Esempio n. 1
0
def valid(model, criterion_task1, criterion_task2, valid_dataset, step):
    # if torch.cuda.device_count() >1:
    #     print("Let's use", torch.cuda.device_count(), "GPUs!")
    #     model = nn.DataParallel(model, device_ids=[0,1])

    model.eval()
    total_n = 0
    total_task1_loss = total_task2_loss = 0.0
    task1_hypothesis, task1_references = [], []
    task2_hypothesis, task2_references = [], []

    for i, (batch, flag) in enumerate(valid_dataset):
        scores = model(batch.src, batch.tgt, flag)
        if flag:
            loss = criterion_task1(scores, batch.tgt)
        else:
            loss = criterion_task2(scores, batch.tgt)
        _, predictions = scores.topk(k=1, dim=-1)

        if flag:  # task1
            total_task1_loss += loss.data
            task1_hypothesis += [
                valid_dataset.fields["task1_tgt"].decode(p)
                for p in predictions
            ]
            task1_references += [
                valid_dataset.fields["task1_tgt"].decode(t) for t in batch.tgt
            ]
        else:
            total_task2_loss += loss.data
            task2_hypothesis += [
                valid_dataset.fields["task2_tgt"].decode(p)
                for p in predictions
            ]
            task2_references += [
                valid_dataset.fields["task2_tgt"].decode(t) for t in batch.tgt
            ]

        total_n += 1
        del loss
    print(total_n)
    bleu_task1 = calculate_bleu(task1_hypothesis, task1_references)
    bleu_task2 = calculate_bleu(task2_hypothesis, task2_references)
    rouge1_task1, rouge2_task1 = calculate_rouge(task1_hypothesis,
                                                 task1_references)
    rouge1_task2, rouge2_task2 = calculate_rouge(task2_hypothesis,
                                                 task2_references)
    mean_task1_loss = total_task1_loss / total_n
    mean_task2_loss = total_task2_loss / total_n
    logging.info(
        "loss-task1: %.2f \t loss-task2 %.2f \t bleu-task1: %3.2f\t bleu-task2: %3.2f \t rouge1-task1: %3.2f \t rouge1-task2: %3.2f \t rouge2-task1: %3.2f \t rouge2-task2: %3.2f"
        % (mean_task1_loss, mean_task2_loss, bleu_task1, bleu_task2,
           rouge1_task1, rouge1_task2, rouge2_task1, rouge2_task2))

    checkpoint = {"model": model.state_dict(), "opt": opt}
    saver.save(checkpoint, step, mean_task1_loss, mean_task2_loss, bleu_task1,
               bleu_task2, rouge1_task1, rouge1_task2, rouge2_task1,
               rouge2_task2)

    return mean_task1_loss, mean_task2_loss, bleu_task1, bleu_task2, rouge1_task1, rouge1_task2, rouge2_task1, rouge2_task2
def valid(model, criterion_cn, criterion_en, valid_dataset, step):
    model.eval()
    total_loss = total_cn_loss = total_en_loss = 0.0
    total_n = 0
    cn_hypothesis, cn_references = [], []
    en_hypothesis, en_references = [], []

    for batch in valid_dataset:
        cn_scores, en_scores = model(batch.source, batch.summary_cn,
                                     batch.summary_en)
        cn_loss = criterion_cn(cn_scores, batch.summary_cn)
        en_loss = criterion_en(en_scores, batch.summary_en)

        loss = cn_loss + en_loss
        total_loss += loss.data
        total_cn_loss += cn_loss.data
        total_en_loss += en_loss.data
        total_n += 1

        _, cn_predictions = cn_scores.topk(k=1, dim=-1)
        cn_hypothesis += [
            valid_dataset.fields["summary_cn"].decode(p)
            for p in cn_predictions
        ]
        cn_references += [
            valid_dataset.fields["summary_cn"].decode(t)
            for t in batch.summary_cn
        ]

        _, en_predictions = en_scores.topk(k=1, dim=-1)
        en_hypothesis += [
            valid_dataset.fields["summary_en"].decode(p)
            for p in en_predictions
        ]
        en_references += [
            valid_dataset.fields["summary_en"].decode(t)
            for t in batch.summary_en
        ]

    #write_file(en_hypothesis, en_references, step)
    bleu_cn = calculate_bleu(cn_hypothesis, cn_references)
    bleu_en = calculate_bleu(en_hypothesis, en_references)
    rouge1_cn, rouge2_cn = calculate_rouge(cn_hypothesis, cn_references)
    rouge1_en, rouge2_en = calculate_rouge(en_hypothesis, en_references)
    mean_loss = total_loss / total_n
    mean_en_loss = total_en_loss / total_n
    mean_cn_loss = total_cn_loss / total_n
    logging.info(
        "loss: %.2f\t loss-cn: %.2f \t loss-en %.2f \t bleu-cn: %3.2f\t bleu-en: %3.2f \t rouge1-cn: %3.2f \t rouge1-en: %3.2f \t rouge2-cn: %3.2f \t rouge2-en: %3.2f"
        % (mean_loss, mean_cn_loss, mean_en_loss, bleu_cn, bleu_en, rouge1_cn,
           rouge1_en, rouge2_cn, rouge2_en))
    saver.save(step, mean_loss, mean_cn_loss, mean_en_loss, bleu_cn, bleu_en,
               rouge1_cn, rouge1_en, rouge2_cn, rouge2_en)
def translate(dataset, fields, model):

    already, hypothesis, references = 0, [], []

    for batch in dataset:
        if opt.tf:
            scores = model(batch.src, batch.tgt)
            _, predictions = scores.topk(k=1, dim=-1)
        else:
            predictions = beam_search(opt, model, batch.src, fields)

        hypothesis += [fields["tgt"].decode(p) for p in predictions]
        already += len(predictions)
        logging.info("Translated: %7d/%7d" % (already, dataset.num_examples))
        references += [fields["tgt"].decode(t) for t in batch.tgt]

    if opt.bleu:
        bleu = calculate_bleu(hypothesis, references)
        logging.info("BLEU: %3.2f" % bleu)

    origin = sorted(zip(hypothesis, dataset.seed), key=lambda t: t[1])
    hypothesis = [h for h, _ in origin]
    with open(opt.output, "w", encoding="UTF-8") as out_file:
        out_file.write("\n".join(hypothesis))
        out_file.write("\n")

    logging.info("Translation finished. ")
Esempio n. 4
0
File: train.py Progetto: ZNLP/ATSum
def valid(model, criterion, valid_dataset, step):
    model.eval()
    total_loss, total = 0.0, 0

    hypothesis, references = [], []

    for batch in valid_dataset:
        scores = model(batch.src, batch.tgt, batch.probs, batch.idxes)
        loss = criterion(scores, batch.tgt)
        total_loss += loss.data
        total += 1

        if opt.tf:
            _, predictions = scores.topk(k=1, dim=-1)
        else:
            predictions = beam_search(opt, model, batch.src,
                                      valid_dataset.fields)

        hypothesis += [
            valid_dataset.fields["tgt"].decode(p) for p in predictions
        ]
        references += [
            valid_dataset.fields["tgt"].decode(t) for t in batch.tgt
        ]

    bleu = calculate_bleu(hypothesis, references)
    logging.info("Valid loss: %.2f\tValid BLEU: %3.2f" %
                 (total_loss / total, bleu))
    checkpoint = {"model": model.state_dict(), "opt": opt}
    saver.save(checkpoint, step, bleu, total_loss / total)
def valid(model, criterion_task1, criterion_task2, valid_dataset, step):
    model.eval()
    total_n = 0
    total_task1_loss = total_task2_loss = 0.0
    task1_hypothesis, task1_references = [], []
    task2_hypothesis, task2_references = [], []

    def roul(hyps, refs):
      rl1 = 0
      for h, r in zip(hyps, refs):
        rl = calc_rouge_L(h, r)
        rl1 += rl
      return rl1 / len(hyps)

    for i, (batch, flag) in enumerate(valid_dataset):

        scores = model(batch.src, batch.tgt, flag)
        predictions = greedy_search(opt, model, batch.src, valid_dataset.fields, flag)

        if flag:  # task1
            task1_hypothesis += [valid_dataset.fields["task1_tgt"].decode_word(p) for p in predictions]
            task1_references += [valid_dataset.fields["task1_tgt"].decode_word(t) for t in batch.tgt]
        else:
            task2_hypothesis += [valid_dataset.fields["task2_tgt"].decode_word(p) for p in predictions]
            task2_references += [valid_dataset.fields["task2_tgt"].decode_word(t) for t in batch.tgt]

        total_n += 1

    bleu_task1 = calculate_bleu(task1_hypothesis, task1_references)
    bleu_task2 = calculate_bleu(task2_hypothesis, task2_references)
    rouge1_task1, rouge2_task1 = calculate_rouge(task1_hypothesis, task1_references)
    rouge1_task2, rouge2_task2 = calculate_rouge(task2_hypothesis, task2_references)
    mean_task1_loss = 0
    mean_task2_loss = 0
    rougel_task1 = roul(task1_hypothesis, task1_references) * 100
    rougel_task2 = roul(task2_hypothesis, task2_references) * 100
    logging.info("loss-task1: %.2f \t loss-task2 %.2f \t bleu-task1: %3.2f\t bleu-task2: %3.2f \t rouge1-task1: %3.2f \t rouge1-task2: %3.2f \t rouge2-task1: %3.2f \t rouge2-task2: %3.2f\t rougeL-task1: %3.2f \t rougeL-task2: %3.2f\t"
                 % (mean_task1_loss, mean_task2_loss, bleu_task1, bleu_task2, rouge1_task1, rouge1_task2, rouge2_task1, rouge2_task2, rougel_task1, rougel_task2))
    checkpoint = {"model": model.state_dict(), "opt": opt}
    saver.save(checkpoint, step, mean_task1_loss, mean_task2_loss, bleu_task1, bleu_task2, rouge1_task1, rouge1_task2, rouge2_task1, rouge2_task2, rougel_task1, rougel_task2)
Esempio n. 6
0
def valid(model, valid_dataset, step):
    model.eval()
    total_loss, total = 0.0, 0

    hypothesis, references = [], []

    for batch in valid_dataset:
        loss = model(batch.src, batch.tgt).mean()
        total_loss += loss.data
        total += 1

        predictions = parallel_beam_search(opt, model.module.model, batch, valid_dataset.fields)
        hypothesis += [valid_dataset.fields["tgt"].decode(p) for p in predictions]
        references += [valid_dataset.fields["tgt"].decode(t) for t in batch.tgt]

    bleu = calculate_bleu(hypothesis, references)
    logger.info("Valid loss: %.2f\tValid Beam BLEU: %3.2f" % (total_loss / total, bleu))
    checkpoint = {"model": model.module.model.state_dict(), "opt": opt}
    saver.save(checkpoint, printing_opt(opt), step, bleu, total_loss / total)
Esempio n. 7
0
from beaver.utils import parseopt, get_device, calculate_bleu

def read_file(filename):
    with open()
    

reference = 
hypothesis = 

task3_references = read_file(reference)
task3_hypothesis = read_file(hypothesis)
bleu_task3 = calculate_bleu(task3_hypothesis, task3_references)
print("bleu score is: %.2f" % bleu_task3)

def valid(model, criterion_task1, criterion_task2, criterion_task3,
          valid_dataset, step):
    model.eval()
    total_n = 0
    total_task1_loss = total_task2_loss = total_task3_loss = total_task2_3_loss = 0.0
    task1_hypothesis, task1_references = [], []
    task2_hypothesis, task2_references = [], []
    task3_hypothesis, task3_references = [], []

    for i, (batch, flag) in enumerate(valid_dataset):

        if flag:
            task1_scores = model(batch.src, batch.tgt, None, None, flag)
            loss = criterion_task1(task1_scores, batch.tgt)
        else:
            task2_scores, task3_scores = model(batch.src, None,
                                               batch.summary_cn,
                                               batch.summary_en, flag)
            task2_loss = criterion_task2(task2_scores, batch.summary_cn)
            task3_loss = criterion_task3(task3_scores, batch.summary_en)
            loss = task2_loss + task3_loss

        if flag:
            _, task1_predictions = task1_scores.topk(k=1, dim=-1)
        else:
            _, task2_predictions = task2_scores.topk(k=1, dim=-1)
            _, task3_predictions = task3_scores.topk(k=1, dim=-1)

        if flag:  # task1
            total_task1_loss += loss.data
            task1_hypothesis += [
                valid_dataset.fields["task1_tgt"].decode(p)
                for p in task1_predictions
            ]
            task1_references += [
                valid_dataset.fields["task1_tgt"].decode(t) for t in batch.tgt
            ]
        else:
            total_task2_3_loss += loss.data
            total_task2_loss += task2_loss.data
            total_task3_loss += task3_loss.data
            task2_hypothesis += [
                valid_dataset.fields["task2_tgt"].decode(p)
                for p in task2_predictions
            ]
            task2_references += [
                valid_dataset.fields["task2_tgt"].decode(t)
                for t in batch.summary_cn
            ]
            task3_hypothesis += [
                valid_dataset.fields["task3_tgt"].decode(p)
                for p in task3_predictions
            ]
            task3_references += [
                valid_dataset.fields["task3_tgt"].decode(t)
                for t in batch.summary_en
            ]

        total_n += 1
        del loss

    bleu_task1 = calculate_bleu(
        task1_hypothesis, task1_references) if len(task1_hypothesis) > 0 else 0
    bleu_task2 = calculate_bleu(
        task2_hypothesis, task2_references) if len(task2_hypothesis) > 0 else 0
    bleu_task3 = calculate_bleu(
        task3_hypothesis, task3_references) if len(task3_hypothesis) > 0 else 0

    if len(task1_hypothesis) > 0:
        rouge1_task1, rouge2_task1 = calculate_rouge(task1_hypothesis,
                                                     task1_references)
    else:
        rouge1_task1, rouge2_task1 = 0, 0

    if len(task2_hypothesis) > 0:
        rouge1_task2, rouge2_task2 = calculate_rouge(task2_hypothesis,
                                                     task2_references)
    else:
        rouge1_task2, rouge2_task2 = 0, 0

    if len(task3_hypothesis) > 0:
        rouge1_task3, rouge2_task3 = calculate_rouge(task3_hypothesis,
                                                     task3_references)
    else:
        rouge1_task3, rouge2_task3 = 0, 0

    mean_task1_loss = total_task1_loss / total_n
    mean_task2_loss = total_task2_loss / total_n
    mean_task3_loss = total_task3_loss / total_n
    logging.info(
        "loss-task1: %.2f \t loss-task2 %.2f \t loss-task3 %.2f \t bleu-task1: %3.2f \t bleu-task2: %3.2f \t bleu-task3: %3.2f \t rouge1-task1: %3.2f \t rouge1-task2: %3.2f \t rouge1-task3: %3.2f \t rouge2-task1: %3.2f \t rouge2-task2: %3.2f \t rouge2-task3: %3.2f"
        % (mean_task1_loss, mean_task2_loss, mean_task3_loss, bleu_task1,
           bleu_task2, bleu_task3, rouge1_task1, rouge1_task2, rouge1_task3,
           rouge2_task1, rouge2_task2, rouge2_task3))
    checkpoint = {"model": model.state_dict(), "opt": opt}
    saver.save(checkpoint, step, mean_task1_loss, mean_task2_loss,
               mean_task3_loss, bleu_task1, bleu_task2, bleu_task3,
               rouge1_task1, rouge1_task2, rouge1_task3, rouge2_task1,
               rouge2_task2, rouge2_task3)
    return mean_task1_loss, mean_task2_loss, mean_task3_loss, bleu_task1, bleu_task2, bleu_task3, rouge1_task1, rouge1_task2, rouge1_task3, rouge2_task1, rouge2_task2, rouge2_task3