Esempio n. 1
0
	def prepareBEH(self, project, part, factors, labels, project_param):
		'''
		standard Behavior processing
		'''
		PP = PreProcessing(project = project, part = part, factor_headers = factors, factor_labels = labels)
		PP.create_folder_structure()
		PP.combine_single_subject_files(save = False)
		PP.select_data(project_parameters = project_param, save = False)
		#PP.filter_data(to_filter = to_filter, filter_crit = ' and correct == 1', cnd_sel = False, save = True)
		#PP.exclude_outliers(criteria = dict(dev_0 = ''))
		#PP.prep_JASP(agg_func = 'mean', voi = 'dev_0', data_filter = "", save = True)
		PP.save_data_file()
Esempio n. 2
0
    def prepareBEH(self, project, part, factors, labels, project_param,
                   to_filter):
        '''
		standard Behavior processing
		'''
        PP = PreProcessing(project=project,
                           part=part,
                           factor_headers=factors,
                           factor_labels=labels)
        PP.create_folder_structure()
        PP.combine_single_subject_files(save=False)
        PP.select_data(project_parameters=project_param, save=False)
        PP.filter_data(to_filter=to_filter,
                       filter_crit=' and correct == 1',
                       cnd_sel=False,
                       save=True)
        PP.exclude_outliers(criteria=dict(RT='RT_filter == True', correct=''))
        PP.save_data_file()
Esempio n. 3
0
    def prepareRep(self, project, part, factors, labels, project_param):
        '''
		standard Behavior processing
		'''
        PP = PreProcessing(project=project,
                           part=part,
                           factor_headers=factors,
                           factor_labels=labels)
        PP.create_folder_structure()
        PP.combine_single_subject_files(save=False)
        PP.select_data(project_parameters=project_param, save=False)
        PP.filter_data(to_filter=to_filter,
                       filter_crit=' and search_resp == 1',
                       cnd_sel=False,
                       save=True)
        PP.exclude_outliers(criteria=dict(RT_search="RT_search_filter == True",
                                          search_resp="",
                                          memory_resp=""))

        # create JASP output
        pivot_data = PP.work_data.query("RT_search_filter == True")
        pivot = pivot_data.pivot_table(values='RT_search',
                                       index='subject_nr',
                                       columns=PP.factor_headers,
                                       aggfunc='mean')
        # limit analysis to load 1
        headers = [
            'no-suppr_match', 'no-suppr_neutral', 'suppr_match',
            'suppr_neutral', 'no'
        ]
        X = np.zeros((pivot.shape[0], len(headers)))

        X[:, 0] = np.stack((pivot['rel-match']['no'][1].values,
                            pivot['rel-mis']['no'][1].values)).mean(axis=0)
        X[:, 1] = pivot['unrel']['no'][1].values
        X[:, 2] = np.stack((pivot['rel-match']['yes'][1].values,
                            pivot['rel-mis']['yes'][1].values)).mean(axis=0)
        X[:, 3] = pivot['unrel']['yes'][1].values
        X[:, 4] = np.stack((pivot['no']['no'][1].values,
                            pivot['no']['yes'][1].values)).mean(axis=0)

        np.savetxt(self.FolderTracker(['exp2', 'analysis'],
                                      filename='RT_JASP.csv'),
                   X,
                   delimiter=",",
                   header=",".join(headers),
                   comments='')