Esempio n. 1
0
def run_experiments(
    relations,
    data_path_pre,
    data_path_post,
    input_param={
        "lm":
        "bert",
        "label":
        "bert_large",
        "models_names": ["bert"],
        "bert_model_name":
        "bert-large-cased",
        "bert_model_dir":
        "pre-trained_language_models/bert/cased_L-24_H-1024_A-16",
    },
    use_negated_probes=False,
):
    model = None
    pp = pprint.PrettyPrinter(width=41, compact=True)

    all_Precision1 = []
    type_Precision1 = defaultdict(list)
    type_count = defaultdict(list)

    results_file = open("last_results.csv", "w+")

    for relation in relations:
        pp.pprint(relation)
        PARAMETERS = {
            "dataset_filename":
            "{}{}{}".format(data_path_pre, relation["relation"],
                            data_path_post),
            "common_vocab_filename":
            "pre-trained_language_models/common_vocab_lowercased.txt",
            "template":
            "",
            "bert_vocab_name":
            "vocab.txt",
            "batch_size":
            32,
            "logdir":
            "output",
            "full_logdir":
            "output/results/{}/{}".format(input_param["label"],
                                          relation["relation"]),
            "lowercase":
            True,
            "max_sentence_length":
            100,
            "threads":
            -1,
            "interactive":
            False,
            "use_negated_probes":
            use_negated_probes,
        }

        if "template" in relation:
            PARAMETERS["template"] = relation["template"]
            if use_negated_probes:
                PARAMETERS["template_negated"] = relation["template_negated"]

        PARAMETERS.update(input_param)
        print(PARAMETERS)

        args = argparse.Namespace(**PARAMETERS)

        # see if file exists
        try:
            data = load_file(args.dataset_filename)
        except Exception as e:
            print("Relation {} excluded.".format(relation["relation"]))
            print("Exception: {}".format(e))
            continue

        if model is None:
            [model_type_name] = args.models_names
            model = build_model_by_name(model_type_name, args)

        Precision1 = run_evaluation(args, shuffle_data=False, model=model)
        print("P@1 : {}".format(Precision1), flush=True)
        all_Precision1.append(Precision1)

        results_file.write("{},{}\n".format(relation["relation"],
                                            round(Precision1 * 100, 2)))
        results_file.flush()

        if "type" in relation:
            type_Precision1[relation["type"]].append(Precision1)
            data = load_file(PARAMETERS["dataset_filename"])
            type_count[relation["type"]].append(len(data))

    mean_p1 = statistics.mean(all_Precision1)
    print("@@@ {} - mean P@1: {}".format(input_param["label"], mean_p1))
    results_file.close()

    for t, l in type_Precision1.items():

        print(
            "@@@ ",
            input_param["label"],
            t,
            statistics.mean(l),
            sum(type_count[t]),
            len(type_count[t]),
            flush=True,
        )

    return mean_p1, all_Precision1
def run_experiments(
    data_path_pre,
    data_path_post,
    input_param={
        "lm":
        "bert",
        "label":
        "bert_large",
        "models_names": ["bert"],
        "bert_model_name":
        "bert-large-cased",
        "bert_model_dir":
        "pre-trained_language_models/bert/cased_L-24_H-1024_A-16",
    },
    use_negated_probes=False,
):
    model = None
    pp = pprint.PrettyPrinter(width=41, compact=True)

    all_Precision1 = []
    type_Precision1 = defaultdict(list)
    type_count = defaultdict(list)

    for i in range(1):
        PARAMETERS = {
            "dataset_filename":
            "reproduction/data/TREx_filter/different_queries.jsonl",
            "fact_pair_filename":
            "reproduction/data/TREx_filter/different_queries_facts.jsonl",
            "common_vocab_filename":
            "pre-trained_language_models/common_vocab_cased.txt",
            "template":
            "",
            "bert_vocab_name":
            "vocab.txt",
            "batch_size":
            10,
            "logdir":
            "output",
            "full_logdir":
            "output/results/{}/{}".format(input_param["label"],
                                          "different_queries"),
            "lowercase":
            False,
            "max_sentence_length":
            100,
            "threads":
            -1,
            "interactive":
            False,
            "use_negated_probes":
            use_negated_probes,
        }

        PARAMETERS.update(input_param)
        args = argparse.Namespace(**PARAMETERS)

        if model is None:
            [model_type_name] = args.models_names
            model = build_model_by_name(model_type_name, args)

        Precision1 = run_evaluation(args, shuffle_data=False, model=model)
        print("P@1 : {}".format(Precision1), flush=True)
        all_Precision1.append(Precision1)

    mean_p1 = statistics.mean(all_Precision1)
    print("@@@ {} - mean P@1: {}".format(input_param["label"], mean_p1))

    for t, l in type_Precision1.items():

        print(
            "@@@ ",
            input_param["label"],
            t,
            statistics.mean(l),
            sum(type_count[t]),
            len(type_count[t]),
            flush=True,
        )

    return mean_p1, all_Precision1
Esempio n. 3
0
def run_experiments(
    relations,
    data_path_pre,
    data_path_post,
    input_param={
        "lm":
        "bert",
        "label":
        "bert_large",
        "models_names": ["bert"],
        "bert_model_name":
        "bert-large-cased",
        "bert_model_dir":
        "pre-trained_language_models/bert/cased_L-24_H-1024_A-16",
    },
    use_negated_probes=False,
):
    model = None
    pp = pprint.PrettyPrinter(width=41, compact=True)

    all_Precision1 = []
    all_Precision10 = []
    type_Precision1 = defaultdict(list)
    type_count = defaultdict(list)

    # Append to results_file
    results_file = open("last_results.csv", "a", encoding='utf-8')
    results_file.write('\n')

    for relation in relations:
        pp.pprint(relation)
        PARAMETERS = {
            "dataset_filename":
            "{}{}{}".format(data_path_pre, relation["relation"],
                            data_path_post),
            "common_vocab_filename":
            "pre-trained_language_models/common_vocab_cased.txt",
            "template":
            "",
            "bert_vocab_name":
            "vocab.txt",
            "batch_size":
            32,
            "logdir":
            "output",
            "full_logdir":
            "output/results/{}/{}".format(input_param["label"],
                                          relation["relation"]),
            "lowercase":
            False,
            "max_sentence_length":
            100,
            "threads":
            -1,
            "interactive":
            False,
            "use_negated_probes":
            use_negated_probes,
        }

        if "template" in relation:
            PARAMETERS["template"] = relation["template"]
            if use_negated_probes:
                PARAMETERS["template_negated"] = relation["template_negated"]

        PARAMETERS.update(input_param)
        print(PARAMETERS)

        args = argparse.Namespace(**PARAMETERS)
        relation_name = relation["relation"]
        if relation_name == "test":
            relation_name = data_path_pre.replace("/", "") + "_test"

        # see if file exists
        try:
            data = load_file(args.dataset_filename)
        except Exception as e:
            print("Relation {} excluded.".format(relation_name))
            print("Exception: {}".format(e))
            continue

        if model is None:
            [model_type_name] = args.models_names
            model = build_model_by_name(model_type_name, args)

        Precision1, Precision10 = run_evaluation(args,
                                                 shuffle_data=False,
                                                 model=model)
        print("P@1 : {}".format(Precision1), flush=True)
        all_Precision1.append(Precision1)
        all_Precision10.append(Precision10)

        results_file.write("[{}] {}: {}, P10 = {}, P1 = {}\n".format(
            datetime.now(), input_param["label"], relation_name,
            round(Precision10 * 100, 2), round(Precision1 * 100, 2)))
        results_file.flush()

        if "type" in relation:
            type_Precision1[relation["type"]].append(Precision1)
            data = load_file(PARAMETERS["dataset_filename"])
            type_count[relation["type"]].append(len(data))

    mean_p1 = statistics.mean(all_Precision1)
    mean_p10 = statistics.mean(all_Precision10)
    summaryP1 = "@@@ {} - mean P@10 = {}, mean P@1 = {}".format(
        input_param["label"], round(mean_p10 * 100, 2),
        round(mean_p1 * 100, 2))
    print(summaryP1)
    results_file.write(f'{summaryP1}\n')
    results_file.flush()

    for t, l in type_Precision1.items():
        prec1item = f'@@@ Label={input_param["label"]}, type={t}, samples={sum(type_count[t])}, relations={len(type_count[t])}, mean prec1={round(statistics.mean(l) * 100, 2)}\n'
        print(prec1item, flush=True)
        results_file.write(prec1item)
        results_file.flush()

    results_file.close()
    return mean_p1, all_Precision1
Esempio n. 4
0
def run_experiments(
    relations,
    data_path_pre,
    data_path_post,
    refine_template,
    get_objs,
    batch_size,
    dynamic=None,
    use_prob=False,
    bt_obj=None,
    temp_model=None,
    save=None,
    load=None,
    feature_dir=None,
    enforce_prob=True,
    num_feat=1,
    temperature=0.0,
    use_model2=False,
    lowercase=False,
    upper_entity=False,
    input_param={
        "lm":
        "bert",
        "label":
        "bert_large",
        "models_names": ["bert"],
        "bert_model_name":
        "bert-large-cased",
        "bert_model_dir":
        "pre-trained_language_models/bert/cased_L-24_H-1024_A-16",
    },
):
    model, model2 = None, None
    pp = pprint.PrettyPrinter(width=41, compact=True)

    all_Precision1 = []
    type_Precision1 = defaultdict(list)
    type_count = defaultdict(list)
    print('use lowercase: {}, use upper entity: {}'.format(
        lowercase, upper_entity))

    results_file = open("last_results.csv", "w+")

    if refine_template:
        refine_temp_fout = open(refine_template, 'w')
        new_relations = []
        templates_set = set()

    rel2numtemp = {}
    for relation in relations:  # collect templates
        if 'template' in relation:
            if type(relation['template']) is not list:
                relation['template'] = [relation['template']]
        rel2numtemp[relation['relation']] = len(relation['template'])

    if temp_model is not None:
        if temp_model.startswith('mixture'):
            method = temp_model.split('_')[1]
            if method == 'optimize':  # (extract feature) + optimize
                temp_model = TempModel(rel2numtemp,
                                       enforce_prob=enforce_prob,
                                       num_feat=num_feat)
                temp_model.train()
                optimizer = optim.Adam(temp_model.parameters(), lr=1e-1)
                temp_model = (temp_model, (optimizer, temperature))
            elif method == 'precompute':  # extract feature
                temp_model = (None, 'precompute')
            elif method == 'predict':  # predict
                temp_model = TempModel(
                    rel2numtemp, enforce_prob=enforce_prob,
                    num_feat=num_feat)  # TODO: number of feature
                if load is not None:
                    temp_model.load_state_dict(torch.load(load))
                temp_model.eval()
                temp_model = (temp_model, None)
            else:
                raise NotImplementedError
        else:
            raise NotImplementedError

    for relation in relations:
        pp.pprint(relation)
        PARAMETERS = {
            "relation":
            relation["relation"],
            "dataset_filename":
            "{}/{}{}".format(data_path_pre, relation["relation"],
                             data_path_post),
            "common_vocab_filename":
            "pre-trained_language_models/common_vocab_cased.txt",
            "template":
            "",
            "bert_vocab_name":
            "vocab.txt",
            "batch_size":
            batch_size,
            "logdir":
            "output",
            "full_logdir":
            "output/results/{}/{}".format(input_param["label"],
                                          relation["relation"]),
            "lowercase":
            lowercase,
            "upper_entity":
            upper_entity,
            "max_sentence_length":
            100,
            "threads":
            -1,
            "interactive":
            False,
        }
        dev_param = deepcopy(PARAMETERS)
        dev_param['dataset_filename'] = '{}/{}{}'.format(
            data_path_pre + '_dev', relation['relation'], data_path_post)
        bert_large_param = deepcopy(PARAMETERS)

        if 'template' in relation:
            PARAMETERS['template'] = relation['template']
            dev_param['template'] = relation['template']
            bert_large_param['template'] = relation['template']

        PARAMETERS.update(input_param)
        dev_param.update(input_param)
        bert_large_param.update(
            LM_BERT_LARGE
        )  # this is used to optimize the weights for bert-base and bert-large at the same time
        print(PARAMETERS)

        args = argparse.Namespace(**PARAMETERS)
        dev_args = argparse.Namespace(**dev_param)
        bert_large_args = argparse.Namespace(**bert_large_param)

        # see if file exists
        try:
            data = load_file(args.dataset_filename)
        except Exception as e:
            print("Relation {} excluded.".format(relation["relation"]))
            print("Exception: {}".format(e))
            continue

        if model is None:
            [model_type_name] = args.models_names
            model = build_model_by_name(model_type_name, args)
            if use_model2:
                model2 = build_model_by_name(bert_large_args.models_names[0],
                                             bert_large_args)

        if temp_model is not None:
            if temp_model[1] == 'precompute':
                features = run_evaluation(
                    args,
                    shuffle_data=False,
                    model=model,
                    refine_template=bool(refine_template),
                    get_objs=get_objs,
                    dynamic=dynamic,
                    use_prob=use_prob,
                    bt_obj=bt_obj,
                    temp_model=temp_model)
                print('save features for {}'.format(relation['relation']))
                torch.save(features,
                           os.path.join(save, relation['relation'] + '.pt'))
                continue
            elif temp_model[1] is not None:  # train temp model
                if feature_dir is None:
                    loss = run_evaluation(
                        args,
                        shuffle_data=False,
                        model=model,
                        model2=model2,
                        refine_template=bool(refine_template),
                        get_objs=get_objs,
                        dynamic=dynamic,
                        use_prob=use_prob,
                        bt_obj=bt_obj,
                        temp_model=temp_model)
                else:
                    temp_model_, (optimizer, temperature) = temp_model
                    temp_model_.cuda()
                    min_loss = 1e10
                    es = 0
                    for e in range(500):
                        # SHAPE: (num_sample, num_temp)
                        feature = torch.load(
                            os.path.join(feature_dir,
                                         args.relation + '.pt')).cuda()
                        #dev_feature = torch.load(os.path.join(feature_dir + '_dev', args.relation + '.pt')).cuda()
                        #feature = torch.cat([feature, dev_feature], 0)
                        #weight = feature.mean(0)
                        #temp_model[0].set_weight(args.relation, weight)
                        optimizer.zero_grad()
                        loss = temp_model_(args.relation, feature)
                        if os.path.exists(feature_dir +
                                          '__dev'):  # TODO: debug
                            dev_feature = torch.load(
                                os.path.join(feature_dir + '_dev',
                                             args.relation + '.pt')).cuda()
                            dev_loss = temp_model_(args.relation, dev_feature)
                        else:
                            dev_loss = loss
                        loss.backward()
                        optimizer.step()
                        if dev_loss - min_loss < -1e-3:
                            min_loss = dev_loss
                            es = 0
                        else:
                            es += 1
                            if es >= 10:
                                print('early stop')
                                break
                continue

        Precision1 = run_evaluation(args,
                                    shuffle_data=False,
                                    model=model,
                                    refine_template=bool(refine_template),
                                    get_objs=get_objs,
                                    dynamic=dynamic,
                                    use_prob=use_prob,
                                    bt_obj=bt_obj,
                                    temp_model=temp_model)

        if get_objs:
            return

        if refine_template and Precision1 is not None:
            if Precision1 in templates_set:
                continue
            templates_set.add(Precision1)
            new_relation = deepcopy(relation)
            new_relation['old_template'] = new_relation['template']
            new_relation['template'] = Precision1
            new_relations.append(new_relation)
            refine_temp_fout.write(json.dumps(new_relation) + '\n')
            refine_temp_fout.flush()
            continue

        print("P@1 : {}".format(Precision1), flush=True)
        all_Precision1.append(Precision1)

        results_file.write("{},{}\n".format(relation["relation"],
                                            round(Precision1 * 100, 2)))
        results_file.flush()

        if "type" in relation:
            type_Precision1[relation["type"]].append(Precision1)
            data = load_file(PARAMETERS["dataset_filename"])
            type_count[relation["type"]].append(len(data))

    if refine_template:
        refine_temp_fout.close()
        return

    if temp_model is not None:
        if save is not None and temp_model[0] is not None:
            torch.save(temp_model[0].state_dict(), save)
        return

    mean_p1 = statistics.mean(all_Precision1)
    print("@@@ {} - mean P@1: {}".format(input_param["label"], mean_p1))
    results_file.close()

    for t, l in type_Precision1.items():

        print(
            "@@@ ",
            input_param["label"],
            t,
            statistics.mean(l),
            sum(type_count[t]),
            len(type_count[t]),
            flush=True,
        )

    return mean_p1, all_Precision1
Esempio n. 5
0
def run_experiments(
    relations,
    data_path_pre,
    data_path_post,
    input_param={
        "lm":
        "bert",
        "label":
        "bert_large",
        "models_names": ["bert"],
        "bert_model_name":
        "bert-large-cased",
        "bert_model_dir":
        "pre-trained_language_models/bert/cased_L-24_H-1024_A-16",
    },
    use_negated_probes=False,
):
    model = None
    pp = pprint.PrettyPrinter(width=41, compact=True)

    all_Precision1 = []
    type_Precision1 = defaultdict(list)
    type_count = defaultdict(list)

    results_file = open("last_results.csv", "w+")
    uid_list_all, mask_feature_list_all, answers_list_all = [], [], []
    all_correct_uuids = []
    total_modified_correct, total_unmodified_correct = 0, 0
    total_modified_num, total_unmodified_num = 0, 0
    for relation in relations:
        # if "type" not in relation or relation["type"] != "1-1":
        #     continue

        pp.pprint(relation)
        PARAMETERS = {
            "dataset_filename":
            "{}{}{}".format(data_path_pre, relation["relation"],
                            data_path_post),
            "common_vocab_filename":
            'pre-trained_language_models/bert/cased_L-12_H-768_A-12/vocab.txt',  #"pre-trained_language_models/common_vocab_cased.txt",
            "template":
            "",
            "bert_vocab_name":
            "vocab.txt",
            "batch_size":
            32,
            "logdir":
            "output",
            "full_logdir":
            "output/results/{}/{}".format(input_param["label"],
                                          relation["relation"]),
            "lowercase":
            False,
            "max_sentence_length":
            512,  # change to 512 later
            "threads":
            2,
            "interactive":
            False,
            "use_negated_probes":
            use_negated_probes,
            "return_features":
            False,
            "uuid_list": []
        }

        if "template" in relation:
            PARAMETERS["template"] = relation["template"]
            if use_negated_probes:
                PARAMETERS["template_negated"] = relation["template_negated"]

        PARAMETERS.update(input_param)
        print(PARAMETERS)

        args = argparse.Namespace(**PARAMETERS)

        # see if file exists
        try:
            data = load_file(args.dataset_filename)
        except Exception as e:
            print("Relation {} excluded.".format(relation["relation"]))
            print("Exception: {}".format(e))
            continue

        if model is None:
            [model_type_name] = args.models_names
            model = build_model_by_name(model_type_name, args)

        if getattr(args, 'output_feature_path', ''):
            # Get the features for kNN-LM. Ignore this part if only obtaining the correct-predicted questions.
            Precision1, total_unmodified, Precision1_modified, total_modified, uid_list, mask_feature_list, answers_list = run_evaluation(
                args, shuffle_data=False, model=model)
            if len(uid_list) > 0:
                uid_list_all.extend(uid_list)
                mask_feature_tensor = torch.cat(mask_feature_list, dim=0)
                mask_feature_list_all.append(mask_feature_tensor)
                answers_list_all.extend(answers_list)

        else:
            Precision1, total_unmodified, Precision1_modified, total_modified, correct_uuids = run_evaluation(
                args, shuffle_data=False, model=model)
            all_correct_uuids.extend(correct_uuids)

        total_modified_correct += Precision1_modified
        total_unmodified_correct += Precision1
        total_modified_num += total_modified
        total_unmodified_num += total_unmodified
        print("P@1 : {}".format(Precision1), flush=True)
        all_Precision1.append(Precision1)

        results_file.write("{},{}\n".format(relation["relation"],
                                            round(Precision1 * 100, 2)))
        results_file.flush()

        if "type" in relation:
            type_Precision1[relation["type"]].append(Precision1)
            data = load_file(PARAMETERS["dataset_filename"])
            type_count[relation["type"]].append(len(data))

    mean_p1 = statistics.mean(all_Precision1)
    print("@@@ {} - mean P@1: {}".format(input_param["label"], mean_p1))
    print("Unmodified acc: {}, modified acc: {}".format(
        total_unmodified_correct / float(total_unmodified_num),
        0 if total_modified_num == 0 else total_modified_correct /
        float(total_modified_num)))
    results_file.close()

    for t, l in type_Precision1.items():

        print(
            "@@@ ",
            input_param["label"],
            t,
            statistics.mean(l),
            sum(type_count[t]),
            len(type_count[t]),
            flush=True,
        )
    if len(uid_list_all) > 0:
        out_dict = {
            'mask_features': torch.cat(mask_feature_list_all, dim=0),
            'uuids': uid_list_all,
            'obj_labels': answers_list_all
        }
        torch.save(out_dict, 'datastore/ds_change32.pt')
    if len(all_correct_uuids) > 0:
        if not os.path.exists('modification'):
            os.makedirs('modification')
        json.dump(all_correct_uuids,
                  open('modification/correct_uuids.json', 'w'))
    return mean_p1, all_Precision1