itr += 1
    imgs = imgs.permute(0, 3, 1, 2).contiguous()
    if use_gpu:
        imgs = imgs.cuda()
    imgs = Variable(imgs)
    conf, loc = net.forward(imgs)
    conf = conf[0, ...]
    loc = loc[0, ...].cpu()

    prior = test_dataset.get_prior_bbox()
    prior = torch.unsqueeze(prior, 0)
    # prior = prior.cuda()
    real_bounding_box = loc2bbox(loc, prior, center_var=0.1, size_var=0.2)
    real_bounding_box = torch.squeeze(real_bounding_box, 0)
    class_list, sel_box = nms_bbox(real_bounding_box,
                                   conf,
                                   overlap_threshold=0.5,
                                   prob_threshold=0.6)

    # img = Image.open(os.path.join(img_dir, 'bad-honnef', 'bad-honnef_000000_000000_leftImg8bit.png'))
    img = imgs[0].permute(1, 2, 0).contiguous()
    true_loc = loc_targets[0, conf_targets[0, ...].nonzero(), :].squeeze()
    img = Image.fromarray(np.uint8(img * 128 + 127))
    # draw = ImageDraw.Draw(img)
    sel_box = np.array(sel_box)

    # loc_targets = torch.squeeze(loc2bbox(loc_targets, prior)).numpy()

    fig, ax = plt.subplots(1)
    ax.imshow(img)
    for idx in range(len(sel_box)):
        cx, cy, w, h = sel_box[idx] * 300
Esempio n. 2
0
import numpy as np
import torch.nn
import torch.optim as optim
import cityscape_dataset as csd
from torch.utils.data import Dataset
from torch.autograd import Variable
from bbox_helper import generate_prior_bboxes, match_priors,nms_bbox,loc2bbox
from data_loader import get_list
from ssd_net import SSD
from bbox_loss import MultiboxLoss







prior_box = train_dataset.get_prior_boxes()
boxes = loc2bbox(loc_preds, prior_box, center_var=0.1, size_var=0.2)
select_box = nms_bbox(boxes, conf_preds, overlap_threshold=0.5, prob_threshold=0.6)

Esempio n. 3
0
    bbox = bbox_helper.loc2bbox(loc_preds, prior_bboxes)
    bbox = bbox[0].detach()
    bbox_corner = bbox_helper.center2corner(bbox)
    print(bbox_corner)
    print(conf_preds)
    print(bbox_corner.shape)
    bbox_corner = bbox_corner
    conf_preds = conf_preds[0].detach()

    # idx = conf_preds[:, 2] > 0.6
    # bbox_corner = bbox_corner[idx]
    # bbox = bbox[idx]
    # print(bbox_corner)

    bbox_nms = bbox_helper.nms_bbox(bbox_corner, conf_preds)
    print(bbox_nms[0])
    bbox_nms = torch.Tensor(bbox_nms[0])
    print(bbox_nms.shape)
    bbox_nms_cen = bbox_helper.corner2center(bbox_nms)

    test_img = test_img.detach()
    channels = test_img.shape[1]
    h, w = test_img.shape[2], test_img.shape[3]

    img_r = test_img.reshape(h, w, channels)
    img_n = (img_r + 1) / 2

    fig, ax = plt.subplots(1)

    ax.imshow(img_n)
Esempio n. 4
0
    if USE_GPU:
        test_net_state = torch.load(path_to_trained_model)
    else:
        test_net_state = torch.load(path_to_trained_model, map_location='cpu')
    test_net = SSD(num_classes=3)
    test_net.load_state_dict(test_net_state)
    test_net.eval()

    test_image_permuted = img_tensor.permute(0, 3, 1, 2)
    test_image_permuted = Variable(test_image_permuted.float())

    test_conf_preds, test_loc_preds = test_net.forward(test_image_permuted)
    test_bbox_priors = prior_bboxes.unsqueeze(0)
    test_bbox_preds = loc2bbox(test_loc_preds.cpu(), test_bbox_priors.cpu(), center_var=0.1, size_var=0.2)
    sel_bbox_preds = nms_bbox(test_bbox_preds.squeeze().detach(), test_conf_preds.squeeze().detach().cpu(), overlap_threshold=0.5, prob_threshold=0.5)

    rects = []
    classes = []

    for key in sel_bbox_preds.keys():
        for value in sel_bbox_preds[key]:
            classes.append(key)
            rects.append(value)
    rects = center2corner(torch.tensor(rects))*300

    if len(rects) != 0:
        if rects.dim() == 1:
            rects = rects.unsqueeze(0)
        classes = torch.tensor(classes)
        drawRectsWithImgPLT(img, rects, classes)
Esempio n. 5
0
def test_net(test_dataset, class_labels, results_path):
    if torch.cuda.is_available():
        torch.set_default_tensor_type('torch.cuda.FloatTensor')

    # Load the save model and deploy
    test_net = SSD(len(class_labels))

    test_net_state = torch.load(os.path.join(results_path))
    test_net.load_state_dict(test_net_state)
    test_net.cuda()

    test_net.eval()

    # accuracy
    count_matched = 0
    count_gt = 0
    for test_item_idx in range(0, len(test_dataset)):
        # test_item_idx = random.choice(range(0, len(test_dataset)))
        test_image_tensor, test_label_tensor, test_bbox_tensor, prior_bbox = test_dataset[
            test_item_idx]

        # run Forward
        with torch.no_grad():
            pred_scores_tensor, pred_bbox_tensor = test_net.forward(
                test_image_tensor.unsqueeze(0).cuda())  # N C H W

        # scores -> Prob # because I deleted F.softmax~ at the ssd_net for net.eval
        pred_scores_tensor = F.softmax(pred_scores_tensor, dim=2)

        # bbox loc -> bbox (center)
        pred_bbox_tensor = loc2bbox(pred_bbox_tensor, prior_bbox.unsqueeze(0))

        # NMS : return tensor dictionary (bbo
        pred_picked = nms_bbox(
            pred_bbox_tensor[0],
            pred_scores_tensor[0])  # not tensor, corner form

        # Show the result
        test_image = test_image_tensor.cpu().numpy().astype(
            np.float32).transpose().copy()  # H, W, C
        test_image = ((test_image + 1) / 2)
        gt_label = test_label_tensor.cpu().numpy().astype(np.uint8).copy()
        gt_bbox_tensor = torch.cat([
            test_bbox_tensor[..., :2] - test_bbox_tensor[..., 2:] / 2,
            test_bbox_tensor[..., :2] + test_bbox_tensor[..., 2:] / 2
        ],
                                   dim=-1)
        gt_bbox = gt_bbox_tensor.detach().cpu().numpy().astype(
            np.float32).reshape((-1, 4)).copy() * 300
        gt_idx = gt_label > 0

        # Calculate accuracy
        pred_scores = pred_scores_tensor.detach().cpu().numpy().astype(
            np.float32).copy()
        pred_label = pred_scores[0].argmax(axis=1)

        n_matched = 0
        for gt, pr in zip(gt_label, pred_label):
            if gt > 0 and gt == pr:
                n_matched += 1
        acc_per_image = 100 * n_matched / gt_idx.sum()
        count_matched += n_matched
        count_gt += gt_idx.sum()

        # Show the results
        gt_bbox = gt_bbox[gt_idx]
        gt_label = gt_label[gt_idx]
        if False:
            for idx in range(gt_bbox.shape[0]):
                cv2.rectangle(test_image, (gt_bbox[idx][0], gt_bbox[idx][1]),
                              (gt_bbox[idx][2], gt_bbox[idx][3]), (255, 0, 0),
                              1)
                cv2.putText(test_image, str(gt_label[idx]),
                            (gt_bbox[idx][0], gt_bbox[idx][1]),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 0, 0), 1,
                            cv2.LINE_AA)

                #--------------------
                # cv2.rectangle(test_image, (pred_bbox[idx][0], pred_bbox[idx][1]), (pred_bbox[idx][2], pred_bbox[idx][3]),
                #               (0, 255, 0), 1)

                #-----------------------

            for cls_dict in pred_picked:
                for p_score, p_bbox in zip(cls_dict['picked_scores'],
                                           cls_dict['picked_bboxes']):
                    p_lbl = '%d | %.2f' % (cls_dict['class'], p_score)
                    p_bbox = p_bbox * 300
                    print(p_bbox, p_lbl)
                    cv2.rectangle(test_image, (p_bbox[0], p_bbox[1]),
                                  (p_bbox[2], p_bbox[3]), (0, 0, 255), 2)
                    cv2.putText(test_image, p_lbl, (p_bbox[0], p_bbox[1]),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1,
                                cv2.LINE_AA)
            plt.imshow(test_image)
            plt.suptitle(class_labels)
            plt.title('Temp Accuracy: {} %'.format(acc_per_image))
            plt.show()

    acc = 100 * count_matched / count_gt
    print('Classification acc: ', '%')
Esempio n. 6
0
    # 3. Run Forward -------------------------------------------------------------------
    with torch.no_grad():
        pred_scores_tensor, pred_bbox_tensor = test_net.forward(
            img_tensor.unsqueeze(0))  # N C H W

    prior = CityScapeDataset([])
    prior_bbox = prior.get_prior_bbox()

    pred_scores_tensor = F.softmax(
        pred_scores_tensor,
        dim=2)  # eval mode softmax was disabled in ssd_test
    pred_bbox_tensor = loc2bbox(
        pred_bbox_tensor,
        CityScapeDataset([]).get_prior_bbox().unsqueeze(0))
    pred_picked = nms_bbox(pred_bbox_tensor[0], pred_scores_tensor[0])

    # 4. plot result
    test_image = img_tensor.cpu().numpy().astype(
        np.float32).transpose().copy()  # H, W, C
    test_image = ((test_image + 1) / 2)

    for cls_dict in pred_picked:
        for p_score, p_bbox in zip(cls_dict['picked_scores'],
                                   cls_dict['picked_bboxes']):
            p_lbl = '%s | %.2f' % (class_labels[cls_dict['class']], p_score)
            p_bbox = p_bbox * 300
            print(p_bbox, p_lbl)
            cv2.rectangle(test_image, (p_bbox[0], p_bbox[1]),
                          (p_bbox[2], p_bbox[3]), (0, 0, 255), 2)
            cv2.putText(test_image, p_lbl, (p_bbox[0], p_bbox[1] - 3),