def nondist_validation(self, dataloader, current_iter, tb_logger, save_img): dataset_name = dataloader.dataset.opt['name'] with_metrics = self.opt['val'].get('metrics') is not None if with_metrics: self.metric_results = { metric: 0 for metric in self.opt['val']['metrics'].keys() } pbar = ProgressBar(len(dataloader)) for idx, val_data in enumerate(dataloader): img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0] self.feed_data(val_data) self.test() visuals = self.get_current_visuals() sr_img = tensor2img([visuals['result']]) if 'gt' in visuals: gt_img = tensor2img([visuals['gt']]) del self.gt # tentative for out of GPU memory # del self.lq # del self.output # torch.cuda.empty_cache() # print(save_img, 'gggggggggggggggggggg') if save_img: if self.opt['is_train']: save_img_path = osp.join(self.opt['path']['visualization'], img_name, f'{img_name}_{current_iter}.png') else: if self.opt['val']['suffix']: save_img_path = osp.join( self.opt['path']['visualization'], dataset_name, f'{img_name}_{self.opt["val"]["suffix"]}.png') else: save_img_path = osp.join( self.opt['path']['visualization'], dataset_name, f'{img_name}_{self.opt["name"]}.png') mmcv.imwrite(sr_img, save_img_path) # print('save to /home/wei/gy/EDVR/flow_save_160/offset.npy') # np.save('/home/wei/gy/EDVR/flow_save_160/offset.npy', visual['flow']) # np.save('/home/wei/gy/EDVR/flow_save_160/mask.npy', visual['mask']) if with_metrics: # calculate metrics opt_metric = deepcopy(self.opt['val']['metrics']) for name, opt_ in opt_metric.items(): metric_type = opt_.pop('type') self.metric_results[name] += getattr( metric_module, metric_type)(sr_img, gt_img, **opt_) pbar.update(f'Test {img_name}') if with_metrics: for metric in self.metric_results.keys(): self.metric_results[metric] /= (idx + 1) self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
def save_response_content(response, destination, file_size=None, chunk_size=32768): if file_size is not None: pbar = ProgressBar(math.ceil(file_size / chunk_size)) readable_file_size = sizeof_fmt(file_size) else: pbar = None with open(destination, 'wb') as f: downloaded_size = 0 for chunk in response.iter_content(chunk_size): downloaded_size += chunk_size if pbar is not None: pbar.update(f'Downloading {sizeof_fmt(downloaded_size)} ' f'/ {readable_file_size}') if chunk: # filter out keep-alive new chunks f.write(chunk)
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img): dataset_name = dataloader.dataset.opt['name'] with_metrics = self.opt['val'].get('metrics') is not None if with_metrics: self.metric_results = { metric: 0 for metric in self.opt['val']['metrics'].keys() } pbar = ProgressBar(len(dataloader)) for idx, val_data in enumerate(dataloader): img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0] self.feed_data(val_data) self.test() visuals = self.get_current_visuals() sr_img = tensor2img([visuals['result']]) if 'gt' in visuals: # gt_img = tensor2raw([visuals['gt']]) # replace for raw data. gt_img = tensor2img([visuals['gt']]) del self.gt # tentative for out of GPU memory del self.lq del self.output torch.cuda.empty_cache() if save_img: if self.opt['is_train']: save_img_path = osp.join(self.opt['path']['visualization'], img_name, f'{img_name}_{current_iter}.png') else: if self.opt['val']['suffix']: save_img_path = osp.join( self.opt['path']['visualization'], dataset_name, f'{img_name}_{self.opt["val"]["suffix"]}.png') else: save_img_path = osp.join( self.opt['path']['visualization'], dataset_name, f'{img_name}.png') # np.save(save_img_path.replace('.png', '.npy'), sr_img) # replace for raw data. mmcv.imwrite(sr_img, save_img_path) # mmcv.imwrite(gt_img, save_img_path.replace('syn_val', 'gt')) save_npy = self.opt['val'].get('save_npy', None) if save_npy: if self.opt['is_train']: save_img_path = osp.join(self.opt['path']['visualization'], img_name, f'{img_name}_{current_iter}.npy') else: if self.opt['val']['suffix']: save_img_path = osp.join( self.opt['path']['visualization'], dataset_name, f'{img_name}_{self.opt["val"]["suffix"]}.npy') else: save_img_path = osp.join( self.opt['path']['visualization'], dataset_name, f'{img_name}.npy') np.save(save_img_path, tensor2npy([visuals['result'] ])) # saving as .npy format. if with_metrics: # calculate metrics opt_metric = deepcopy(self.opt['val']['metrics']) for name, opt_ in opt_metric.items(): metric_type = opt_.pop('type') # replace for raw data. # self.metric_results[name] += getattr( # metric_module, metric_type)(sr_img*255, gt_img*255, **opt_) self.metric_results[name] += getattr( metric_module, metric_type)(sr_img, gt_img, **opt_) pbar.update(f'Test {img_name}') if with_metrics: for metric in self.metric_results.keys(): self.metric_results[metric] /= (idx + 1) self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
def dist_validation(self, dataloader, current_iter, tb_logger, save_img): dataset = dataloader.dataset dataset_name = dataset.opt['name'] with_metrics = self.opt['val']['metrics'] is not None # initialize self.metric_results # It is a dict: { # 'folder1': tensor (num_frame x len(metrics)), # 'folder2': tensor (num_frame x len(metrics)) # } if with_metrics and not hasattr(self, 'metric_results'): self.metric_results = {} num_frame_each_folder = Counter(dataset.data_info['folder']) for folder, num_frame in num_frame_each_folder.items(): self.metric_results[folder] = torch.zeros( num_frame, len(self.opt['val']['metrics']), dtype=torch.float32, device='cuda') world_size = dist.get_world_size() rank = dist.get_rank() for _, tensor in self.metric_results.items(): tensor.zero_() # record all frames (border and center frames) if rank == 0: pbar = ProgressBar(len(dataset)) for idx in range(rank, len(dataset), world_size): val_data = dataset[idx] val_data['lq'].unsqueeze_(0) val_data['gt'].unsqueeze_(0) folder = val_data['folder'] frame_idx, max_idx = val_data['idx'].split('/') lq_path = val_data['lq_path'] self.feed_data(val_data) self.test() visuals = self.get_current_visuals() rlt_img = tensor2img([visuals['rlt']]) if 'gt' in visuals: gt_img = tensor2img([visuals['gt']]) del self.gt # tentative for out of GPU memory del self.lq del self.output torch.cuda.empty_cache() if save_img: if self.opt['is_train']: raise NotImplementedError( 'saving image is not supported during training.') else: if 'vimeo' in dataset_name.lower(): split_rlt = lq_path.split('/') img_name = (f'{split_rlt[-3]}_{split_rlt[-2]}_' f'{split_rlt[-1].split(".")[0]}') else: img_name = osp.splitext(osp.basename(lq_path))[0] if self.opt['val']['suffix']: save_img_path = osp.join( self.opt['path']['visualization'], dataset_name, folder, f'{img_name}_{self.opt["val"]["suffix"]}.png') else: save_img_path = osp.join( self.opt['path']['visualization'], dataset_name, folder, f'{img_name}_{self.opt["name"]}.png') mmcv.imwrite(rlt_img, save_img_path) if with_metrics: # calculate metrics opt_metric = deepcopy(self.opt['val']['metrics']) for metric_idx, opt_ in enumerate(opt_metric.values()): metric_type = opt_.pop('type') rlt = getattr(metric_module, metric_type)(rlt_img, gt_img, **opt_) self.metric_results[folder][int(frame_idx), metric_idx] += rlt # progress bar if rank == 0: for _ in range(world_size): pbar.update(f'Test {folder} - ' f'{int(frame_idx) + world_size}/{max_idx}') if with_metrics: # collect data among GPUs for _, tensor in self.metric_results.items(): dist.reduce(tensor, 0) dist.barrier() if rank == 0: self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img, save_h5): dataset_name = dataloader.dataset.opt['name'] with_metrics = self.opt['val'].get('metrics') is not None if with_metrics: self.metric_results = { metric: 0 for metric in self.opt['val']['metrics'].keys() } pbar = ProgressBar(len(dataloader)) # Set up h5 file, if save if save_h5: h5_file = h5py.File( osp.join(self.opt['path']['visualization'], 'recon_img.hdf5'), 'w') h5_dataset = h5_file.create_dataset('data', shape=(len(dataloader.dataset), 3, 256, 256), dtype=np.float32, fillvalue=0) counter = 0 for idx, val_data in enumerate(dataloader): img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0] self.feed_data(val_data) self.test() visuals = self.get_current_visuals() # Save to h5 file, if save if save_h5: batch_size = val_data['lq'].shape[0] h5_dataset[counter:counter + batch_size] = visuals['result'].numpy() counter += batch_size sr_img = tensor2img([visuals['result']]) if 'gt' in visuals: gt_img = tensor2img([visuals['gt']]) del self.gt # tentative for out of GPU memory del self.lq del self.output torch.cuda.empty_cache() if save_img: if self.opt['is_train']: save_img_path = osp.join(self.opt['path']['visualization'], img_name, f'{img_name}_{current_iter}.png') else: if self.opt['val']['suffix']: save_img_path = osp.join( self.opt['path']['visualization'], dataset_name, f'{img_name}_{self.opt["val"]["suffix"]}.png') else: save_img_path = osp.join( self.opt['path']['visualization'], dataset_name, f'{img_name}_{self.opt["name"]}.png') mmcv.imwrite(sr_img, save_img_path) if with_metrics: # calculate metrics opt_metric = deepcopy(self.opt['val']['metrics']) for name, opt_ in opt_metric.items(): metric_type = opt_.pop('type') self.metric_results[name] += getattr( metric_module, metric_type)(sr_img, gt_img, **opt_) pbar.update(f'Test {img_name}') if save_h5: h5_file.close() if with_metrics: for metric in self.metric_results.keys(): self.metric_results[metric] /= (idx + 1) self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
def dist_validation(self, dataloader, current_iter, tb_logger, save_img): dataset = dataloader.dataset dataset_name = dataset.opt['name'] with_metrics = self.opt['val']['metrics'] is not None # initialize self.metric_results # It is a dict: { # 'folder1': tensor (num_frame x len(metrics)), # 'folder2': tensor (num_frame x len(metrics)) # } if with_metrics and not hasattr(self, 'metric_results'): self.metric_results = {} num_frame_each_folder = Counter(dataset.data_info['folder']) for folder, num_frame in num_frame_each_folder.items(): self.metric_results[folder] = torch.zeros( num_frame, len(self.opt['val']['metrics']), dtype=torch.float32, device='cuda') rank, world_size = get_dist_info() for _, tensor in self.metric_results.items(): tensor.zero_() # record all frames (border and center frames) if rank == 0: pbar = ProgressBar(len(dataset)) for idx in range(rank, len(dataset), world_size): val_data = dataset[idx] val_data['lq'].unsqueeze_(0) val_data['gt'].unsqueeze_(0) folder = val_data['folder'] frame_idx, max_idx = val_data['idx'].split('/') lq_path = val_data['lq_path'] self.feed_data(val_data) self.test() visuals = self.get_current_visuals() result_img = tensor2img([visuals['result']]) if 'gt' in visuals: gt_img = tensor2img([visuals['gt']]) del self.gt # tentative for out of GPU memory del self.lq del self.output torch.cuda.empty_cache() if save_img: if self.opt['is_train']: raise NotImplementedError( 'saving image is not supported during training.') else: if 'vimeo' in dataset_name.lower(): # vimeo90k dataset split_result = lq_path.split('/') img_name = (f'{split_result[-3]}_{split_result[-2]}_' f'{split_result[-1].split(".")[0]}') else: # other datasets, e.g., REDS, Vid4 img_name = osp.splitext(osp.basename(lq_path))[0] if self.opt['val']['suffix']: save_img_path = osp.join( self.opt['path']['visualization'], dataset_name, folder, f'{img_name}_{self.opt["val"]["suffix"]}.png') else: split_result = lq_path.split('/') img_name = (f'{split_result[-3]}_{split_result[-2]}_' f'{split_result[-1].split(".")[0]}') save_img_path = osp.join( self.opt['path']['visualization'], folder, f'{img_name}.png') np_save_img_path = save_img_path.replace('png', 'npy') if not os.path.exists( osp.join(self.opt['path']['visualization'], folder)): os.makedirs( osp.join(self.opt['path']['visualization'], folder)) np.save( np_save_img_path, np.array([ visuals['embedding_gt'], visuals['embedding_out'], visuals['embedding_center'] ])) mmcv.imwrite(result_img, save_img_path) split_result = lq_path.split('/') img_name = (f'{split_result[-3]}_{split_result[-2]}_' f'{split_result[-1].split(".")[0]}') if with_metrics: # calculate metrics opt_metric = deepcopy(self.opt['val']['metrics']) for metric_idx, opt_ in enumerate(opt_metric.values()): out_emb = visuals['embedding_out'] gt_emb = visuals['embedding_gt'] gt = gt_emb / np.sqrt(np.sum(gt_emb**2, -1, keepdims=True)) out = out_emb / np.sqrt( np.sum(out_emb**2, -1, keepdims=True)) cos_similarity = np.mean(np.sum(gt * out, -1)) result = cos_similarity # self.metric_results[name] += cos_similarity # metric_type = opt_.pop('type') # result = getattr(metric_module, # metric_type)(result_img, gt_img, **opt_) self.metric_results[folder][int(frame_idx), metric_idx] += result # psnr = getattr(metric_module, metric_type)(result_img, gt_img, **opt_) # with open('/home/wei/exp/EDVR/psnr_log/psnr_first.txt','a+') as f: # f.write(f'{img_name} {psnr}\r\n') # progress bar if rank == 0: for _ in range(world_size): pbar.update(f'Test {folder} - ' f'{int(frame_idx) + world_size}/{max_idx}') if with_metrics: if self.opt['dist']: # collect data among GPUs for _, tensor in self.metric_results.items(): dist.reduce(tensor, 0) dist.barrier() else: pass # assume use one gpu in non-dist testing if rank == 0: self._log_validation_metric_values(current_iter, dataset_name, tb_logger)