def __init__(self): ## Library parameters self.params = bo.initialize_params() n_dim = 5 ## n dimensions n_sam = 100 ## n samples ## Set of discrete points self.x_set = np.random.rand(n_sam, n_dim)
def __init__(self): ## Library parameters self.params = bo.initialize_params() ## n dimensions self.n_dim = 5 ## Lower bounds self.lower_bound = np.zeros((self.n_dim,)) ## Upper bounds self.upper_bound = np.ones((self.n_dim,))
def quad(x, mu): return ((np.asarray(x) - mu) ** 2).mean() def func(x): # print "x", x # ~ target = np.ones(len(x))*0.3 target = np.arange(1, 1 + len(x)) target2 = np.ones(len(x)) * 10 # print "target", target e = quad(x, target) return e # Initialize the parameters by default params = bayesopt.initialize_params() # We decided to change some of them params["n_init_samples"] = 150 params["n_iter_relearn"] = 20 # params['noise'] = 0.01 params["kernel_name"] = "kMaternISO3" params["kernel_hp_mean"] = [1] params["kernel_hp_std"] = [5] params["surr_name"] = "sStudentTProcessNIG" dim = 20 lb = np.ones((dim,)) * 0 ub = np.ones((dim,)) * 20 mvalue, x_out, error = bayesopt.optimize(func, dim, lb, ub, params)