Esempio n. 1
0
def lnprior(params, vsin_obs, sig_vsin_obs, dist_pc, sig_dist_pc, ranges,
            model, stellar_prior, npy_star, pdf_mas, pdf_obl, pdf_age, pdf_dis,
            pdf_ebv, grid_mas, grid_obl, grid_age, grid_dis, grid_ebv):

    if model == 'befavor':
        Mstar, oblat, Hfrac, cosi, dist, ebv = params[0], params[1],\
            params[2], params[3], params[4], params[5]
    if model == 'aara' or model == 'acol' or model == 'bcmi':
        Mstar, oblat, Hfrac, cosi, dist, ebv = params[0], params[1],\
            params[2], params[6], params[7], params[8]
    if model == 'beatlas':
        Mstar, oblat, Hfrac, cosi, dist, ebv = params[0], params[1],\
            0.3, params[4], params[5], params[6]

    # Reading Stellar Priors
    if stellar_prior is True:
        temp, idx_mas = find_nearest(grid_mas, value=Mstar)
        temp, idx_obl = find_nearest(grid_obl, value=oblat)
        temp, idx_age = find_nearest(grid_age, value=Hfrac)
        temp, idx_dis = find_nearest(grid_dis, value=dist)
        temp, idx_ebv = find_nearest(grid_ebv, value=ebv)
        chi2_stellar_prior = Mstar * pdf_mas[idx_mas] +\
            oblat * pdf_obl[idx_obl] + \
            Hfrac * pdf_age[idx_age] + \
            dist * pdf_dis[idx_dis] + \
            ebv * pdf_ebv[idx_ebv]
    else:
        chi2_stellar_prior = 0.0

    # Rpole, Lstar, Teff = vkg.geneve_par(Mstar, oblat, Hfrac, folder_tables)
    t = np.max(np.array([hfrac2tms(Hfrac), 0.]))

    Rpole, logL = geneva_interp_fast(Mstar,
                                     oblat,
                                     t,
                                     neighbours_only=True,
                                     isRpole=False)

    wcrit = np.sqrt(8. / 27. * G * Mstar * Msun / (Rpole * Rsun)**3)

    vsini = oblat2w(oblat) * wcrit * (Rpole * Rsun * oblat) *\
        np.sin(np.arccos(cosi)) * 1e-5

    chi2_vsi = (vsin_obs - vsini)**2 / sig_vsin_obs**2.

    chi2_dis = (dist_pc - dist)**2 / sig_dist_pc**2.

    chi2_prior = chi2_vsi + chi2_dis + chi2_stellar_prior

    return -0.5 * chi2_prior
Esempio n. 2
0
def plot_fit(par, lbd, logF, dlogF, minfo, listpar, lbdarr, logF_grid, isig,
             dims, Nwalk, Nmcmc, par_list, ranges, include_rv, npy, log_scale):
    '''
    Plots best model fit over data

    Usage:
    plot_fit(par, lbd, logF, dlogF, minfo, logF_grid, isig, Nwalk, Nmcmc)
    where
    par = np.array([Mstar, oblat, Sig0, Rd, n, cosi, dist])
    '''
    # model parameters
    if include_rv is True:
        Mstar, oblat, Hfrac, cosi, dist, ebv, rv = par
        lim = 3
        lim2 = 2
    else:
        Mstar, oblat, Hfrac, cosi, dist, ebv = par
        lim = 2
        lim2 = 1
        rv = 3.1

    # Rpole, Lstar, Teff = vkg.geneve_par(Mstar, oblat, Hfrac, folder_tables)
    # t = np.max(np.array([hfrac2tms(hfrac), 0.]))
    t = np.max(np.array([hfrac2tms(Hfrac), 0.]))
    Rpole, logL = geneva_interp_fast(Mstar,
                                     oblat,
                                     t,
                                     neighbours_only=True,
                                     isRpole=False)
    norma = (10. / dist)**2  # (Lstar*Lsun) / (4. * pi * (dist*pc)**2)
    uplim = dlogF == 0
    keep = np.logical_not(uplim)
    # chain = np.load(npy)

    # interpolate models
    logF_mod = griddataBA(minfo, logF_grid, par[:-lim], listpar, dims)
    logF_list = np.zeros([len(par_list), len(logF_mod)])
    chi2 = np.zeros(len(logF_list))
    for i in range(len(par_list)):
        logF_list[i] = griddataBA(minfo, logF_grid, par_list[i, :-lim],
                                  listpar, dims)
    # convert to physical units
    logF_mod += np.log10(norma)
    logF_list += np.log10(norma)
    for j in range(len(logF_list)):
        chi2[j] = np.sum(
            (logF[keep] - logF_list[j][keep])**2 / (dlogF[keep])**2)

    # chib = chi2[np.argsort(chi2)[-30:]] / max(chi2)

    flux = 10.**logF
    dflux = dlogF * flux
    flux_mod = 10.**logF_mod

    flux_mod = pyasl.unred(lbd * 1e4, flux_mod, ebv=-1 * ebv, R_V=rv)

    # Plot definitions
    bottom, left = 0.75, 0.48
    width, height = 0.96 - left, 0.97 - bottom
    plt.axes([left, bottom, width, height])

    # plot fit
    if log_scale is True:
        for i in range(len(par_list)):
            if i % 80 == 0:
                ebv_temp = np.copy(par_list[i][-lim2])
                F_temp = pyasl.unred(lbd * 1e4,
                                     10**logF_list[i],
                                     ebv=-1 * ebv_temp,
                                     R_V=rv)
                plt.plot(lbd, lbd * F_temp, color='gray', alpha=0.1)

        plt.errorbar(lbd,
                     lbd * flux,
                     yerr=lbd * dflux,
                     ls='',
                     marker='o',
                     alpha=0.5,
                     ms=10,
                     color='blue',
                     linewidth=2)
        plt.plot(lbd,
                 lbd * flux_mod,
                 color='red',
                 ls='-',
                 lw=3.5,
                 alpha=0.4,
                 label='$\mathrm{Best\, fit}$')

        plt.xlabel('$\lambda\,\mathrm{[\mu m]}$', fontsize=20)
        plt.ylabel(r'$\lambda F_{\lambda}\,\mathrm{[erg\, s^{-1}\, cm^{-2}]}$',
                   fontsize=20)
        plt.yscale('log')
    else:
        for i in range(len(par_list)):
            if i % 80 == 0:
                ebv_temp = np.copy(par_list[i][-lim2])
                F_temp = pyasl.unred(lbd * 1e4,
                                     10**logF_list[i],
                                     ebv=-1 * ebv_temp,
                                     R_V=rv)
                plt.plot(lbd, F_temp, color='gray', alpha=0.1)

        plt.errorbar(lbd,
                     flux,
                     yerr=lbd * dflux,
                     ls='',
                     marker='o',
                     alpha=0.5,
                     ms=10,
                     color='blue',
                     linewidth=2)
        plt.plot(lbd,
                 flux_mod,
                 color='red',
                 ls='-',
                 lw=3.5,
                 alpha=0.4,
                 label='$\mathrm{Best\, fit}$')
        plt.xlabel('$\lambda\,\mathrm{[\mu m]}$', fontsize=20)
        plt.ylabel(r'$F_{\lambda}\,\mathrm{[erg\, s^{-1}\, cm^{-2} \mu m]}$',
                   fontsize=20)

    plt.xlim(min(lbd), max(lbd))
    plt.tick_params(direction='in',
                    length=6,
                    width=2,
                    colors='gray',
                    which='both')
    plt.legend(loc='upper right')

    return
Esempio n. 3
0
def plot_residuals(par, lbd, logF, dlogF, minfo, listpar, lbdarr, logF_grid,
                   isig, dims, Nwalk, Nmcmc, ranges, include_rv, npy,
                   log_scale, model):
    '''
    Plots best model fit over data

    Usage:
    plot_fit(par, lbd, logF, dlogF, minfo, logF_grid, isig, Nwalk, Nmcmc)
    where
    par = np.array([Mstar, oblat, Sig0, Rd, n, cosi, dist])
    '''
    # model parameters
    if include_rv is True:
        Mstar, oblat, Hfrac, cosi, dist, ebv, rv = par
        lim = 3
        lim2 = 2
    else:
        if model == 'befavor':
            Mstar, oblat, Hfrac, cosi, dist, ebv = par
        if model == 'aara' or model == 'acol' or model == 'bcmi':
            Mstar, oblat, Hfrac, Sig0, Rd, n, cosi, dist, ebv = par
        if model == 'beatlas':
            Mstar, oblat, Sig0, n, cosi, dist, ebv = par
            Hfrac = 0.3

        lim = 2
        lim2 = 1
        rv = 3.1

    # Rpole, Lstar, Teff = vkg.geneve_par(Mstar, oblat, Hfrac, folder_tables)
    # t = np.max(np.array([hfrac2tms(hfrac), 0.]))
    t = np.max(np.array([hfrac2tms(Hfrac), 0.]))
    Rpole, logL = geneva_interp_fast(Mstar,
                                     oblat,
                                     t,
                                     neighbours_only=True,
                                     isRpole=False)
    norma = (10. / dist)**2  # (Lstar*Lsun) / (4. * pi * (dist*pc)**2)
    uplim = dlogF == 0
    keep = np.logical_not(uplim)

    # ***
    chain = np.load(npy)
    par_list = chain[:, -1, :]

    # interpolate models
    if model == 'beatlas':
        logF_mod = griddataBAtlas(minfo, logF_grid, par[:-lim], listpar, dims,
                                  isig)
    else:
        logF_mod = griddataBA(minfo, logF_grid, par[:-lim], listpar, dims)

    logF_list = np.zeros([len(par_list), len(logF_mod)])
    chi2 = np.zeros(len(logF_list))
    for i in range(len(par_list)):
        if model == 'beatlas':
            logF_list[i] = griddataBAtlas(minfo, logF_grid, par_list[i, :-lim],
                                          listpar, dims, isig)
        else:
            logF_list[i] = griddataBA(minfo, logF_grid, par_list[i, :-lim],
                                      listpar, dims)

    # convert to physical units
    logF_mod += np.log10(norma)
    logF_list += np.log10(norma)
    for j in range(len(logF_list)):
        chi2[j] = np.sum(
            (logF[keep] - logF_list[j][keep])**2 / (dlogF[keep])**2)

    # chib = chi2[np.argsort(chi2)[-30:]] / max(chi2)

    flux = 10.**logF
    dflux = dlogF * flux
    flux_mod = 10.**logF_mod

    flux_mod = pyasl.unred(lbd * 1e4, flux_mod, ebv=-1 * ebv, R_V=rv)
    # alphas = (1. - chi2 / max(chi2)) / 50.

    # Plot definitions
    bottom, left = 0.71, 0.48
    width, height = 0.96 - left, 0.785 - bottom
    plt.axes([left, bottom, width, height])

    # plot fit
    for i in range(len(par_list)):

        ebv_temp = np.copy(par_list[i][-lim2])
        F_temp = pyasl.unred(lbd * 1e4,
                             10**logF_list[i],
                             ebv=-1 * ebv_temp,
                             R_V=rv)
        plt.plot(lbd, (flux - F_temp) / dflux, 'bs', alpha=0.2)
    # plt.plot(lbd, (flux - flux_mod) / dflux, 'bs', markersize=5, alpha=0.1)
    # plt.ylabel('$(\mathrm{F}-F_\mathrm{model})/\sigma$', fontsize=20)
    plt.ylabel('$(F-F_\mathrm{m})/\sigma$', fontsize=20)
    plt.xlabel('$\lambda\,\mathrm{[\mu m]}$', fontsize=20)
    # plt.ylim(-100, 100)
    plt.hlines(y=0,
               xmin=min(lbd),
               xmax=max(lbd),
               linestyles='--',
               color='black')

    plt.xlim(min(lbd), max(lbd))
    if model == 'aara' or model == 'beatlas' or\
       model == 'acol' or model == 'bcmi':
        plt.xscale('log')
    plt.tick_params(direction='in',
                    length=6,
                    width=2,
                    colors='gray',
                    which='both')
    plt.legend(loc='upper right')

    return
Esempio n. 4
0
def emcee_inference(star, Ndim, ranges, lbdarr, wave, logF, dlogF, minfo,
                    listpar, logF_grid, vsin_obs, sig_vsin_obs, dist_pc,
                    sig_dist_pc, isig, dims, include_rv, a_parameter,
                    af_filter, tag, plot_fits, long_process, log_scale, model,
                    acrux, pool, Nproc, stellar_prior, npy_star, pdf_mas,
                    pdf_obl, pdf_age, pdf_dis, pdf_ebv, grid_mas, grid_obl,
                    grid_age, grid_dis, grid_ebv):

    if long_process is True:
        Nwalk = 500  # 200  # 500
        nint_burnin = 100  # 50
        nint_mcmc = 1000  # 500  # 1000
    else:
        Nwalk = 20
        nint_burnin = 5
        nint_mcmc = 10

    p0 = [
        np.random.rand(Ndim) * (ranges[:, 1] - ranges[:, 0]) + ranges[:, 0]
        for i in range(Nwalk)
    ]
    start_time = time.time()

    if acrux is True:
        sampler = emcee.EnsembleSampler(
            Nwalk,
            Ndim,
            lnprob,
            args=[
                wave, logF, dlogF, minfo, listpar, logF_grid, vsin_obs,
                sig_vsin_obs, dist_pc, sig_dist_pc, isig, ranges, dims,
                include_rv, model, stellar_prior, npy_star, pdf_mas, pdf_obl,
                pdf_age, pdf_dis, pdf_ebv, grid_mas, grid_obl, grid_age,
                grid_dis, grid_ebv
            ],
            a=a_parameter,
            threads=Nproc,
            pool=pool)
    else:
        sampler = emcee.EnsembleSampler(
            Nwalk,
            Ndim,
            lnprob,
            args=[
                wave, logF, dlogF, minfo, listpar, logF_grid, vsin_obs,
                sig_vsin_obs, dist_pc, sig_dist_pc, isig, ranges, dims,
                include_rv, model, stellar_prior, npy_star, pdf_mas, pdf_obl,
                pdf_age, pdf_dis, pdf_ebv, grid_mas, grid_obl, grid_age,
                grid_dis, grid_ebv
            ],
            a=a_parameter,
            threads=1)

    sampler_tmp = run_emcee(p0,
                            sampler,
                            nint_burnin,
                            nint_mcmc,
                            Ndim,
                            file_name=star)
    print("--- %s minutes ---" % ((time.time() - start_time) / 60))

    sampler, params_fit, errors_fit, maxprob_index,\
        minprob_index, af = sampler_tmp

    if include_rv is True:
        mass_true, obt_true, xc_true,\
            cos_true, ebv_true, dist_true, rv_true = params_fit
    else:
        if model == 'befavor':
            mass_true, obt_true, xc_true,\
                cos_true, ebv_true, dist_true = params_fit
        if model == 'aara' or model == 'acol' or model == 'bcmi':
            mass_true, obt_true, xc_true, n0, Rd, n_true,\
                cos_true, ebv_true, dist_true = params_fit
        if model == 'beatlas':
            mass_true, obt_true, rh0_true, nix_true,\
                inc_true, dis_true, ebv_true = params_fit
    # if model is False:
    #     angle_in_rad = np.arccos(params_fit[6])
    #     params_fit[6] = (np.arccos(params_fit[6])) * (180. / np.pi)
    #     errors_fit[6] = (errors_fit[6] / (np.sqrt(1. -
    #                      (np.cos(angle_in_rad)**2.)))) * (180. / np.pi)

    chain = sampler.chain

    if af_filter is True:
        acceptance_fractions = sampler.acceptance_fraction
        chain = chain[(acceptance_fractions >= 0.20)
                      & (acceptance_fractions <= 0.50)]
        af = acceptance_fractions[(acceptance_fractions >= 0.20)
                                  & (acceptance_fractions <= 0.50)]
        af = np.mean(af)

    af = str('{0:.2f}'.format(af))

    # Saving first sample
    file_npy = 'figures/' + str(star) + '/' + 'Walkers_' +\
        str(Nwalk) + '_Nmcmc_' + str(nint_mcmc) +\
        '_af_' + str(af) + '_a_' + str(a_parameter) +\
        tag + ".npy"
    np.save(file_npy, chain)

    # plot results
    mpl.rcParams['mathtext.fontset'] = 'stix'
    mpl.rcParams['font.family'] = 'STIXGeneral'
    mpl.rcParams['font.size'] = 16

    # Loading first dataframe
    chain_1 = np.load(file_npy)
    Ndim_1 = np.shape(chain_1)[-1]
    flatchain_1 = chain_1.reshape((-1, Ndim_1))

    if model == 'befavor':
        mas_1 = flatchain_1[:, 0]
        obl_1 = flatchain_1[:, 1]
        age_1 = flatchain_1[:, 2]
        inc_1 = flatchain_1[:, 3]
        dis_1 = flatchain_1[:, 4]
        ebv_1 = flatchain_1[:, 5]
    if model == 'aara' or model == 'acol' or model == 'bcmi':
        mas_1 = flatchain_1[:, 0]
        obl_1 = flatchain_1[:, 1]
        age_1 = flatchain_1[:, 2]
        rh0_1 = flatchain_1[:, 3]
        rdk_1 = flatchain_1[:, 4]
        nix_1 = flatchain_1[:, 5]
        inc_1 = flatchain_1[:, 6]
        dis_1 = flatchain_1[:, 7]
        ebv_1 = flatchain_1[:, 8]
    if model == 'beatlas':
        mas_1 = flatchain_1[:, 0]
        obl_1 = flatchain_1[:, 1]
        rh0_1 = flatchain_1[:, 2]
        nix_1 = flatchain_1[:, 3]
        inc_1 = flatchain_1[:, 4]
        dis_1 = flatchain_1[:, 5]
        ebv_1 = flatchain_1[:, 6]

    if include_rv is True:
        rv_1 = flatchain_1[:, 6]
        par_list = np.zeros([len(mas_1), 7])
    else:
        if model == 'befavor':
            par_list = np.zeros([len(mas_1), 6])
        if model == 'aara' or model == 'acol' or model == 'bcmi':
            par_list = np.zeros([len(mas_1), 9])
        if model == 'beatlas':
            par_list = np.zeros([len(mas_1), 7])

    for i in range(len(mas_1)):
        if include_rv is True:
            par_list[i] = [
                mas_1[i], obl_1[i], age_1[i], inc_1[i], dis_1[i], ebv_1[i],
                rv_1[i]
            ]
        else:
            if model == 'befavor':
                par_list[i] = [
                    mas_1[i], obl_1[i], age_1[i], inc_1[i], dis_1[i], ebv_1[i]
                ]
            if model == 'aara' or model == 'acol' or model == 'bcmi':
                par_list[i] = [
                    mas_1[i], obl_1[i], age_1[i], rh0_1[i], rdk_1[i], nix_1[i],
                    inc_1[i], dis_1[i], ebv_1[i]
                ]
            if model == 'beatlas':
                par_list[i] = [
                    mas_1[i], obl_1[i], rh0_1[i], nix_1[i], inc_1[i], dis_1[i],
                    ebv_1[i]
                ]

    # plot corner
    if include_rv is True:
        samples = np.vstack((mas_1, obl_1, age_1, inc_1, dis_1, ebv_1, rv_1)).T
    else:
        if model == 'befavor':
            samples = np.vstack((mas_1, obl_1, age_1, inc_1, dis_1, ebv_1)).T
        if model == 'aara' or model == 'acol' or model == 'bcmi':
            samples = np.vstack((mas_1, obl_1, age_1, rh0_1, rdk_1, nix_1,
                                 inc_1, dis_1, ebv_1)).T
        if model == 'beatlas':
            samples = np.vstack(
                (mas_1, obl_1, rh0_1, nix_1, inc_1, dis_1, ebv_1)).T

    k, arr_t_tc, arr_Xc = t_tms_from_Xc(mass_true,
                                        savefig=False,
                                        plot_fig=False)
    ttms_ip = np.arange(0.001, 1., 0.001)
    Xc_ip = np.interp(ttms_ip, arr_t_tc[k], arr_Xc[k])

    for i in range(len(samples)):
        if model == 'befavor' or model == 'aara' or\
           model == 'acol' or model == 'bcmi':
            # Calculating logg for the non_rotating case
            Mstar, oblat, Hfrac = samples[i][0], samples[i][1],\
                samples[i][2]
        else:
            Mstar, oblat, Hfrac = samples[i][0], samples[i][1], 0.3

        t = np.max(np.array([hfrac2tms(Hfrac), 0.]))

        Rpole, logL = geneva_interp_fast(Mstar,
                                         oblat,
                                         t,
                                         neighbours_only=True,
                                         isRpole=False)

        # Converting oblat to W
        samples[i][1] = obl2W(samples[i][1])

        if model == 'befavor':
            # Converting angles to degrees
            samples[i][3] = (np.arccos(samples[i][3])) * (180. / np.pi)
            # Converting Xc to t(tms)
            samples[i][2] = ttms_ip[find_nearest(Xc_ip, samples[i][2])[1]]
        if model == 'aara':
            # Converting Xc to t(tms)
            samples[i][2] = ttms_ip[find_nearest(Xc_ip, samples[i][2])[1]]
            samples[i][5] = samples[i][5] + 1.5
            samples[i][6] = (np.arccos(samples[i][6])) * (180. / np.pi)
        if model == 'acol' or model == 'bcmi':
            # Converting Xc to t(tms)
            samples[i][2] = ttms_ip[find_nearest(Xc_ip, samples[i][2])[1]]
            samples[i][6] = (np.arccos(samples[i][6])) * (180. / np.pi)
        if model == 'beatlas':
            samples[i][4] = (np.arccos(samples[i][4])) * (180. / np.pi)

    # plot corner
    quantiles = [0.16, 0.5, 0.84]
    if include_rv is True:
        labels = [
            r'$M\,[M_\odot]$', r'$W$', r"$t/t_\mathrm{ms}$",
            r'$i[\mathrm{^o}]$', r'$d\,[pc]$', r'E(B-V)', r'$R_\mathrm{V}$'
        ]
    else:
        if model == 'befavor':
            labels = [
                r'$M\,[M_\odot]$', r'$W$', r"$t/t_\mathrm{ms}$",
                r'$i[\mathrm{^o}]$', r'$d\,[pc]$', r'E(B-V)'
            ]
        if model == 'aara' or model == 'acol' or model == 'bcmi':
            labels = [
                r'$M\,[M_\odot]$', r'$W$', r"$t/t_\mathrm{ms}$",
                r'$\log \, n_0 \, [cm^{-3}]$', r'$R_\mathrm{D}\, [R_\star]$',
                r'$n$', r'$i[\mathrm{^o}]$', r'$d\,[pc]$', r'E(B-V)'
            ]
        if model == 'beatlas':
            labels = [
                r'$M\,[M_\odot]$', r'$W$', r'$\Sigma_0$', r'$n$',
                r'$i[\mathrm{^o}]$', r'$d\,[pc]$', r'E(B-V)'
            ]
    if model == 'befavor':
        ranges[1] = obl2W(ranges[1])
        ranges[2][0] = ttms_ip[find_nearest(Xc_ip, ranges[2][1])[1]]
        ranges[2][1] = ttms_ip[find_nearest(Xc_ip, ranges[2][0])[1]]
        ranges[3] = (np.arccos(ranges[3])) * (180. / np.pi)
        ranges[3] = np.array([ranges[3][1], ranges[3][0]])
    if model == 'aara':
        ranges[1] = obl2W(ranges[1])
        ranges[2][0] = ttms_ip[find_nearest(Xc_ip, ranges[2][1])[1]]
        ranges[2][1] = ttms_ip[find_nearest(Xc_ip, ranges[2][0])[1]]
        ranges[3] = np.array([ranges[3][1], ranges[3][0]])
        ranges[5] = ranges[5] + 1.5
        ranges[6] = (np.arccos(ranges[6])) * (180. / np.pi)
        ranges[6] = np.array([ranges[6][1], ranges[6][0]])
    if model == 'acol' or model == 'bcmi':
        ranges[1] = obl2W(ranges[1])
        ranges[2][0] = ttms_ip[find_nearest(Xc_ip, ranges[2][1])[1]]
        ranges[2][1] = ttms_ip[find_nearest(Xc_ip, ranges[2][0])[1]]
        ranges[3] = np.array([ranges[3][1], ranges[3][0]])
        ranges[6] = (np.arccos(ranges[6])) * (180. / np.pi)
        ranges[6] = np.array([ranges[6][1], ranges[6][0]])
    if model == 'beatlas':
        ranges[1] = obl2W(ranges[1])
        ranges[3] = np.array([ranges[3][-1], ranges[3][0]])
        ranges[4] = (np.arccos(ranges[4])) * (180. / np.pi)
        ranges[4] = np.array([ranges[4][1], ranges[4][0]])

    corner(samples,
           labels=labels,
           range=ranges,
           quantiles=quantiles,
           plot_contours=True,
           smooth=2.,
           smooth1d=False,
           plot_datapoints=True,
           label_kwargs={'fontsize': 22},
           truths=None,
           show_titles=True,
           color_hist='black',
           plot_density=True,
           fill_contours=False,
           no_fill_contours=False,
           normed=True)

    if plot_fits is True:
        # plot_fit(params_fit, wave, logF, dlogF, minfo,
        #          listpar, lbdarr, logF_grid, isig, dims,
        #          Nwalk, nint_mcmc, par_list, ranges, include_rv,
        #          log_scale)

        plot_fit_last(params_fit, wave, logF, dlogF, minfo, listpar, lbdarr,
                      logF_grid, isig, dims, Nwalk, nint_mcmc, ranges,
                      include_rv, file_npy, log_scale, model)

    current_folder = 'figures/' + str(star) + '/'
    fig_name = 'Walkers_' + np.str(Nwalk) + '_Nmcmc_' +\
        np.str(nint_mcmc) + '_af_' + str(af) + '_a_' +\
        str(a_parameter) + tag
    plt.savefig(current_folder + fig_name + '.png', dpi=100)
    # plt.close()

    # plt.clf()
    plot_residuals(params_fit, wave, logF, dlogF, minfo, listpar, lbdarr,
                   logF_grid, isig, dims, Nwalk, nint_mcmc, ranges, include_rv,
                   file_npy, log_scale, model)
    plt.savefig(current_folder + fig_name + '_residuals' + '.png', dpi=100)

    plot_convergence(file_npy, file_npy[:-4] + '_convergence', model)

    return