Esempio n. 1
0
def calculate_psnr(img1,
                   img2,
                   crop_border,
                   input_order='HWC',
                   test_y_channel=False):
    """Calculate PSNR (Peak Signal-to-Noise Ratio).

    Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

    Args:
        img1 (ndarray/tensor): Images with range [0, 255]/[0, 1].
        img2 (ndarray/tensor): Images with range [0, 255]/[0, 1].
        crop_border (int): Cropped pixels in each edge of an image. These
            pixels are not involved in the PSNR calculation.
        input_order (str): Whether the input order is 'HWC' or 'CHW'.
            Default: 'HWC'.
        test_y_channel (bool): Test on Y channel of YCbCr. Default: False.

    Returns:
        float: psnr result.
    """

    assert img1.shape == img2.shape, (
        f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
    if input_order not in ['HWC', 'CHW']:
        raise ValueError(
            f'Wrong input_order {input_order}. Supported input_orders are '
            '"HWC" and "CHW"')
    if type(img1) == torch.Tensor:
        if len(img1.shape) == 4:
            img1 = img1.squeeze(0)
        img1 = img1.detach().cpu().numpy().transpose(1, 2, 0)
    if type(img2) == torch.Tensor:
        if len(img2.shape) == 4:
            img2 = img2.squeeze(0)
        img2 = img2.detach().cpu().numpy().transpose(1, 2, 0)

    img1 = reorder_image(img1, input_order=input_order)
    img2 = reorder_image(img2, input_order=input_order)
    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)

    if crop_border != 0:
        img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
        img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]

    if test_y_channel:
        img1 = to_y_channel(img1)
        img2 = to_y_channel(img2)

    mse = np.mean((img1 - img2)**2)
    if mse == 0:
        return float('inf')
    max_value = 1. if img1.max() <= 1 else 255.
    return 20. * np.log10(max_value / np.sqrt(mse))
Esempio n. 2
0
def calculate_ssim(img,
                   img2,
                   crop_border,
                   input_order='HWC',
                   test_y_channel=False,
                   **kwargs):
    """Calculate SSIM (structural similarity).

    Ref:
    Image quality assessment: From error visibility to structural similarity

    The results are the same as that of the official released MATLAB code in
    https://ece.uwaterloo.ca/~z70wang/research/ssim/.

    For three-channel images, SSIM is calculated for each channel and then
    averaged.

    Args:
        img (ndarray): Images with range [0, 255].
        img2 (ndarray): Images with range [0, 255].
        crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the calculation.
        input_order (str): Whether the input order is 'HWC' or 'CHW'.
            Default: 'HWC'.
        test_y_channel (bool): Test on Y channel of YCbCr. Default: False.

    Returns:
        float: SSIM result.
    """

    assert img.shape == img2.shape, (
        f'Image shapes are different: {img.shape}, {img2.shape}.')
    if input_order not in ['HWC', 'CHW']:
        raise ValueError(
            f'Wrong input_order {input_order}. Supported input_orders are "HWC" and "CHW"'
        )
    img = reorder_image(img, input_order=input_order)
    img2 = reorder_image(img2, input_order=input_order)

    if crop_border != 0:
        img = img[crop_border:-crop_border, crop_border:-crop_border, ...]
        img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]

    if test_y_channel:
        img = to_y_channel(img)
        img2 = to_y_channel(img2)

    img = img.astype(np.float64)
    img2 = img2.astype(np.float64)

    ssims = []
    for i in range(img.shape[2]):
        ssims.append(_ssim(img[..., i], img2[..., i]))
    return np.array(ssims).mean()
Esempio n. 3
0
def calculate_psnr(img,
                   img2,
                   crop_border,
                   input_order='HWC',
                   test_y_channel=False,
                   **kwargs):
    """Calculate PSNR (Peak Signal-to-Noise Ratio).

    Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

    Args:
        img (ndarray): Images with range [0, 255].
        img2 (ndarray): Images with range [0, 255].
        crop_border (int): Cropped pixels in each edge of an image. These
            pixels are not involved in the PSNR calculation.
        input_order (str): Whether the input order is 'HWC' or 'CHW'.
            Default: 'HWC'.
        test_y_channel (bool): Test on Y channel of YCbCr. Default: False.

    Returns:
        float: psnr result.
    """

    assert img.shape == img2.shape, (
        f'Image shapes are different: {img.shape}, {img2.shape}.')
    if input_order not in ['HWC', 'CHW']:
        raise ValueError(
            f'Wrong input_order {input_order}. Supported input_orders are "HWC" and "CHW"'
        )
    img = reorder_image(img, input_order=input_order)
    img2 = reorder_image(img2, input_order=input_order)
    img = img.astype(np.float64)
    img2 = img2.astype(np.float64)

    if crop_border != 0:
        img = img[crop_border:-crop_border, crop_border:-crop_border, ...]
        img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]

    if test_y_channel:
        img = to_y_channel(img)
        img2 = to_y_channel(img2)

    mse = np.mean((img - img2)**2)
    if mse == 0:
        return float('inf')
    return 20. * np.log10(255. / np.sqrt(mse))
Esempio n. 4
0
def calculate_niqe(img,
                   crop_border,
                   input_order='HWC',
                   convert_to='y',
                   **kwargs):
    """Calculate NIQE (Natural Image Quality Evaluator) metric.

    Ref: Making a "Completely Blind" Image Quality Analyzer.
    This implementation could produce almost the same results as the official
    MATLAB codes: http://live.ece.utexas.edu/research/quality/niqe_release.zip

    > MATLAB R2021a result for tests/data/baboon.png: 5.72957338 (5.7296)
    > Our re-implementation result for tests/data/baboon.png: 5.7295763 (5.7296)

    We use the official params estimated from the pristine dataset.
    We use the recommended block size (96, 96) without overlaps.

    Args:
        img (ndarray): Input image whose quality needs to be computed.
            The input image must be in range [0, 255] with float/int type.
            The input_order of image can be 'HW' or 'HWC' or 'CHW'. (BGR order)
            If the input order is 'HWC' or 'CHW', it will be converted to gray
            or Y (of YCbCr) image according to the ``convert_to`` argument.
        crop_border (int): Cropped pixels in each edge of an image. These
            pixels are not involved in the metric calculation.
        input_order (str): Whether the input order is 'HW', 'HWC' or 'CHW'.
            Default: 'HWC'.
        convert_to (str): Whether converted to 'y' (of MATLAB YCbCr) or 'gray'.
            Default: 'y'.

    Returns:
        float: NIQE result.
    """
    ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
    # we use the official params estimated from the pristine dataset.
    niqe_pris_params = np.load(os.path.join(ROOT_DIR, 'niqe_pris_params.npz'))
    mu_pris_param = niqe_pris_params['mu_pris_param']
    cov_pris_param = niqe_pris_params['cov_pris_param']
    gaussian_window = niqe_pris_params['gaussian_window']

    img = img.astype(np.float32)
    if input_order != 'HW':
        img = reorder_image(img, input_order=input_order)
        if convert_to == 'y':
            img = to_y_channel(img)
        elif convert_to == 'gray':
            img = cv2.cvtColor(img / 255., cv2.COLOR_BGR2GRAY) * 255.
        img = np.squeeze(img)

    if crop_border != 0:
        img = img[crop_border:-crop_border, crop_border:-crop_border]

    # round is necessary for being consistent with MATLAB's result
    img = img.round()

    niqe_result = niqe(img, mu_pris_param, cov_pris_param, gaussian_window)

    return niqe_result
Esempio n. 5
0
def calculate_ssim(img1,
                   img2,
                   crop_border,
                   input_order='HWC',
                   test_y_channel=False):
    """Calculate SSIM (structural similarity).

    Ref:
    Image quality assessment: From error visibility to structural similarity

    The results are the same as that of the official released MATLAB code in
    https://ece.uwaterloo.ca/~z70wang/research/ssim/.

    For three-channel images, SSIM is calculated for each channel and then
    averaged.

    Args:
        img1 (ndarray): Images with range [0, 255].
        img2 (ndarray): Images with range [0, 255].
        crop_border (int): Cropped pixels in each edge of an image. These
            pixels are not involved in the SSIM calculation.
        input_order (str): Whether the input order is 'HWC' or 'CHW'.
            Default: 'HWC'.
        test_y_channel (bool): Test on Y channel of YCbCr. Default: False.

    Returns:
        float: ssim result.
    """

    assert img1.shape == img2.shape, (
        f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
    if input_order not in ['HWC', 'CHW']:
        raise ValueError(
            f'Wrong input_order {input_order}. Supported input_orders are '
            '"HWC" and "CHW"')

    if type(img1) == torch.Tensor:
        if len(img1.shape) == 4:
            img1 = img1.squeeze(0)
        img1 = img1.detach().cpu().numpy().transpose(1, 2, 0)
    if type(img2) == torch.Tensor:
        if len(img2.shape) == 4:
            img2 = img2.squeeze(0)
        img2 = img2.detach().cpu().numpy().transpose(1, 2, 0)

    img1 = reorder_image(img1, input_order=input_order)
    img2 = reorder_image(img2, input_order=input_order)

    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)

    if crop_border != 0:
        img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
        img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]

    if test_y_channel:
        img1 = to_y_channel(img1)
        img2 = to_y_channel(img2)
        return _ssim_cly(img1[..., 0], img2[..., 0])

    ssims = []
    # ssims_before = []

    # skimage_before = skimage.metrics.structural_similarity(img1, img2, data_range=255., multichannel=True)
    # print('.._skimage',
    #       skimage.metrics.structural_similarity(img1, img2, data_range=255., multichannel=True))
    max_value = 1 if img1.max() <= 1 else 255
    with torch.no_grad():
        final_ssim = _ssim_3d(img1, img2, max_value)
        ssims.append(final_ssim)

    # for i in range(img1.shape[2]):
    #     ssims_before.append(_ssim(img1, img2))

    # print('..ssim mean , new {:.4f}  and before {:.4f} .... skimage before {:.4f}'.format(np.array(ssims).mean(), np.array(ssims_before).mean(), skimage_before))
    # ssims.append(skimage.metrics.structural_similarity(img1[..., i], img2[..., i], multichannel=False))

    return np.array(ssims).mean()