Esempio n. 1
0
def _forward(config):
    assert config.load
    test_data = read_data(config, config.forward_name, True)
    update_config(config, [test_data])

    _config_debug(config)

    if config.use_glove_for_unk:
        word2vec_dict = test_data.shared[
            'lower_word2vec'] if config.lower_word else test_data.shared[
                'word2vec']
        new_word2idx_dict = test_data.shared['new_word2idx']
        idx2vec_dict = {
            idx: word2vec_dict[word]
            for word, idx in new_word2idx_dict.items()
        }
        new_emb_mat = np.array(
            [idx2vec_dict[idx] for idx in range(len(idx2vec_dict))],
            dtype='float32')
        config.new_emb_mat = new_emb_mat

    pprint(config.__flags, indent=2)
    models = get_multi_gpu_models(config)
    model = models[0]
    evaluator = Evaluator(config, model)
    graph_handler = GraphHandler(
        config, model
    )  # controls all tensors and variables in the graph, including loading /saving

    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    graph_handler.initialize(sess)

    num_batches = math.ceil(test_data.num_examples / config.batch_size)
    if 0 < config.test_num_batches < num_batches:
        num_batches = config.test_num_batches
    e = evaluator.get_evaluation_from_batches(
        sess,
        tqdm(test_data.get_batches(config.batch_size, num_batches=num_batches),
             total=num_batches))
    print(e)
    if config.dump_answer:
        print("dumping answer ...")
        graph_handler.dump_answer(e, path=config.answer_path)
    if config.dump_eval:
        print("dumping eval ...")
        graph_handler.dump_eval(e, path=config.eval_path)
Esempio n. 2
0
def _train(config):
    #data_filter = get_squad_data_filter(config)
    data_filter = None
    train_data = read_data(config,
                           'train',
                           config.load,
                           data_filter=data_filter)
    #dev_data = read_data(config, 'dev', True, data_filter=data_filter)
    #update_config(config, [train_data, dev_data])
    update_config(config, [train_data])

    _config_debug(config)

    word2vec_dict = train_data.shared[
        'lower_word2vec'] if config.lower_word else train_data.shared[
            'word2vec']
    word2idx_dict = train_data.shared['word2idx']
    idx2vec_dict = {
        word2idx_dict[word]: vec
        for word, vec in word2vec_dict.items() if word in word2idx_dict
    }
    emb_mat = np.array([
        idx2vec_dict[idx]
        if idx in idx2vec_dict else np.random.multivariate_normal(
            np.zeros(config.word_emb_size), np.eye(config.word_emb_size))
        for idx in tqdm(range(config.word_vocab_size))
    ])
    config.emb_mat = emb_mat

    # construct model graph and variables (using default graph)
    pprint(config.__flags, indent=2)
    models = get_multi_gpu_models(config)
    model = models[0]
    print("num params: {}".format(get_num_params()))
    trainer = MultiGPUTrainer(config, models)
    evaluator = Evaluator(
        config, model, tensor_dict=model.tensor_dict if config.vis else None)
    graph_handler = GraphHandler(
        config, model
    )  # controls all tensors and variables in the graph, including loading /saving

    # Variables
    configgpu = tf.ConfigProto(allow_soft_placement=True,
                               log_device_placement=False)
    configgpu.gpu_options.allow_growth = True
    sess = tf.Session(config=configgpu)
    #sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    graph_handler.initialize(sess)

    # Begin training
    num_steps = config.num_steps or int(
        math.ceil(train_data.num_examples /
                  (config.batch_size * config.num_gpus))) * config.num_epochs
    global_step = 0
    # for train_step in tqdm(range(num_steps/100)):
    #     batches_set = train_data.get_multi_batches(config.batch_size, config.num_gpus, num_steps=100, shuffle=True, cluster=config.cluster)
    for batches in tqdm(train_data.get_multi_batches(config.batch_size,
                                                     config.num_gpus,
                                                     num_steps=num_steps,
                                                     shuffle=True,
                                                     cluster=config.cluster),
                        total=num_steps):
        global_step = sess.run(
            model.global_step
        ) + 1  # +1 because all calculations are done after step
        get_summary = global_step % config.log_period == 0
        loss, summary, train_op = trainer.step(sess,
                                               batches,
                                               get_summary=get_summary)
        if get_summary:
            graph_handler.add_summary(summary, global_step)

        # occasional saving
        if global_step % config.save_period == 0:
            graph_handler.save(sess, global_step=global_step)

        if not config.eval:
            continue
        # Occasional evaluation
        # if global_step % config.eval_period == 0:
        #     num_steps = math.ceil(dev_data.num_examples / (config.batch_size * config.num_gpus))
        #     if 0 < config.val_num_batches < num_steps:
        #         num_steps = config.val_num_batches
        #e_train = evaluator.get_evaluation(sess, tqdm(train_data.get_batches(config.batch_size), total = num_steps))
        # e_train = evaluator.get_evaluation_from_batches(
        #     sess, tqdm(train_data.get_multi_batches(config.batch_size, config.num_gpus, num_steps=num_steps), total=num_steps)
        # )
        #graph_handler.add_summaries(e_train.summaries, global_step)
        #e_dev = evaluator.get_evaluation(sess, tqdm(dev_data.get_batches(config.batch_size), total = num_steps))
        # e_dev = evaluator.get_evaluation_from_batches(
        #     sess, tqdm(dev_data.get_multi_batches(config.batch_size, config.num_gpus, num_steps=num_steps), total=num_steps))
        #graph_handler.add_summaries(e_dev.summaries, global_step)

        # if config.dump_eval:
        #     graph_handler.dump_eval(e_dev)
        # if config.dump_answer:
        #     graph_handler.dump_answer(e_dev)
        if global_step % config.save_period == 0:
            graph_handler.save(sess, global_step=global_step)
Esempio n. 3
0
def _test(config):
    test_data = read_data(config, 'test', True)
    update_config(config, [test_data])

    _config_debug(config)

    if config.use_glove_for_unk:
        word2vec_dict = test_data.shared[
            'lower_word2vec'] if config.lower_word else test_data.shared[
                'word2vec']
        new_word2idx_dict = test_data.shared['new_word2idx']
        idx2vec_dict = {
            idx: word2vec_dict[word]
            for word, idx in new_word2idx_dict.items()
        }
        new_emb_mat = np.array(
            [idx2vec_dict[idx] for idx in range(len(idx2vec_dict))],
            dtype='float32')
        config.new_emb_mat = new_emb_mat

    pprint(config.__flags, indent=2)
    models = get_multi_gpu_models(config)
    model = models[0]
    evaluator = Evaluator(
        config,
        models,
        tensor_dict=models[0].tensor_dict if config.vis else None)
    graph_handler = GraphHandler(config, model)

    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    graph_handler.initialize(sess)
    num_steps = math.ceil(test_data.num_examples /
                          (config.batch_size * config.num_gpus))
    if 0 < config.test_num_batches < num_steps:
        num_steps = config.test_num_batches

    e = None
    for multi_batch in tqdm(test_data.get_multi_batches(
            config.batch_size,
            config.num_gpus,
            num_steps=num_steps,
            cluster=config.cluster),
                            total=num_steps):
        ei = evaluator.get_evaluation(sess, multi_batch)
        e = ei if e is None else e + ei
        if config.vis:
            eval_subdir = os.path.join(
                config.eval_dir, "{}-{}".format(ei.data_type,
                                                str(ei.global_step).zfill(6)))
            if not os.path.exists(eval_subdir):
                os.mkdir(eval_subdir)
            path = os.path.join(eval_subdir, str(ei.idxs[0]).zfill(8))
            graph_handler.dump_eval(ei, path=path)

    print(e)
    if config.dump_answer:
        print("dumping answer ...")
        graph_handler.dump_answer(e)
    if config.dump_eval:
        print("dumping eval ...")
        graph_handler.dump_eval(e)