Esempio n. 1
0
    def test_no_generative_model(self):
        D = 6
        J = 6
        bf_meta = build_meta_dict({'n_params': D, 'n_models': J}, DEFAULT_SETTING_INVARIANT_BAYES_FLOW)

        amortizer = ex.amortizers.InvariantBayesFlow(bf_meta)
        trainer = MetaTrainer(amortizer,
                              loss=kl_latent_space,
                              learning_rate=.0003
                              )

        generative_model = GenerativeModel(
            model_prior,
            [TPrior(D // 2, 1.0, 5.0)] * J,
            [MultivariateTSimulator(df) for df in np.arange(1, J + 1, 1)]
        )
        model_indices, params, sim_data = generative_model(64, 128)
        _losses = trainer.train_offline(2, 16, model_indices, params, sim_data)

        with self.assertRaises(OperationNotSupportedError):
            _losses = trainer.train_online(epochs=2, iterations_per_epoch=20, batch_size=32, n_obs=110)

        with self.assertRaises(OperationNotSupportedError):
            _losses = trainer.train_rounds(epochs=1, rounds=5, sim_per_round=100, batch_size=32, n_obs=110)

        with self.assertRaises(OperationNotSupportedError):
            _losses = trainer.simulate_and_train_offline(n_sim=100, epochs=2, batch_size=16, n_obs=110)
Esempio n. 2
0
 def init_same_param_shapes(cls):
     M = 10
     D = 8
     prior = TPrior(D // 2, mu_scale=1.0, scale_scale=5.0)
     priors = [prior] * M
     simulators = [
         MultivariateTSimulator(df) for df in np.arange(1, 101, M)
     ]
     generative_model = MetaGenerativeModel(model_prior, priors, simulators)
     return generative_model
Esempio n. 3
0
 def test_meta_generative_model(self):
     M = 10
     D = 100
     prior = TPrior(D // 2, mu_scale=1.0, scale_scale=5.0)
     priors = [prior] * M
     simulators = [
         MultivariateTSimulator(df) for df in np.arange(1, 101, M)
     ]
     generative_model = GenerativeModel(model_prior, priors, simulators)
     _model_indices, _params, _sim_data = generative_model(n_sim=N_SIM,
                                                           n_obs=N_OBS)
Esempio n. 4
0
    def test_same_data_transform(self):
        def data_transform(x):
            noise = 0.001 * np.random.random(x.shape)
            return x + noise

        M = 10
        D = 8
        prior = TPrior(D // 2, mu_scale=1.0, scale_scale=5.0)
        priors = [prior] * M
        simulators = [
            MultivariateTSimulator(df) for df in np.arange(1, 101, M)
        ]

        _generative_model = MetaGenerativeModel(model_prior=model_prior,
                                                priors=priors,
                                                simulators=simulators,
                                                data_transforms=data_transform)
Esempio n. 5
0
    def test_same_param_transform(self):
        def param_transform(x):
            return np.exp(x)

        M = 10
        D = 8
        prior = TPrior(D // 2, mu_scale=1.0, scale_scale=5.0)
        priors = [prior] * M
        simulators = [
            MultivariateTSimulator(df) for df in np.arange(1, 101, M)
        ]

        _generative_model = MetaGenerativeModel(
            model_prior=model_prior,
            priors=priors,
            simulators=simulators,
            param_transforms=param_transform)
Esempio n. 6
0
    def setUpClass(cls):
        D = 10
        J = 10
        bf_meta = build_meta_dict({'n_params': D, 'n_models': J}, DEFAULT_SETTING_INVARIANT_BAYES_FLOW)

        amortizer = ex.amortizers.InvariantBayesFlow(bf_meta)
        generative_model = GenerativeModel(
            model_prior,
            [TPrior(D // 2, 1.0, 5.0)] * J,
            [MultivariateTSimulator(df) for df in np.arange(1, J + 1, 1)]
        )

        trainer = MetaTrainer(amortizer,
                              generative_model,
                              loss=kl_latent_space,
                              learning_rate=.0003
                              )
        cls.trainer = trainer
Esempio n. 7
0
    def test_individual_param_and_data_transform(self):
        param_transforms = [
            lambda x: np.exp(x), None, lambda x: np.round(x, 3)
        ]

        data_transforms = [
            lambda x: x + np.random.random(x.shape), lambda x: np.exp(x), None
        ]

        M = 3
        D = 4
        prior = TPrior(D // 2, mu_scale=1.0, scale_scale=5.0)
        priors = [prior] * M
        simulators = [
            MultivariateTSimulator(df)
            for df in np.round(np.linspace(1, 101, M))
        ]

        _generative_model = MetaGenerativeModel(
            model_prior=model_prior,
            priors=priors,
            simulators=simulators,
            param_transforms=param_transforms,
            data_transforms=data_transforms)