkv("Steps", step)
                log.logkv("Episode reward", ep_reward)
                log.logkv("Episode number", episode)
                log.dumpkvs()
                print("Step", step, ". Finished episode", episode, "with reward ", ep_reward)
                dq = []
                state = preprocess_frame(env.reset())
                episode += 1
                for _ in range(30):
                    # NOOP for ~90 frames to skip the start screen. Range 30 used because each
                    # step executed for 3 frames on average. Action 0 stands for doing nothing
                    env.step(0)
                    if watch_flag:
                        env.render()

            if step > 10000 and step % learn_freq == 0:
                # only start training after 10000 steps are completed
                batch = replay_memory.sample(batch_size, beta=beta.value(step))
                states = batch[0]
                actions = batch[1]
                rewards = batch[2]
                states_tplus1 = batch[3]
                finished_vars = batch[4]
                weights = batch[5]
                state_indeces = batch[6]
                errors = train_fn(states, actions, rewards, states_tplus1, finished_vars, weights)
                priority_order_new = np.abs(errors) + replay_epsilon
                replay_memory.update_priorities(state_indeces, priority_order_new)

            if step % save_freq == 0:
                print("State save", step)
                dict_state = {
                    "step": step,
                    "replay_memory": replay_memory,
                    "dq": dq
                }
                save_model(dict_state)

            if step > NUM_STEPS:
                print("Finished training. Saving model to ./saved_model/model.ckpt")
                dict_state = {
                    "step": step,
                    "replay_memory": replay_memory,
                    "dq": dq
                }
                save_model(dict_state)
                break
Esempio n. 27
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=5,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batch sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the trained model from. (default: None)(used in test stage)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.

    """

    # Create all the functions necessary to train the model
    sess = get_session()
    set_global_seeds(seed)
    med_libs = MedLibs()
    '''Define Q network 
    inputs: observation place holder(make_obs_ph), num_actions, scope, reuse
    outputs(tensor of shape batch_size*num_actions): values of each action, Q(s,a_{i})
    '''
    q_func = build_q_func(network, **network_kwargs)
    '''  To put observations into a placeholder  '''
    # TODO: Can only deal with Discrete and Box observation spaces for now
    # observation_space = env.observation_space (default)
    # Use sub_obs_space instead

    observation_space = med_libs.subobs_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    '''  Customize action  '''
    # TODO: subset of action space.
    action_dim = med_libs.sub_act_dim
    ''' 
    Returns: deepq.build_train()
        act: (tf.Variable, bool, float) -> tf.Variable
            function to select and action given observation.
            act is computed by [build_act] or [build_act_with_param_noise]
        train: (object, np.array, np.array, object, np.array, np.array) -> np.array
            optimize the error in Bellman's equation.
        update_target: () -> ()
            copy the parameters from optimized Q function to the target Q function. 
        debug: {str: function}
            a bunch of functions to print debug data like q_values.
    '''

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=action_dim,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        double_q=True,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': action_dim,
    }
    '''Contruct an act object using ActWrapper'''
    act = ActWrapper(act, act_params)
    ''' Create the replay buffer'''
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    '''Create the schedule for exploration starting from 1.'''
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)
    '''
    Initialize all the uninitialized variables in the global scope and copy them to the target network.
    '''
    U.initialize()
    update_target()
    episode_rewards = [0.0]
    saved_mean_reward = None

    obs = env.reset()
    sub_obs = med_libs.custom_obs(obs)  # TODO: customize observations
    pre_obs = obs
    reset = True
    mydict = med_libs.action_dict
    already_starts = False

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td
        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True

        elif load_path is not None:
            # load_path: a trained model/policy
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))
        ''' Training loop starts'''
        t = 0
        while t < total_timesteps:
            if callback is not None:
                if callback(locals(), globals()):
                    break
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            ''' Choose action: take action and update exploration to the newest value
            '''
            # TODO: Mixed action strategy
            # Normal status, action is easily determined by rules, use [obs]
            action = med_libs.simple_case_action(obs)
            # Distraction status, action is determined by Q, with [sub_obs]
            if action == -10:
                action = act(np.array(sub_obs)[None],
                             update_eps=update_eps,
                             **kwargs)[0]
                action = med_libs.action_Q_env(
                    action
                )  # TODO:action_Q_env, from Q_action(0~2) to env_action(2~4)

            reset = False
            ''' Step action '''
            new_obs, rew, done, d_info = env.step(action)
            d_att_last = int(pre_obs[0][0])
            d_att_now = int(obs[0][0])
            d_att_next = int(new_obs[0][0])
            ''' Store transition in the replay buffer.'''
            pre_obs = obs
            obs = new_obs
            sub_new_obs = med_libs.custom_obs(new_obs)

            if (d_att_last == 0 and d_att_now == 1) and not already_starts:
                already_starts = True

            if already_starts and d_att_now == 1:
                replay_buffer.add(sub_obs, action, rew, sub_new_obs,
                                  float(done))
                episode_rewards[-1] += rew  # Sum of rewards
                t = t + 1
                print(
                    '>> Iteration:{}, State[d_att,cd_activate,L4_available,ssl4_activate,f_dc]:{}'
                    .format(t, sub_obs))
                print(
                    'Dis_Last:{}, Dis_Now:{}, Dis_Next:{},Reward+Cost:{}, Action:{}'
                    .format(
                        d_att_last, d_att_now, d_att_next, rew,
                        list(mydict.keys())[list(
                            mydict.values()).index(action)]))

            # update sub_obs
            sub_obs = sub_new_obs

            # Done and Reset
            if done:
                print('Done infos: ', d_info)
                print('======= end =======')
                obs = env.reset()
                sub_obs = med_libs.custom_obs(obs)  # TODO: custom obs
                pre_obs = obs  # TODO: save obs at t-1
                already_starts = False
                episode_rewards.append(0.0)
                reset = True

            # Update the Q network parameters
            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                # Calculate td-errors
                actions = med_libs.action_env_Q(
                    actions
                )  # TODO:action_env_Q, from env_action(2~4) to Q_action(0~2)
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)

                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically, copy weights of Q to target Q
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward

        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
Esempio n. 28
0
def learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.01,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=50,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          callback=None,
          num_optimisation_steps=40):
    """Train a deepq model.

    Parameters
    -------
    env : gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    num_cpu: int
        number of cpus to use for training
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput((env.observation_space.shape[0] * 2, ), name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10)
    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }
    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()
    episode_max_rewards = [env.reward_max]
    episode_rewards = [0.0]
    saved_mean_reward_diff = None  # difference in saved reward
    obs = env.reset(seed=np.random.randint(0, 1000))
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        episode_buffer = [None] * env.n
        episode_timestep = 0
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            action = act(np.concatenate([obs, env.goal])[None],
                         update_eps=exploration.value(t))[0]
            new_obs, rew, done, _ = env.step(action)
            # Store transition in the replay buffer.
            episode_buffer[episode_timestep] = (obs, action, rew, new_obs,
                                                float(done))
            episode_timestep += 1
            replay_buffer.add(np.concatenate([obs, env.goal]), action, rew,
                              np.concatenate([new_obs, env.goal]), float(done))
            obs = new_obs
            episode_rewards[-1] += rew
            num_episodes = len(episode_rewards)
            #######end of episode
            if done:
                for episode in range(episode_timestep):
                    obs1, action1, _, new_obs1, done1 = episode_buffer[episode]
                    goal_prime = new_obs1
                    rew1 = env.calculate_reward(new_obs1, goal_prime)
                    replay_buffer.add(np.concatenate([obs1, goal_prime]),
                                      action1, rew1,
                                      np.concatenate([new_obs1, goal_prime]),
                                      float(done1))
                episode_timestep = 0
                obs = env.reset(seed=np.random.randint(0, 1000))
                episode_rewards.append(0.0)
                episode_max_rewards.append(env.reward_max)
                #############Training Q
                if t > learning_starts and num_episodes % train_freq == 0:
                    for i in range(num_optimisation_steps):
                        # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                        if prioritized_replay:
                            experience = replay_buffer.sample(
                                batch_size, beta=beta_schedule.value(t))
                            (obses_t, actions, rewards, obses_tp1, dones,
                             weights, batch_idxes) = experience
                        else:
                            obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                                batch_size)
                            weights, batch_idxes = np.ones_like(rewards), None
                        td_errors = train(obses_t, actions, rewards, obses_tp1,
                                          dones, weights)
                        if prioritized_replay:
                            new_priorities = np.abs(
                                td_errors) + prioritized_replay_eps
                            replay_buffer.update_priorities(
                                batch_idxes, new_priorities)
                #############Training Q target
                if t > learning_starts and num_episodes % target_network_update_freq == 0:
                    # Update target network periodically.
                    update_target()

            mean_100ep_reward = np.mean(episode_rewards[-101:-1])
            mean_100ep_max_reward = np.mean(episode_max_rewards[-101:-1])
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("mean 100 episode max reward",
                                      mean_100ep_max_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100
                    and num_episodes % checkpoint_freq == 0):
                if saved_mean_reward_diff is None or mean_100ep_max_reward - mean_100ep_reward < saved_mean_reward_diff:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward difference decrease: {} -> {}"
                            .format(saved_mean_reward_diff,
                                    mean_100ep_max_reward - mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward_diff = mean_100ep_max_reward - mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward_diff))
            U.load_state(model_file)

    return ActWrapper(act, act_params)
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=3000,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=3000,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs
            ):
    """Train a deepq model.
    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batch sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.
    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space
    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)


    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=lambda name: ObservationInput(env.observation_space, name=name),
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=0.99,
        double_q=False
        #grad_norm_clipping=10,
        # param_noise=param_noise
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(10000),
                                 initial_p=1.0,
                                 final_p=0.02)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()


    old_state = None





    formula_LTLf_1 = "!d U(g)"
    monitoring_RightToLeft = MonitoringSpecification(
        ltlf_formula=formula_LTLf_1,
        r=0,
        c=-0.01,
        s=10,
        f=-10
    )

    formula_LTLf_2 = "F(G(bb)) "  # break brick
    monitoring_BreakBrick = MonitoringSpecification(
        ltlf_formula=formula_LTLf_2,
        r=10,
        c=-0.01,
        s=10,
        f=0
    )

    monitoring_specifications = [monitoring_BreakBrick, monitoring_RightToLeft]




    def RightToLeftConversion(observation) -> TraceStep:

        done=False
        global old_state
        if arrays_equal(observation[-9:], np.zeros((len(observation[-9:])))):  ### Checking if all Bricks are broken
            # print('goal reached')
            goal = True  # all bricks are broken
            done = True
        else:
            goal = False

        dead = False
        if done and not goal:
            dead = True


        order = check_ordered(observation[-9:])
        if not order:
            # print('wrong order', state[5:])
            dead=True
            done = True

        if old_state is not None:  # if not the first state
            if not arrays_equal(old_state[-9:], observation[-9:]):
                brick_broken = True
                # check_ordered(state[-9:])
                # print(' a brick is broken')
            else:
                brick_broken = False
        else:
            brick_broken = False




        dictionary={'g': goal, 'd': dead, 'o': order, 'bb':brick_broken}
        #print(dictionary)
        return dictionary

    multi_monitor = MultiRewardMonitor(
        monitoring_specifications=monitoring_specifications,
        obs_to_trace_step=RightToLeftConversion
    )


    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
            # initialize
    done = False
    #monitor.get_reward(None, False) # add first state in trace
        

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        episodeCounter=0
        num_episodes=0
        for t in itertools.count():
            
            # Take action and update exploration to the newest value
            action = act(obs[None], update_eps=exploration.value(t))[0]
            #print(action)
            #print(action)
            new_obs, rew, done, _ = env.step(action)

            done=False
            #done=False ## FOR FIRE ONLY

            #print(new_obs)

            #new_obs.append()

            start_time = time.time()
            rew, is_perm = multi_monitor(new_obs)
            #print("--- %s seconds ---" % (time.time() - start_time))
            old_state=new_obs
            #print(rew)


            done=done or is_perm



            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew


            is_solved = t > 100 and np.mean(episode_rewards[-101:-1]) >= 200
            if episodeCounter % 100 == 0 or episodeCounter<1:
                # Show off the result
                #print("coming here Again and Again")
                env.render()


            if done:
                episodeCounter+=1
                num_episodes+=1
                obs = env.reset()
                old_state=None
                episode_rewards.append(0)



                multi_monitor.reset()
                #monitor.get_reward(None, False)




            else:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if t > 1000:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(64)
                    train(obses_t, actions, rewards, obses_tp1, dones, np.ones_like(rewards))

                # Update target network periodically.
                if t % 1000 == 0:
                    update_target()
            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            if done and len(episode_rewards) % 10 == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", len(episode_rewards))
                logger.record_tabular("currentEpisodeReward", episode_rewards[-1])
                logger.record_tabular("mean 100 episode reward", round(np.mean(episode_rewards[-101:-1]), 1))
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    act.save_act()
                    #save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        # if model_saved:
        #     if print_freq is not None:
        #         logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
        #     load_variables(model_file)

    return act
Esempio n. 30
0
def learn(env,
          q_func,
          num_actions=3,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None,
          demo_replay=[]
          ):
  """Train a deepq model.

  Parameters
  -------
  env: pysc2.env.SC2Env
      environment to train on
  q_func: (tf.Variable, int, str, bool) -> tf.Variable
      the model that takes the following inputs:
          observation_in: object
              the output of observation placeholder
          num_actions: int
              number of actions
          scope: str
          reuse: bool
              should be passed to outer variable scope
      and returns a tensor of shape (batch_size, num_actions) with values of every action.
  lr: float
      learning rate for adam optimizer
  max_timesteps: int
      number of env steps to optimizer for
  buffer_size: int
      size of the replay buffer
  exploration_fraction: float
      fraction of entire training period over which the exploration rate is annealed
  exploration_final_eps: float
      final value of random action probability
  train_freq: int
      update the model every `train_freq` steps.
      set to None to disable printing
  batch_size: int
      size of a batched sampled from replay buffer for training
  print_freq: int
      how often to print out training progress
      set to None to disable printing
  checkpoint_freq: int
      how often to save the model. This is so that the best version is restored
      at the end of the training. If you do not wish to restore the best version at
      the end of the training set this variable to None.
  learning_starts: int
      how many steps of the model to collect transitions for before learning starts
  gamma: float
      discount factor
  target_network_update_freq: int
      update the target network every `target_network_update_freq` steps.
  prioritized_replay: True
      if True prioritized replay buffer will be used.
  prioritized_replay_alpha: float
      alpha parameter for prioritized replay buffer
  prioritized_replay_beta0: float
      initial value of beta for prioritized replay buffer
  prioritized_replay_beta_iters: int
      number of iterations over which beta will be annealed from initial value
      to 1.0. If set to None equals to max_timesteps.
  prioritized_replay_eps: float
      epsilon to add to the TD errors when updating priorities.
  num_cpu: int
      number of cpus to use for training
  callback: (locals, globals) -> None
      function called at every steps with state of the algorithm.
      If callback returns true training stops.

  Returns
  -------
  act: ActWrapper
      Wrapper over act function. Adds ability to save it and load it.
      See header of baselines/deepq/categorical.py for details on the act function.
  """
  # Create all the functions necessary to train the model

  sess = U.make_session(num_cpu=num_cpu)
  sess.__enter__()

  def make_obs_ph(name):
    return U.BatchInput((64, 64), name=name)

  act, train, update_target, debug = deepq.build_train(
    make_obs_ph=make_obs_ph,
    q_func=q_func,
    num_actions=num_actions,
    optimizer=tf.train.AdamOptimizer(learning_rate=lr),
    gamma=gamma,
    grad_norm_clipping=10
  )
  act_params = {
    'make_obs_ph': make_obs_ph,
    'q_func': q_func,
    'num_actions': num_actions,
  }

  # Create the replay buffer
  if prioritized_replay:
    replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
    if prioritized_replay_beta_iters is None:
      prioritized_replay_beta_iters = max_timesteps
    beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                   initial_p=prioritized_replay_beta0,
                                   final_p=1.0)
  else:
    replay_buffer = ReplayBuffer(buffer_size)
    beta_schedule = None
  # Create the schedule for exploration starting from 1.
  exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                               initial_p=1.0,
                               final_p=exploration_final_eps)

  # Initialize the parameters and copy them to the target network.
  U.initialize()
  update_target()

  episode_rewards = [0.0]
  saved_mean_reward = None

  obs = env.reset()
  # Select all marines first

  player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

  screen = player_relative

  obs = common.init(env, obs)

  group_id = 0
  reset = True
  with tempfile.TemporaryDirectory() as td:
    model_saved = False
    model_file = os.path.join(td, "model")

    for t in range(max_timesteps):
      if callback is not None:
        if callback(locals(), globals()):
          break
      # Take action and update exploration to the newest value
      kwargs = {}
      if not param_noise:
        update_eps = exploration.value(t)
        update_param_noise_threshold = 0.
      else:
        update_eps = 0.
        if param_noise_threshold >= 0.:
          update_param_noise_threshold = param_noise_threshold
        else:
          # Compute the threshold such that the KL divergence between perturbed and non-perturbed
          # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
          # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
          # for detailed explanation.
          update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(num_actions))
        kwargs['reset'] = reset
        kwargs['update_param_noise_threshold'] = update_param_noise_threshold
        kwargs['update_param_noise_scale'] = True

      # custom process for DefeatZerglingsAndBanelings

      obs, screen, player = common.select_marine(env, obs)

      action = act(np.array(screen)[None], update_eps=update_eps, **kwargs)[0]
      reset = False
      rew = 0

      new_action = None

      obs, new_action = common.marine_action(env, obs, player, action)
      army_count = env._obs.observation.player_common.army_count

      try:
        if army_count > 0 and _ATTACK_SCREEN in obs[0].observation["available_actions"]:
          obs = env.step(actions=new_action)
        else:
          new_action = [sc2_actions.FunctionCall(_NO_OP, [])]
          obs = env.step(actions=new_action)
      except Exception as e:
        #print(e)
        1 # Do nothing

      player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
      new_screen = player_relative

      rew += obs[0].reward

      done = obs[0].step_type == environment.StepType.LAST

      selected = obs[0].observation["screen"][_SELECTED]
      player_y, player_x = (selected == _PLAYER_FRIENDLY).nonzero()

      if(len(player_y)>0):
        player = [int(player_x.mean()), int(player_y.mean())]

      if(len(player) == 2):

        if(player[0]>32):
          new_screen = common.shift(LEFT, player[0]-32, new_screen)
        elif(player[0]<32):
          new_screen = common.shift(RIGHT, 32 - player[0], new_screen)

        if(player[1]>32):
          new_screen = common.shift(UP, player[1]-32, new_screen)
        elif(player[1]<32):
          new_screen = common.shift(DOWN, 32 - player[1], new_screen)

      # Store transition in the replay buffer.
      replay_buffer.add(screen, action, rew, new_screen, float(done))
      screen = new_screen

      episode_rewards[-1] += rew
      reward = episode_rewards[-1]

      if done:
        print("Episode Reward : %s" % episode_rewards[-1])
        obs = env.reset()
        player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

        screen = player_relative

        group_list = common.init(env, obs)

        # Select all marines first
        #env.step(actions=[sc2_actions.FunctionCall(_SELECT_UNIT, [_SELECT_ALL])])
        episode_rewards.append(0.0)

        reset = True

      if t > learning_starts and t % train_freq == 0:
        # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
        if prioritized_replay:
          experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
          (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
        else:
          obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
          weights, batch_idxes = np.ones_like(rewards), None
        td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
        if prioritized_replay:
          new_priorities = np.abs(td_errors) + prioritized_replay_eps
          replay_buffer.update_priorities(batch_idxes, new_priorities)

      if t > learning_starts and t % target_network_update_freq == 0:
        # Update target network periodically.
        update_target()

      mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
      num_episodes = len(episode_rewards)
      if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
        logger.record_tabular("steps", t)
        logger.record_tabular("episodes", num_episodes)
        logger.record_tabular("reward", reward)
        logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
        logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
        logger.dump_tabular()

      if (checkpoint_freq is not None and t > learning_starts and
              num_episodes > 100 and t % checkpoint_freq == 0):
        if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
          if print_freq is not None:
            logger.log("Saving model due to mean reward increase: {} -> {}".format(
              saved_mean_reward, mean_100ep_reward))
          U.save_state(model_file)
          model_saved = True
          saved_mean_reward = mean_100ep_reward
    if model_saved:
      if print_freq is not None:
        logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
      U.load_state(model_file)

  return ActWrapper(act)
Esempio n. 31
0
def learn(env,
          q_func,
          num_actions=4,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None):
    """Train a deepq model.

  Parameters
  -------
  env: pysc2.env.SC2Env
      environment to train on
  q_func: (tf.Variable, int, str, bool) -> tf.Variable
      the model that takes the following inputs:
          observation_in: object
              the output of observation placeholder
          num_actions: int
              number of actions
          scope: str
          reuse: bool
              should be passed to outer variable scope
      and returns a tensor of shape (batch_size, num_actions) with values of every action.
  lr: float
      learning rate for adam optimizer
  max_timesteps: int
      number of env steps to optimizer for
  buffer_size: int
      size of the replay buffer
  exploration_fraction: float
      fraction of entire training period over which the exploration rate is annealed
  exploration_final_eps: float
      final value of random action probability
  train_freq: int
      update the model every `train_freq` steps.
      set to None to disable printing
  batch_size: int
      size of a batched sampled from replay buffer for training
  print_freq: int
      how often to print out training progress
      set to None to disable printing
  checkpoint_freq: int
      how often to save the model. This is so that the best version is restored
      at the end of the training. If you do not wish to restore the best version at
      the end of the training set this variable to None.
  learning_starts: int
      how many steps of the model to collect transitions for before learning starts
  gamma: float
      discount factor
  target_network_update_freq: int
      update the target network every `target_network_update_freq` steps.
  prioritized_replay: True
      if True prioritized replay buffer will be used.
  prioritized_replay_alpha: float
      alpha parameter for prioritized replay buffer
  prioritized_replay_beta0: float
      initial value of beta for prioritized replay buffer
  prioritized_replay_beta_iters: int
      number of iterations over which beta will be annealed from initial value
      to 1.0. If set to None equals to max_timesteps.
  prioritized_replay_eps: float
      epsilon to add to the TD errors when updating priorities.
  num_cpu: int
      number of cpus to use for training
  callback: (locals, globals) -> None
      function called at every steps with state of the algorithm.
      If callback returns true training stops.

  Returns
  -------
  act: ActWrapper
      Wrapper over act function. Adds ability to save it and load it.
      See header of baselines/deepq/categorical.py for details on the act function.
  """
    # Create all the functions necessary to train the model

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    #def make_obs_ph(name):
    #return U.BatchInput((16, 16), name=name)
    obs_spec = env.observation_spec()[0]
    screen_dim = obs_spec['feature_screen'][1:3]

    def make_obs_ph(name):
        #return ObservationInput(ob_space, name=name)
        return ObservationInput(Box(low=0.0,
                                    high=screen_dim[0],
                                    shape=(screen_dim[0], screen_dim[1], 1)),
                                name=name)

    act_x, train_x, update_target_x, debug_x = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        scope="deepq_x")

    act_y, train_y, update_target_y, debug_y = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        scope="deepq_y")

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
    }

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer_x = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)
        replay_buffer_y = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)

        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule_x = LinearSchedule(prioritized_replay_beta_iters,
                                         initial_p=prioritized_replay_beta0,
                                         final_p=1.0)

        beta_schedule_y = LinearSchedule(prioritized_replay_beta_iters,
                                         initial_p=prioritized_replay_beta0,
                                         final_p=1.0)
    else:
        replay_buffer_x = ReplayBuffer(buffer_size)
        replay_buffer_y = ReplayBuffer(buffer_size)

        beta_schedule_x = None
        beta_schedule_y = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target_x()
    update_target_y()

    episode_rewards = [0.0]
    saved_mean_reward = None

    obs = env.reset()
    # Select all marines first
    obs = env.step(
        actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])

    print(obs[0].observation.keys())

    player_relative = obs[0].observation["feature_screen"][_PLAYER_RELATIVE]

    screen = (player_relative == _PLAYER_NEUTRAL).astype(int)  #+ path_memory

    player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
    player = [int(player_x.mean()), int(player_y.mean())]

    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join("model/", "mineral_shards")
        print(model_file)

        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                if param_noise_threshold >= 0.:
                    update_param_noise_threshold = param_noise_threshold
                else:
                    # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                    # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                    # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                    # for detailed explanation.
                    update_param_noise_threshold = -np.log(
                        1. - exploration.value(t) +
                        exploration.value(t) / float(num_actions))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            action_x = act_x(np.array(screen)[None],
                             update_eps=update_eps,
                             **kwargs)[0]

            action_y = act_y(np.array(screen)[None],
                             update_eps=update_eps,
                             **kwargs)[0]

            reset = False

            coord = [player[0], player[1]]
            rew = 0

            coord = [action_x, action_y]

            if _MOVE_SCREEN not in obs[0].observation["available_actions"]:
                obs = env.step(actions=[
                    sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
                ])

            new_action = [
                sc2_actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, coord])
            ]

            # else:
            #   new_action = [sc2_actions.FunctionCall(_NO_OP, [])]

            obs = env.step(actions=new_action)

            player_relative = obs[0].observation["feature_screen"][
                _PLAYER_RELATIVE]
            new_screen = (player_relative == _PLAYER_NEUTRAL).astype(int)

            player_y, player_x = (
                player_relative == _PLAYER_FRIENDLY).nonzero()
            player = [int(player_x.mean()), int(player_y.mean())]

            rew = obs[0].reward

            done = obs[0].step_type == environment.StepType.LAST

            # Store transition in the replay buffer.
            replay_buffer_x.add(screen, action_x, rew, new_screen, float(done))
            replay_buffer_y.add(screen, action_y, rew, new_screen, float(done))

            screen = new_screen

            episode_rewards[-1] += rew
            reward = episode_rewards[-1]

            if done:
                obs = env.reset()
                player_relative = obs[0].observation["feature_screen"][
                    _PLAYER_RELATIVE]
                screent = (player_relative == _PLAYER_NEUTRAL).astype(int)

                player_y, player_x = (
                    player_relative == _PLAYER_FRIENDLY).nonzero()
                player = [int(player_x.mean()), int(player_y.mean())]

                # Select all marines first
                env.step(actions=[
                    sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
                ])
                episode_rewards.append(0.0)
                #episode_minerals.append(0.0)

                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:

                    experience_x = replay_buffer_x.sample(
                        batch_size, beta=beta_schedule_x.value(t))
                    (obses_t_x, actions_x, rewards_x, obses_tp1_x, dones_x,
                     weights_x, batch_idxes_x) = experience_x

                    experience_y = replay_buffer_y.sample(
                        batch_size, beta=beta_schedule_y.value(t))
                    (obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y,
                     weights_y, batch_idxes_y) = experience_y
                else:

                    obses_t_x, actions_x, rewards_x, obses_tp1_x, dones_x = replay_buffer_x.sample(
                        batch_size)
                    weights_x, batch_idxes_x = np.ones_like(rewards_x), None

                    obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y = replay_buffer_y.sample(
                        batch_size)
                    weights_y, batch_idxes_y = np.ones_like(rewards_y), None

                td_errors_x = train_x(obses_t_x, actions_x, rewards_x,
                                      obses_tp1_x, dones_x, weights_x)

                td_errors_y = train_x(obses_t_y, actions_y, rewards_y,
                                      obses_tp1_y, dones_y, weights_y)

                if prioritized_replay:
                    new_priorities_x = np.abs(
                        td_errors_x) + prioritized_replay_eps
                    new_priorities_y = np.abs(
                        td_errors_y) + prioritized_replay_eps
                    replay_buffer_x.update_priorities(batch_idxes_x,
                                                      new_priorities_x)
                    replay_buffer_y.update_priorities(batch_idxes_y,
                                                      new_priorities_y)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target_x()
                update_target_y()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("reward", reward)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U.load_state(model_file)

    return ActWrapper(act_x), ActWrapper(act_y)
Esempio n. 32
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act, debug['q_func'], debug['obs']
Esempio n. 33
0
                        is_training=True,
                        history_length=HISTORY_LENGTH,
                        commission_percentage=COMMISSION_PERCENTAGE)
asset_features_shape = [dc.num_assets, HISTORY_LENGTH, dc.num_asset_features]
action_dim = dc.num_assets

actor_noise = OrnsteinUhlenbeckActionNoise(mu=np.zeros(action_dim))
# rpb = ReplayBuffer(buffer_size=BUFFER_SIZE)
# conf = {
#   'size': BUFFER_SIZE,
#   'batch_size': BATCH_SIZE,
#   'learn_start': 1000,
#   'steps': NUM_EPISODES * EPISODE_LENGTH
# }
# rpb = Experience(conf)
rpb = PrioritizedReplayBuffer(size=BUFFER_SIZE, alpha=0.6)

sess = tf.Session()
actor = ActorNetwork(sess=sess,
                     asset_features_shape=asset_features_shape,
                     action_dim=action_dim,
                     action_bound=1,
                     learning_rate=LEARNING_RATE,
                     tau=TAU,
                     batch_size=BATCH_SIZE)
critic = CriticNetwork(sess=sess,
                       asset_features_shape=asset_features_shape,
                       action_dim=action_dim,
                       learning_rate=LEARNING_RATE,
                       tau=TAU,
                       gamma=GAMMA,