Esempio n. 1
0
    def simulate(self, rand_int):
        for k in range(self.no_days):
            print 'Day: ', k
            self.obtain_prism_model()
            # if self.prob30_diff_list:
            if self.pareto_points:
                # for e,x in self.prob30_diff_list_sorted:
                for e, x in enumerate(self.pareto_points_sorted):
                    self.actions = []
                    self.obtained_rewards = []
                    self.battery = []
                    self.charging = []
                    self.time = []
                    # f_ind = self.prob30_diff_list.index(x)
                    f_ind = self.pareto_points.index(x)
                    pareto_point = self.pareto_points[f_ind]
                    print pareto_point, 'Pareto Point ------------------------------------------'
                    f_no = self.f_no_list[f_ind]

                    if f_no != None:
                        #######################SPECIFY LOCATION AS BEFORE ######################
                        print 'Reading from bcth_model_t' + f_no + '.adv'
                        self.pp = bc_read_adversary.ParseAdversary([
                            'bcth_model_t' + f_no + '.adv', 'bcth_model_t.sta',
                            'bcth_model_t.lab'
                        ])
                    else:
                        raise ValueError('Adversary Not Found!!!')

                    battery = np.zeros((self.no_simulations))
                    charging = np.zeros((self.no_simulations))
                    init_cluster = np.zeros((self.no_simulations))
                    tr_day = np.zeros((self.no_simulations))
                    for i in range(self.no_simulations):
                        final_state = self.simulate_day(k)
                        t, _, _, _, b, ch, cl = self.pp.get_state(final_state)
                        battery[i] = int(b)
                        # print battery[i]
                        charging[i] = int(ch)
                        # print charging[i]
                        tr_day[i] = np.sum(
                            self.obtained_rewards[k * self.no_int:(k + 1) *
                                                  self.no_int])

                    self.get_plan(
                        'bcth_pareto' + str(e) + '_' + self.plan_id + '_70b_' +
                        str(rand_int), pareto_point)

                    self.init_battery = int(np.mean(battery))
                    self.init_charging = int(np.mean(charging))
                    self.avg_totalreward[k] = np.mean(tr_day)
                    # print self.init_battery, ' end battery'
                    # print self.init_charging, ' end charging'

            else:
                raise ValueError('Adversary List Not Found!!!')
Esempio n. 2
0
    def obtain_prism_model(self, t):
        prob_c = np.zeros((self.horizon, len(self.clusters)))
        prob_t = np.zeros((self.horizon, 2))
        for k in range(self.horizon):
            prob_c[k] = self.prob[(t + k) % self.no_int]
            prob_t[k] = self.task_prob[(t + k) % self.no_int]

        pm = bcth_prism_model.PrismModel('model_rhc.prism', self.horizon,
                                         self.init_battery, self.init_charging,
                                         self.cl_id[t], prob_t, self.clusters,
                                         prob_c, self.charge_model,
                                         self.discharge_model)

        #######################SPECIFY LOCATION ######################
        # running prism and saving output from prism
        with open(self.path_data + 'result_rhc', 'w') as f:
            process = subprocess.call(
                './prism ' + self.path_mod + 'model_rhc.prism ' +
                self.path_mod +
                'batterycost_model_prop.props -paretoepsilon 0.1 -v -exportadv '
                + self.path_mod + 'model_rhc.adv -exportprodstates ' +
                self.path_mod + 'model_rhc.sta -exporttarget ' +
                self.path_mod + 'model_rhc.lab',
                cwd='/home/milan/prism/prism/bin',
                shell=True,
                stdout=f)

        ##reading output from prism to find policy file
        ### for bcth
        policy_file = []
        pre1_point = None
        pre2_point = None
        with open(self.path_data + 'result_rhc', 'r') as f:
            line_list = f.readlines()
            f_no_list = []
            pareto_points = []
            init = 0
            for e, line in enumerate(line_list):
                if 'pre1.adv' in line:
                    pre1_point = abs(
                        float(
                            line_list[e +
                                      1].split(',')[0].split('(')[1].strip()))

                if 'pre2.adv' in line:
                    pre2_point = abs(
                        float(
                            line_list[e +
                                      1].split(',')[0].split('(')[1].strip()))

                if ': New point is (' in line:
                    el = line.split(' ')
                    if init == 0:
                        init_no = int(el[0][:-1])
                    cost40 = abs(float(el[4][1:-1]))
                    pareto_points.append(cost40)
                    f_no_list.append(str(int(el[0][:-1]) - 2))
                    init += 1

        if 'pre1' == self.req_pareto_point or 'pre2' == self.req_pareto_point:
            f_no = self.req_pareto_point
            if self.req_pareto_point == 'pre1':
                self.pareto_point.append(pre1_point)
            elif self.req_pareto_point == 'pre2':
                self.pareto_point.append(pre2_point)
        else:
            if f_no_list:
                if self.req_pareto_point > 3 and self.req_pareto_point < 6:
                    approx_p_point = min(pareto_points) + (
                        (max(pareto_points) - min(pareto_points)) /
                        3) * (float((self.req_pareto_point % 3)) / 3)
                elif self.req_pareto_point == 6:
                    sorted_pareto_points = sorted(pareto_points)
                    if len(sorted_pareto_points) > 1:
                        approx_p_point = sorted_pareto_points[1]
                    else:
                        approx_p_point = sorted_pareto_points[0]
                else:
                    approx_p_point = min(pareto_points) + (
                        (max(pareto_points) - min(pareto_points))) * (
                            float(self.req_pareto_point) / 3
                        )  ## 3 -> no. of pareto points being considered
                p_point = min(pareto_points,
                              key=lambda x: abs(x - approx_p_point))
                self.pareto_point.append(p_point)
                f_ind = pareto_points.index(p_point)
                f_no = f_no_list[f_ind]
            else:
                f_no = None

        if f_no != None:
            print 'Reading from model_rhc' + f_no + '.adv'
            pp = bc_read_adversary.ParseAdversary([
                'model_rhc' + f_no + '.adv', 'model_rhc.sta', 'model_rhc.lab'
            ])
            return pp
        else:
            raise ValueError('Adversary Not Found !!!')
Esempio n. 3
0
    def obtain_prism_model(self):
        pm = bcth_prism_model.PrismModel('model_t.prism', self.init_battery,
                                         self.init_charging, self.task_prob,
                                         self.clusters, self.prob,
                                         self.charge_model,
                                         self.discharge_model)

        #######################SPECIFY LOCATION ######################
        ### running prism and saving output from prism
        with open(self.path_data + 'result_fhc', 'w') as file:
            process = subprocess.Popen(
                './prism ' + self.path_mod + 'model_t.prism ' + self.path_mod +
                'batterycost_model_prop.props -v -paretoepsilon 0.1 -exportadv '
                + self.path_mod + 'model_t.adv -exportprodstates ' +
                self.path_mod + 'model_t.sta -exporttarget ' + self.path_mod +
                'model_t.lab',
                cwd='/home/milan/prism/prism/bin',
                shell=True,
                stdout=subprocess.PIPE)
            for c in iter(lambda: process.stdout.read(1), ''):
                sys.stdout.write(c)
                file.write(c)

        ### reading output from prism to find policy file
        ### for dt
        policy_file = []
        pre1_point = None
        pre2_point = None
        with open(self.path_data + 'result_fhc', 'r') as f:
            line_list = f.readlines()
            f_no_list = []
            pareto_points = []
            init = 0
            for e, line in enumerate(line_list):
                if 'pre1.adv' in line:
                    pre1_point = abs(
                        float(
                            line_list[e +
                                      1].split(',')[0].split('(')[1].strip()))

                if 'pre2.adv' in line:
                    pre2_point = abs(
                        float(
                            line_list[e +
                                      1].split(',')[0].split('(')[1].strip()))

                if ': New point is (' in line:
                    el = line.split(' ')
                    if init == 0:
                        init_no = int(el[0][:-1])
                    cost40 = abs(float(el[4][1:-1]))
                    pareto_points.append(cost40)
                    f_no_list.append(str(int(el[0][:-1]) - 2))
                    init += 1

        if 'pre1' == self.req_pareto_point or 'pre2' == self.req_pareto_point:
            f_no = self.req_pareto_point
            if self.req_pareto_point == 'pre1':
                self.pareto_point.extend(self.no_int * [pre1_point])
            elif self.req_pareto_point == 'pre2':
                self.pareto_point.extend(self.no_int * [pre2_point])

        else:
            if f_no_list:
                if self.req_pareto_point > 3:
                    approx_p_point = min(pareto_points) + (
                        (max(pareto_points) - min(pareto_points)) /
                        3) * (float((self.req_pareto_point % 3)) / 3)
                else:
                    approx_p_point = max(pareto_points) * (
                        float(self.req_pareto_point) / 3
                    )  ## 3 -> no. of pareto points being considered
                p_point = min(pareto_points,
                              key=lambda x: abs(x - approx_p_point))
                self.pareto_point.extend(self.no_int * [p_point])
                f_ind = pareto_points.index(p_point)
                f_no = f_no_list[f_ind]
            else:
                f_no = None

        if f_no != None:
            print 'Reading from model_t' + f_no + '.adv'
            pp = bc_read_adversary.ParseAdversary(
                ['model_t' + f_no + '.adv', 'model_t.sta', 'model_t.lab'])
            return pp

        else:
            raise ValueError('Adversary Not Found!!!')