def test_basis_input(self): """Test the coboundary operator with some basis as inputs.""" p_x, p_y = 2, 2 func_space_0 = FunctionSpace(self.mesh, '0-lobatto', (p_x, p_y), is_inner=False) func_space_1 = FunctionSpace(self.mesh, '1-lobatto', (p_x, p_y), is_inner=False) func_space_2 = FunctionSpace(self.mesh, '2-lobatto', (p_x, p_y), is_inner=False) basis_0_ref = BasisForm(func_space_0) basis_1_ref = BasisForm(func_space_1) basis_0_ref.quad_grid = 'lobatto' basis_1_ref.quad_grid = 'gauss' basis_2_ref = BasisForm(func_space_2) basis_2_ref.quad_grid = 'lobatto' e_21_ref = d_21_lobatto_outer((p_x, p_y)) e_10_ref = d_10_lobatto_outer((p_x, p_y)) basis_1, e_10 = d(basis_0_ref) basis_1.quad_grid = 'gauss' basis_2, e_21 = d(basis_1_ref) basis_2.quad_grid = 'lobatto' M_1 = inner(basis_1, basis_1) M_1_ref = inner(basis_1_ref, basis_1_ref) npt.assert_array_almost_equal(M_1_ref, M_1) M_2 = inner(basis_2, basis_2) M_2_ref = inner(basis_2_ref, basis_2_ref) npt.assert_array_almost_equal(M_2_ref, M_2) npt.assert_array_equal(e_21_ref, e_21) npt.assert_array_equal(e_10_ref, e_10)
def test_inner(self): list_cases = [ 'p2_n2-2', 'p2_n3-2', 'p5_n1-10', 'p10_n2-2', 'p13_n12-8' ] p = [2, 2, 5, 10, 13] n = [(2, 2), (3, 2), (1, 10), (2, 2), (12, 8)] curvature = [0.1, 0.1, 0.1, 0.1, 0.1] for i, case in enumerate(list_cases[:-1]): print("Test case n : ", i) # basis = basis_forms. # print("theo size ", (p[i] + 1)**2 * # (p[i] + 1)**2 * n[i][0] * n[i][1]) M_2_ref = np.loadtxt( os.getcwd() + '/src/tests/test_M_2/M_2_' + case + '.dat', delimiter=',').reshape((p[i])**2, n[i][0] * n[i][1], (p[i])**2) # print("actual size ", np.size(M_0_ref)) # print(np.shape(M_0_ref)) my_mesh = CrazyMesh(2, n[i], ((-1, 1), (-1, 1)), curvature=curvature[i]) function_space = FunctionSpace(my_mesh, '2-lobatto', p[i]) basis_0 = BasisForm(function_space) basis_0.quad_grid = 'lobatto' basis_1 = BasisForm(function_space) basis_1.quad_grid = 'lobatto' M_2 = inner(basis_0, basis_1) # print("REF ------------------ \n", M_2_ref[:, 0, :]) # print("CALCULATED _----------------\n", M_2[:, :, 0]) for el in range(n[i][0] * n[i][1]): npt.assert_array_almost_equal(M_2_ref[:, el, :], M_2[:, :, el], decimal=7)
def multiple_element(): mesh = CrazyMesh(2, (5, 7), ((-1, 1), (-1, 1)), curvature=0.3) p = 10, 10 func_space_vort = FunctionSpace(mesh, '0-ext_gauss', (p[0] - 1, p[1] - 1), is_inner=False) func_space_outer_vel = FunctionSpace( mesh, '1-total_ext_gauss', (p[0], p[1]), is_inner=False) # func_space_outer_vel = FunctionSpace( # mesh, '1-gauss', (p[0], p[1]), is_inner=False) func_space_inner_vel = FunctionSpace(mesh, '1-lobatto', p, is_inner=True) func_space_inner_vel.dof_map.continous_dof = True func_space_source = FunctionSpace(mesh, '2-lobatto', p, is_inner=True) basis_vort = BasisForm(func_space_vort) basis_vel_in = BasisForm(func_space_inner_vel) basis_vel_in.quad_grid = 'lobatto' basis_vel_out = BasisForm(func_space_outer_vel) basis_vel_out.quad_grid = 'lobatto' basis_2 = BasisForm(func_space_source) psi = Form(func_space_vort) u_in = Form(func_space_inner_vel) source = Form(func_space_source) source.discretize(ffun) M_1 = inner(basis_vel_in, basis_vel_in) E_21_in = d(func_space_inner_vel) W_02 = basis_2.wedged(basis_vort) W_02_E21 = np.transpose(W_02 @ E_21_in) M_1 = assemble(M_1, (func_space_inner_vel, func_space_inner_vel)) print(np.shape(M_1)) W_02_E21 = assemble(W_02_E21, (func_space_inner_vel, func_space_vort)) print(np.shape(W_02_E21)) W_02 = assemble(W_02, (func_space_source, func_space_vort)) lhs = spr.bmat([[M_1, W_02_E21], [W_02_E21.transpose(), None]]) print(np.shape(lhs)) rhs = np.zeros(np.shape(lhs)[0]) rhs[-func_space_source.num_dof:] = W_02 @ source.cochain solution = spr.linalg.spsolve(lhs.tocsc(), rhs) u_in.cochain = solution[:func_space_inner_vel.num_dof] cochian_psi = np.zeros(func_space_vort.num_dof) cochian_psi[:func_space_vort.num_internal_dof] = solution[-func_space_vort.num_internal_dof:] psi.cochain = cochian_psi xi = eta = np.linspace(-1, 1, 40) u_in.reconstruct(xi, eta) (x, y), u_x, u_y = u_in.export_to_plot() plt.contourf(x, y, u_x) plt.colorbar() plt.title("u_x inner") plt.show() psi.reconstruct(xi, eta) (x, y), psi_value = psi.export_to_plot() plt.contourf(x, y, psi_value) plt.title("psi outer" ) plt.colorbar() plt.show()
def test_assembly_inner_product_2_forms(self): """Test the assembly of 1-forms inner products.""" func_space_lob = FunctionSpace(self.mesh, '2-lobatto', self.p) func_space_gauss = FunctionSpace(self.mesh, '2-gauss', self.p) func_space_extgauss = FunctionSpace(self.mesh, '2-ext_gauss', self.p) basis_lob = BasisForm(func_space_lob) basis_lob.quad_grid = 'gauss' M_lob = inner(basis_lob, basis_lob) basis_gauss = BasisForm(func_space_gauss) basis_gauss.quad_grid = 'lobatto' M_gauss = inner(basis_gauss, basis_gauss) basis_ext_gauss = BasisForm(func_space_extgauss) print(basis_ext_gauss.num_basis) basis_ext_gauss.quad_grid = 'lobatto' M_extgauss = inner(basis_ext_gauss, basis_ext_gauss) M_lob_ass_ref = assemble_slow(self.mesh, M_lob, func_space_lob.dof_map.dof_map, func_space_lob.dof_map.dof_map) M_gauss_ass_ref = assemble_slow(self.mesh, M_gauss, func_space_gauss.dof_map.dof_map, func_space_gauss.dof_map.dof_map) M_extgauss_ass_ref = assemble_slow( self.mesh, M_extgauss, func_space_extgauss.dof_map.dof_map_internal, func_space_extgauss.dof_map.dof_map_internal) M_lob_ass = assemble(M_lob, func_space_lob, func_space_lob).toarray() M_gauss_ass = assemble(M_gauss, func_space_gauss, func_space_gauss).toarray() M_extgauss_ass = assemble(M_extgauss, func_space_extgauss, func_space_extgauss).toarray() npt.assert_array_almost_equal(M_lob_ass_ref, M_lob_ass) npt.assert_array_almost_equal(M_gauss_ass_ref, M_gauss_ass) npt.assert_array_almost_equal(M_extgauss_ass_ref, M_extgauss_ass)
def test_multiple_elements(self): """Test the anysotropic case in multiple element.""" p = (6, 6) is_inner = False crazy_mesh = CrazyMesh(2, (8, 5), ((-1, 1), (-1, 1)), curvature=0.1) func_space_2_lobatto = FunctionSpace(crazy_mesh, '2-lobatto', p, is_inner) func_space_1_lobatto = FunctionSpace(crazy_mesh, '1-lobatto', p, is_inner) func_space_1_lobatto.dof_map.continous_dof = True def diffusion_11(x, y): return 4 * np.ones(np.shape(x)) def diffusion_12(x, y): return 3 * np.ones(np.shape(x)) def diffusion_22(x, y): return 5 * np.ones(np.shape(x)) def source(x, y): return -36 * np.pi ** 2 * np.sin(2 * np.pi * x) * np.sin(2 * np.pi * y) + 24 * np.pi ** 2 * np.cos(2 * np.pi * x) * np.cos(2 * np.pi * y) # mesh function to inject the anisotropic tensor mesh_k = MeshFunction(crazy_mesh) mesh_k.continous_tensor = [diffusion_11, diffusion_12, diffusion_22] # definition of the basis functions basis_1 = BasisForm(func_space_1_lobatto) basis_1.quad_grid = 'gauss' basis_2 = BasisForm(func_space_2_lobatto) basis_2.quad_grid = 'gauss' # solution form phi_2 = Form(func_space_2_lobatto) phi_2.basis.quad_grid = 'gauss' form_source = Form(func_space_2_lobatto) form_source.discretize(source, ('gauss', 30)) # find inner product M_1k = inner(basis_1, basis_1, mesh_k) N_2 = inner(d(basis_1), basis_2) M_2 = inner(basis_2, basis_2) # assemble M_1k = assemble(M_1k, func_space_1_lobatto) N_2 = assemble(N_2, (func_space_1_lobatto, func_space_2_lobatto)) M_2 = assemble(M_2, func_space_2_lobatto) lhs = sparse.bmat([[M_1k, N_2], [N_2.transpose(), None]]).tocsc() rhs_source = (form_source.cochain @ M_2)[:, np.newaxis] rhs_zeros = np.zeros(lhs.shape[0] - np.size(rhs_source))[:, np.newaxis] rhs = np.vstack((rhs_zeros, rhs_source)) solution = sparse.linalg.spsolve(lhs, rhs) phi_2.cochain = solution[-func_space_2_lobatto.num_dof:] # sample the solution xi = eta = np.linspace(-1, 1, 200) phi_2.reconstruct(xi, eta) (x, y), data = phi_2.export_to_plot() plt.contourf(x, y, data) plt.show() print("max value {0} \nmin value {1}" .format(np.max(data), np.min(data))) npt.assert_array_almost_equal(self.solution(x, y), data, decimal=2)
def test_basis_inner(self): """Test inner product with basis functions.""" p_x, p_y = 2, 2 func_space_0 = FunctionSpace(self.mesh, '0-lobatto', (p_x, p_y)) func_space_1 = FunctionSpace(self.mesh, '1-lobatto', (p_x, p_y)) basis_0 = BasisForm(func_space_0) basis_1 = BasisForm(func_space_1) basis_1.quad_grid = 'lobatto' basis_0.quad_grid = 'lobatto' M_1 = inner(basis_1, basis_1) e_10 = d(func_space_0) inner_prod_ref = np.tensordot(e_10, M_1, axes=((0), (0))) # inner_prod = inner(d(basis_0), basis_1) npt.assert_array_almost_equal(inner_prod_ref, inner_prod) # inner_prod_1_ref = np.rollaxis( np.tensordot(M_1, e_10, axes=((0), (0))), 2) inner_prod_1 = inner(basis_1, d(basis_0)) npt.assert_array_almost_equal(inner_prod_1_ref, inner_prod_1) # inner_prod_2_ref = np.tensordot(e_10, np.tensordot(e_10, M_1, axes=((0), (0))), axes=((0), (1))) inner_prod_2 = inner(d(basis_0), d(basis_0)) # npt.assert_array_almost_equal(inner_prod_2_ref, inner_prod_2)
def test_inner(self): list_cases = [ 'p2_n2-2', 'p2_n3-2', 'p5_n1-10', 'p10_n2-2', 'p18_n14-14' ] p = [2, 2, 5, 10, 18] n = [(2, 2), (3, 2), (1, 10), (2, 2), (14, 10)] curvature = [0.2, 0.1, 0.2, 0.2, 0.2] for i, case in enumerate(list_cases[:-1]): print("Test case n : ", i) # basis = basis_forms. # print("theo size ", (p[i] + 1)**2 * # (p[i] + 1)**2 * n[i][0] * n[i][1]) M_0_ref = np.loadtxt( os.getcwd() + '/src/tests/test_M_0/M_0_' + case + '.dat', delimiter=',').reshape((p[i] + 1)**2, n[i][0] * n[i][1], (p[i] + 1)**2) # print(np.shape(M_0_ref)) my_mesh = CrazyMesh(2, n[i], ((-1, 1), (-1, 1)), curvature=curvature[i]) function_space = FunctionSpace(my_mesh, '0-lobatto', p[i]) basis = BasisForm(function_space) basis.quad_grid = 'lobatto' basis_1 = BasisForm(function_space) basis_1.quad_grid = 'lobatto' M_0 = inner(basis, basis_1) for el in range(n[i][0] * n[i][1]): npt.assert_array_almost_equal(M_0_ref[:, el, :], M_0[:, :, el], decimal=4)
def test_single_element(self): """Test the anysotropic case in a single element.""" dim = 2 elements_layout = (1, 1) bounds_domain = ((-1, 1), (-1, 1)) curvature = 0.1 p = (20, 20) is_inner = False crazy_mesh = CrazyMesh(dim, elements_layout, bounds_domain, curvature) func_space_2_lobatto = FunctionSpace(crazy_mesh, '2-lobatto', p, is_inner) func_space_1_lobatto = FunctionSpace(crazy_mesh, '1-lobatto', p, is_inner) def diffusion_11(x, y): return 4 * np.ones(np.shape(x)) def diffusion_12(x, y): return 3 * np.ones(np.shape(x)) def diffusion_22(x, y): return 5 * np.ones(np.shape(x)) mesh_k = MeshFunction(crazy_mesh) mesh_k.continous_tensor = [diffusion_11, diffusion_12, diffusion_22] basis_1 = BasisForm(func_space_1_lobatto) basis_1.quad_grid = 'gauss' basis_2 = BasisForm(func_space_2_lobatto) basis_2.quad_grid = 'gauss' phi_2 = Form(func_space_2_lobatto) phi_2.basis.quad_grid = 'gauss' M_1k = inner(basis_1, basis_1, mesh_k) N_2 = inner(basis_2, d(basis_1)) def source(x, y): return -36 * np.pi ** 2 * np.sin(2 * np.pi * x) * np.sin(2 * np.pi * y) + 24 * np.pi ** 2 * np.cos(2 * np.pi * x) * np.cos(2 * np.pi * y) form_source = Form(func_space_2_lobatto) form_source.discretize(source) M_2 = inner(basis_2, basis_2) lhs = np.vstack((np.hstack((M_1k[:, :, 0], N_2[:, :, 0])), np.hstack( (np.transpose(N_2[:, :, 0]), np.zeros((np.shape(N_2)[1], np.shape(N_2)[1])))))) rhs = np.zeros((np.shape(lhs)[0], 1)) rhs[-np.shape(M_2)[0]:] = form_source.cochain @ M_2 phi_2.cochain = np.linalg.solve(lhs, rhs)[-phi_2.basis.num_basis:].flatten() xi = eta = np.linspace(-1, 1, 200) phi_2.reconstruct(xi, eta) (x, y), data = phi_2.export_to_plot() print("max value {0} \nmin value {1}" .format(np.max(data), np.min(data))) npt.assert_array_almost_equal(self.solution(x, y), data, decimal=2)
def test_exceptions(self): p = 2 mesh = CrazyMesh(2, (2, 2), ((-1, 1), (-1, 1))) func_space = FunctionSpace(mesh, '1-lobatto', p) basis = BasisForm(func_space) basis_1 = BasisForm(func_space) quad_cases = [(None, 'gauss'), (None, None), ('gauss', None), ('lobatto', 'gauss')] for case in quad_cases: if None in case: with self.assertRaises(UnboundLocalError): basis.quad_grid = case[0] basis_1.quad_grid = case[1] else: basis.quad_grid = case[0] basis_1.quad_grid = case[1] self.assertRaises(QuadratureError, inner, basis, basis_1)
def test_value_face_basis(self): for p in range(2, 15): function_space = FunctionSpace(self.mesh, '2-lobatto', p) basis = BasisForm(function_space) basis.quad_grid = 'lobatto' ref_funcs = np.loadtxt( os.getcwd() + '/src/tests/test_basis_2_form/basis_2_form_p_' + str(p) + '.dat', delimiter=',') # decimals limited due to the limited precision of the matlab data npt.assert_array_almost_equal(ref_funcs, basis.basis, decimal=1)
def test_weighted_inner_continous(self): """Test for weighted inner product.""" mesh = CrazyMesh(2, (2, 2), ((-1, 1), (-1, 1)), curvature=0.2) func_space = FunctionSpace(mesh, '1-lobatto', (3, 4)) basis = BasisForm(func_space) basis.quad_grid = 'gauss' K = MeshFunction(mesh) K.continous_tensor = [diff_tens_11, diff_tens_12, diff_tens_22] M_1_weighted = inner(basis, basis, K) M_1 = inner(basis, basis) npt.assert_array_almost_equal(M_1, M_1_weighted)
def test_inner(self): """Test inner product of one forms.""" list_cases = ['p2_n2-2', 'p2_n3-2', 'p5_n1-10', 'p10_n2-2', 'p13_n12-8'] p = [2, 2, 5, 10, 13] n = [(2, 2), (3, 2), (1, 10), (2, 2), (12, 8)] curvature = [0.1, 0.1, 0.1, 0.1, 0.1] for i, case in enumerate(list_cases[:-1]): M_1_ref = np.loadtxt( os.getcwd() + '/src/tests/test_M_1/M_1k_' + case + '.dat', delimiter=',').reshape(2 * p[i] * (p[i] + 1), n[i][0] * n[i][1], 2 * p[i] * (p[i] + 1)) my_mesh = CrazyMesh( 2, n[i], ((-1, 1), (-1, 1)), curvature=curvature[i]) function_space = FunctionSpace(my_mesh, '1-lobatto', p[i]) form = BasisForm(function_space) form.quad_grid = 'gauss' form_1 = BasisForm(function_space) form_1.quad_grid = 'gauss' K = MeshFunction(my_mesh) K.continous_tensor = [diff_tens_11, diff_tens_12, diff_tens_22] M_1 = inner(form, form_1, K) for el in range(n[i][0] * n[i][1]): npt.assert_array_almost_equal( M_1_ref[:, el, :], M_1[:, :, el])
def d(state): """Exterior derivative operator. The function reppresent the discrete version of the exterior derivative: the coboundary operator. The function can act on: -FunctionSpace, -Form, -BasisForm. It returns respectively: -the incidence matrix, -a form of degree + 1, whose cochain is the result of matrix multiplication of the original cochain with the incidence matrix, -a tuple made by the basisform, of 1 degree higher, and the incidence matrix. """ if isinstance(state, FunctionSpace): incidence_matrix = fetch_incidence(state) return incidence_matrix if isinstance(state, AbstractForm): function_space = state.function_space incidence_matrix = fetch_incidence(function_space) # generate the next func space in the de Rham sequence d_function_space = NextSpace(function_space) # calculate the new cochain d_form = Form(d_function_space) d_form.cochain_local = np.dot(incidence_matrix, state.cochain_local) d_form.cochain_to_global() return d_form if isinstance(state, AbstractBasisForm): function_space = state.function_space incidence_matrix = fetch_incidence(function_space) # generate the next func space in the de Rham sequence d_function_space = NextSpace(function_space) d_basis = BasisForm(d_function_space) d_basis.quad_grid = parse_quadrature(state) return (d_basis, incidence_matrix)
func_space_2_lobatto = FunctionSpace(ref_mesh, '2-lobatto', p, primal_is_inner) anisotropic_tensor = MeshFunction(ref_mesh) anisotropic_tensor.discrete_tensor = [k_11(), k_12(), k_22()] source_form = Form(func_space_2_lobatto) source_form.discretize(source) phi_0_exact = Form(func_space_0_ext_gauss) phi_0_exact.discretize(manufactured_solution) basis_0 = BasisForm(func_space_0_ext_gauss) basis_1 = BasisForm(func_space_1_lobatto) basis_2 = BasisForm(func_space_2_lobatto) basis_0.quad_grid = 'gauss' basis_1.quad_grid = 'gauss' basis_2.quad_grid = 'gauss' # define forms for soultion using function space q_1 = Form(func_space_1_lobatto) q_1.basis.quad_grid = 'gauss' phi_0 = Form(func_space_0_ext_gauss) phi_0.basis.quad_grid = 'gauss' """general variables used frequently""" num_total_elements = elements_layout[0] * elements_layout[1] num_local_ghost_nodes = func_space_0_ext_gauss.num_local_dof - \ func_space_0_ext_gauss.num_internal_local_dof num_total_ghost_nodes = px * elements_layout[0] * (
def multiple_element_v1(): mesh = CrazyMesh(2, (1, 1), ((-1, 1), (-1, 1)), curvature=0.0) p = 4, 4 func_space_vort = FunctionSpace(mesh, '0-lobatto', p, is_inner=False) func_space_outer_vel = FunctionSpace( mesh, '1-lobatto', p, is_inner=False) func_space_outer_vel.dof_map.continous_dof = True # func_space_outer_vel = FunctionSpace( # mesh, '1-gauss', (p[0], p[1]), is_inner=False) func_space_inner_vel = FunctionSpace( mesh, '1-gauss', (p[0], p[1]), is_inner=True) print('dof gauss :', func_space_inner_vel.num_dof) func_space_inner_vel.dof_map.continous_dof = False func_space_source = FunctionSpace(mesh, '2-gauss', (p[0] + 1, p[1] + 1), is_inner=True) print("dof source :", func_space_source.num_dof) basis_vort = BasisForm(func_space_vort) basis_vel_in = BasisForm(func_space_inner_vel) basis_vel_in.quad_grid = 'lobatto' basis_vel_out = BasisForm(func_space_outer_vel) basis_vel_out.quad_grid = 'lobatto' basis_2 = BasisForm(func_space_source) psi = Form(func_space_vort) u_in = Form(func_space_inner_vel) source = Form(func_space_source) source.discretize(ffun) M_1 = inner(basis_vel_in, basis_vel_in) # E_21_in = d(func_space_inner_vel) W_02 = basis_2.wedged(basis_vort) W_11 = basis_vel_in.wedged(basis_vel_out) E_10_out = d(func_space_vort) print(np.shape(W_11), np.shape(E_10_out)) W_E = W_11 @ E_10_out W_11_inv = basis_vel_out.wedged(basis_vel_in) E_W = np.transpose(E_10_out) @ W_11_inv print("shape ew : ", np.shape(W_E)) print(np.shape(W_02)) M_1 = assemble(M_1, (func_space_inner_vel, func_space_inner_vel)) print(func_space_source.num_local_dof) W_E = assemble(W_E, (func_space_outer_vel, func_space_vort)) E_W = assemble(E_W, (func_space_vort, func_space_outer_vel)) W_02 = assemble(W_02, (func_space_vort, func_space_source)) lhs = spr.bmat([[M_1, W_E], [W_E.transpose(), None]]) rhs = np.zeros(np.shape(lhs)[0]) rhs[-func_space_source.num_dof:] = W_02 @ source.cochain solution = spr.linalg.spsolve(lhs.tocsc(), rhs) u_in.cochain = solution[:func_space_inner_vel.num_dof] psi.cochain = solution[-func_space_vort.num_dof:] xi = eta = np.linspace(-1, 1, 40) u_in.reconstruct(xi, eta) (x, y), u_x, u_y = u_in.export_to_plot() plt.contourf(x, y, u_x) plt.colorbar() plt.title("u_x inner") plt.show() psi.reconstruct(xi, eta) (x, y), psi_value = psi.export_to_plot() plt.contourf(x, y, psi_value) plt.title("psi outer") plt.colorbar() plt.show()
# define source term def source(x, y): return np.zeros(np.shape(x)) form_source = Form(func_space_2_lobatto) form_source.discretize(source) # define basis forms basis_1 = BasisForm(func_space_1_lobatto) basis_2 = BasisForm(func_space_2_lobatto) basis_1.quad_grid = 'lobatto' basis_2.quad_grid = 'lobatto' # solution form phi_2 = Form(func_space_2_lobatto) phi_2.basis.quad_grid = 'lobatto' q_1 = Form(func_space_1_lobatto) q_1.basis.quad_grid = 'lobatto' form_source = Form(func_space_2_lobatto) form_source.discretize(source) # define inner products # M_1k = inner(basis_1, basis_1, anisotropic_tensor)
source_form = Form(func_space_2_lobatto) source_form.discretize(source) phi_0_exact = Form(func_space_0_ext_gauss) phi_0_exact.discretize(manufactured_solution) print(np.shape(phi_0_exact.cochain)) print(phi_0_exact.cochain) # define basis forms from function space basis_0 = BasisForm(func_space_0_ext_gauss) basis_1 = BasisForm(func_space_1_lobatto) basis_2 = BasisForm(func_space_2_lobatto) basis_0.quad_grid = 'gauss' basis_1.quad_grid = 'lobatto' basis_2.quad_grid = 'lobatto' # define forms for soultion using function space q_1 = Form(func_space_1_lobatto) # q_1.basis.quad_grid = 'lobatto' phi_0 = Form(func_space_0_ext_gauss) # phi_0.basis.quad_grid = 'gauss' E21 = d_21_lobatto_outer(p) """extended E21 with virtual volumes""" px, py = p
def main(el, poly_degree): dim = 2 element_layout = (el + 1, el + 1) # print(element_layout) """define polynomial degree and inner/outer orientation""" pp = (poly_degree + 1, poly_degree + 1) # polynomial degree - primal mesh pd = (pp[0] - 1, pp[1] - 1) # polynomial degree - dual mesh orientation_inner = True outer = False # is_inner = False # orientation of primal mesh """define mesh""" bounds_domain = ((0, 1), (0, 1)) curvature = 0.0 mesh1 = CrazyMesh(dim, element_layout, bounds_domain, curvature) # gamma = (gamma1, gamma2, gamma3, gamma4) # dgamma = (dgamma1, dgamma2, dgamma3, dgamma4) # mesh1 = TransfiniteMesh(dim, element_layout, gamma, dgamma) """define function spaces used in problem""" fs_2_lobatto = FunctionSpace(mesh1, '2-lobatto', pp, outer) fs_1_lobatto = FunctionSpace(mesh1, '1-lobatto', pp, outer) fs_0_gauss = FunctionSpace(mesh1, '0-gauss', pd, inner) fs_1_lobatto.dof_map.continous_dof = True # continuous elements """define forms and quad grid""" """define (n) - source form""" f_source = Form(fs_2_lobatto) # form for source term f_source.discretize(source) f_source.basis.quad_grid = 'gauss' """define (n-1) - q form""" f_flux = Form(fs_1_lobatto) # form for flux terms f_flux.basis.quad_grid = 'lobatto' """define exact 0 - \phi form""" f_phi_exact = Form(fs_0_gauss) f_phi_exact.discretize(manufactured_solution) f_phi_exact.basis.quad_grid = 'gauss' """define unkown 0 - \phi form""" f_phi = Form(fs_0_gauss) f_phi.basis.quad_grid = 'gauss' """define anisotropic tensor as a mesh property""" # anisotropic_tensor = MeshFunction(mesh1) # anisotropic_tensor.discrete_tensor = [ # k_11(element_layout), k_12(element_layout), k_22(element_layout)] # mesh function to inject the anisotropic tensor anisotropic_tensor = MeshFunction(mesh1) anisotropic_tensor.continous_tensor = [k_11, k_12, k_22] # mesh_k = MeshFunction(crazy_mesh) # mesh_k.continous_tensor = [diffusion_11, diffusion_12, diffusion_22] """define basis functions""" basis_2 = BasisForm(fs_2_lobatto) basis_1 = BasisForm(fs_1_lobatto) basis_0 = BasisForm(fs_0_gauss) basis_2.quad_grid = 'gauss' basis_1.quad_grid = 'lobatto' basis_0.quad_grid = 'gauss' """general variables used frequently""" num_total_elements = element_layout[0] * element_layout[1] num_total_edges = fs_1_lobatto.num_dof num_total_faces = fs_2_lobatto.num_dof num_local_surfaces = fs_2_lobatto.num_local_dof dof_map_lobatto_faces = fs_2_lobatto.dof_map.dof_map """define 1-form mass matrix""" M1 = inner(basis_1, basis_1, anisotropic_tensor) M1_assembled = assemble(M1, (fs_1_lobatto, fs_1_lobatto)) """define the wedge product""" E21 = d_21_lobatto_outer(pp) W1 = basis_2.wedged(basis_0) W1_E21 = np.dot(W1, E21) W1_E21_local = np.repeat(W1_E21[:, :, np.newaxis], num_total_elements, axis=2) W1_E21_assembled = assemble(W1_E21_local, (fs_0_gauss, fs_1_lobatto)) """assemble lhs""" lhs = sparse.bmat([[M1_assembled, W1_E21_assembled.transpose()], [W1_E21_assembled, None]]).tolil() # A = np.linalg.det(lhs.todense()) # print(A) """assemble rhs""" rhs1 = np.zeros(num_total_edges)[:, np.newaxis] f_cochain_local = f_source.cochain_local[:, np.newaxis] W1_f_local = np.tensordot(W1, f_cochain_local, axes=1) rhs2 = assemble_cochain2(W1_f_local, dof_map_lobatto_faces, num_total_faces) rhs = np.vstack((rhs1, rhs2)) # print(time.time() - start_time) """implement boundary conditions""" """neuman boundary condition""" """dirichlet boundary condition""" """solve linear system of equations""" solution = sparse.linalg.spsolve(lhs.tocsc(), rhs) end_time = time.time() print("The total time taken by the program is : ", end_time - start_time) """l2 error""" """post processing / reconstruction""" eta_plot = xi_plot = xi = eta = np.linspace(-1, 1, 30) """reconstruct fluxes""" f_flux.cochain = solution[:fs_1_lobatto.num_dof] f_flux.reconstruct(xi, eta) (x_plot, y_plot), flux_x_plot, flux_y_plot = f_flux.export_to_plot() flux_x_plot, flux_y_plot = flux_y_plot, flux_x_plot """reconstruct potential""" f_phi.cochain = solution[fs_1_lobatto.num_dof:] f_phi.reconstruct(xi, eta) (x_plot, y_plot), phi_plot = f_phi.export_to_plot() phi_exact_plot = np.sin(2 * np.pi * x_plot) * np.sin(2 * np.pi * y_plot) """l2 - error in (div u -f)""" div_u_sum = np.zeros(num_total_elements) for ele_num in range(num_total_elements): l2_div_u = np.dot(E21, f_flux.cochain_local[:, ele_num] )[:, np.newaxis] - f_cochain_local[:, :, ele_num] div_u_sum[ele_num] = np.sum(l2_div_u) l2_err_div_u = np.linalg.norm(div_u_sum) l_inf_err_div_u = np.max(div_u_sum) """l2 - error in phi and flux """ l2_err_phi = f_phi.l_2_norm(phi_exact) l2_err_flux = f_flux.l_2_norm((flux_y_exact, flux_x_exact)) error = l2_err_phi, l2_err_flux, l2_err_div_u, l_inf_err_div_u print(l2_err_phi[0]) print(l2_err_flux[0]) # return error # plt.figure(1) plt.contourf(x_plot, y_plot, flux_x_plot) plt.colorbar() # # plt.figure(2) # plt.contourf(x_plot, y_plot, flux_x_exact_plot) # plt.colorbar() # print(np.max(flux_x_exact_plot), np.min(flux_x_exact_plot)) # print(np.max(flux_x_plot), np.min(flux_x_plot)) # plt.figure(3) plt.contourf(x_plot, y_plot, flux_y_plot) plt.colorbar() # # plt.figure(4) # plt.contourf(x_plot, y_plot, flux_y_exact_plot) # plt.colorbar() # print(np.max(flux_y_exact_plot), np.min(flux_y_exact_plot)) # print(np.max(flux_y_plot), np.min(flux_y_plot)) # plt.figure(5) plt.contourf(x_plot, y_plot, phi_plot) plt.colorbar() # plt.figure(6) # plt.contourf(x_plot, y_plot, phi_exact_plot) # plt.colorbar() # print(np.max(phi_exact_plot), np.min(phi_exact_plot)) # print(np.max(phi_plot), np.min(phi_plot)) plt.show()