Esempio n. 1
0
    def genetic(self, **kwargs):
        """
		Implements genetic reproduction

		If local search is set to True, implements mimetic
		"""
        names = kwargs.get("names")
        data = kwargs.get("data")
        max_iter = kwargs.get("max_iter", 30)
        nb_start = kwargs.get("nb_start", 10)
        max_pop = kwargs.get("max_pop", nb_start)
        max_parents = kwargs.get("max_parents", None)
        mut_rate = kwargs.get("mut_rate", 0.01)
        local_search = kwargs.get("local_search", False)

        # initialize the population
        s_max = None
        g_max = None
        population = []
        for i in xrange(nb_start):
            g = BayesNet(names)
            g.random_init(max_parents)
            if local_search:
                g, s, _ = self.best_neighbour(names, data, g, max_parents)
            else:
                s = g.score(data)

            population += [(g, s)]
            if s > s_max or s_max is None:
                s_max = s
                g_max = g

        # let evolution do its work
        criteria = True
        niter = 0

        def update_criteria_from(population):
            s = None
            g = None
            for (_g, _s) in population:
                if s is None or _s > s:
                    s = _s
                    g = _g
            if s > s_max:
                return g, s, True
            else:
                return g_max, s_max, True

        while criteria and niter < max_iter:
            print "Iter {}, Population {}".format(niter, len(population))
            population = self.evolve(names, data, population, max_parents,
                                     mut_rate, max_pop, local_search)
            g_max, s_max, criteria = update_criteria_from(population)
            if self.plotting:
                try:
                    self.plt_mgr.add(name="Genetic Score Max", y=s_max)
                    self.plt_mgr.update()
                except Exception, e:
                    pass
            niter += 1
Esempio n. 2
0
    def brute_force(self, **kwargs):
        """
		Sample random bayesian network and keep the best

		Args
			names (list of string): the names of the nodes
			data (np array): (nsamples, nfeatures)
		"""
        # get args
        names = kwargs.get("names")
        data = kwargs.get("data")
        nsamples = kwargs.get("nsamples", 1000)

        # initialize
        g = BayesNet(names)
        g.random_init()
        s = g.score(data)

        # explore
        for i in xrange(nsamples):
            sys.stdout.write("\rIter {}".format(i))
            sys.stdout.flush()
            g_new = BayesNet(names)
            g_new.random_init()
            s_new = g_new.score(data)
            if s_new > s:
                print "\nFound new best score at {}".format(s_new)
                g = g_new
                s = s_new
        return g, s
Esempio n. 3
0
    def hill_climbing(self, **kwargs):
        """
		Implements Hill Climbing Algorithm

		Args
			names (list of string): the name of the nodes
			data (np array): (nsamples, nfeatures)
			max_iter (int): max number of iteration
			g0 (BayesNet): the start point

		Returns
			g: best graph found
			s: score of best graph

		"""
        # get args
        names = kwargs.get("names")
        data = kwargs.get("data")
        max_iter = kwargs.get("max_iter", 20)
        max_parents = kwargs.get("max_parents", None)

        # initialize
        g0 = BayesNet(names)
        g0.random_init(max_parents=max_parents)
        g = g0
        s = g0.score(data)
        found_new = True
        niter = 0

        # explore
        while found_new and niter < max_iter:
            print "Iter {}".format(niter)
            niter += 1
            g, s, found_new = self.best_neighbour(names, data, g, max_parents)
            if self.plotting:
                try:
                    self.plt_mgr.add(name="score hill climbing {}".format(
                        self.start_no),
                                     y=s)
                    self.plt_mgr.update()
                except Exception, e:
                    pass