Esempio n. 1
0
def main():
    from sklearn.linear_model import LogisticRegression

    # Load generated data
    X_train, X_test, y_train, y_test = bench.load_data(params)

    params.n_classes = len(np.unique(y_train))

    if params.multiclass == 'auto':
        params.multiclass = 'ovr' if params.n_classes == 2 else 'multinomial'

    if not params.tol:
        params.tol = 1e-3 if params.solver == 'newton-cg' else 1e-10

    # Create our classifier object
    clf = LogisticRegression(penalty='l2',
                             C=params.C,
                             n_jobs=params.n_jobs,
                             fit_intercept=params.fit_intercept,
                             verbose=params.verbose,
                             tol=params.tol,
                             max_iter=params.maxiter,
                             solver=params.solver,
                             multi_class=params.multiclass)
    # Time fit and predict
    fit_time, _ = bench.measure_function_time(clf.fit,
                                              X_train,
                                              y_train,
                                              params=params)

    y_pred = clf.predict(X_train)
    y_proba = clf.predict_proba(X_train)
    train_acc = bench.accuracy_score(y_train, y_pred)
    train_log_loss = bench.log_loss(y_train, y_proba)
    train_roc_auc = bench.roc_auc_score(y_train, y_proba)

    predict_time, y_pred = bench.measure_function_time(clf.predict,
                                                       X_test,
                                                       params=params)
    y_proba = clf.predict_proba(X_test)
    test_acc = bench.accuracy_score(y_test, y_pred)
    test_log_loss = bench.log_loss(y_test, y_proba)
    test_roc_auc = bench.roc_auc_score(y_test, y_proba)

    bench.print_output(
        library='sklearn',
        algorithm='logistic_regression',
        stages=['training', 'prediction'],
        params=params,
        functions=['LogReg.fit', 'LogReg.predict'],
        times=[fit_time, predict_time],
        metric_type=['accuracy', 'log_loss', 'roc_auc'],
        metrics=[
            [train_acc, test_acc],
            [train_log_loss, test_log_loss],
            [train_roc_auc, test_roc_auc],
        ],
        data=[X_train, X_test],
        alg_instance=clf,
    )
Esempio n. 2
0
def main():
    from sklearn.ensemble import RandomForestClassifier

    # Load and convert data
    X_train, X_test, y_train, y_test = bench.load_data(params)

    # Create our random forest classifier
    clf = RandomForestClassifier(
        criterion=params.criterion,
        n_estimators=params.num_trees,
        max_depth=params.max_depth,
        max_features=params.max_features,
        min_samples_split=params.min_samples_split,
        max_leaf_nodes=params.max_leaf_nodes,
        min_impurity_decrease=params.min_impurity_decrease,
        bootstrap=params.bootstrap,
        random_state=params.seed,
        n_jobs=params.n_jobs)

    params.n_classes = len(np.unique(y_train))

    fit_time, _ = bench.measure_function_time(clf.fit,
                                              X_train,
                                              y_train,
                                              params=params)
    y_pred = clf.predict(X_train)
    y_proba = clf.predict_proba(X_train)
    train_acc = bench.accuracy_score(y_train, y_pred)
    train_log_loss = bench.log_loss(y_train, y_proba)
    train_roc_auc = bench.roc_auc_score(y_train, y_proba)

    predict_time, y_pred = bench.measure_function_time(clf.predict,
                                                       X_test,
                                                       params=params)
    y_proba = clf.predict_proba(X_test)
    test_acc = bench.accuracy_score(y_test, y_pred)
    test_log_loss = bench.log_loss(y_test, y_proba)
    test_roc_auc = bench.roc_auc_score(y_test, y_proba)

    bench.print_output(
        library='sklearn',
        algorithm='df_clsf',
        stages=['training', 'prediction'],
        params=params,
        functions=['df_clsf.fit', 'df_clsf.predict'],
        times=[fit_time, predict_time],
        metric_type=['accuracy', 'log_loss', 'roc_auc'],
        metrics=[
            [train_acc, test_acc],
            [train_log_loss, test_log_loss],
            [train_roc_auc, test_roc_auc],
        ],
        data=[X_train, X_test],
        alg_instance=clf,
    )
Esempio n. 3
0
def main():
    from sklearn.neighbors import KNeighborsClassifier

    # Load generated data
    X_train, X_test, y_train, y_test = bench.load_data(params)
    params.n_classes = len(np.unique(y_train))

    # Create classification object
    knn_clsf = KNeighborsClassifier(n_neighbors=params.n_neighbors,
                                    weights=params.weights,
                                    algorithm=params.method,
                                    metric=params.metric,
                                    n_jobs=params.n_jobs)

    # Measure time and accuracy on fitting
    train_time, _ = bench.measure_function_time(knn_clsf.fit,
                                                X_train,
                                                y_train,
                                                params=params)
    if params.task == 'classification':
        y_pred = knn_clsf.predict(X_train)
        y_proba = knn_clsf.predict_proba(X_train)
        train_acc = bench.accuracy_score(y_train, y_pred)
        train_log_loss = bench.log_loss(y_train, y_proba)
        train_roc_auc = bench.roc_auc_score(y_train, y_proba)

    # Measure time and accuracy on prediction
    if params.task == 'classification':
        predict_time, yp = bench.measure_function_time(knn_clsf.predict,
                                                       X_test,
                                                       params=params)
        y_proba = knn_clsf.predict_proba(X_test)
        test_acc = bench.accuracy_score(y_test, yp)
        test_log_loss = bench.log_loss(y_test, y_proba)
        test_roc_auc = bench.roc_auc_score(y_test, y_proba)
    else:
        predict_time, _ = bench.measure_function_time(knn_clsf.kneighbors,
                                                      X_test,
                                                      params=params)

    if params.task == 'classification':
        bench.print_output(
            library='sklearn',
            algorithm=knn_clsf._fit_method + '_knn_classification',
            stages=['training', 'prediction'],
            params=params,
            functions=['knn_clsf.fit', 'knn_clsf.predict'],
            times=[train_time, predict_time],
            metric_type=['accuracy', 'log_loss', 'roc_auc'],
            metrics=[
                [train_acc, test_acc],
                [train_log_loss, test_log_loss],
                [train_roc_auc, test_roc_auc],
            ],
            data=[X_train, X_test],
            alg_instance=knn_clsf,
        )
    else:
        bench.print_output(
            library='sklearn',
            algorithm=knn_clsf._fit_method + '_knn_search',
            stages=['training', 'search'],
            params=params,
            functions=['knn_clsf.fit', 'knn_clsf.kneighbors'],
            times=[train_time, predict_time],
            metric_type=None,
            metrics=[],
            data=[X_train, X_test],
            alg_instance=knn_clsf,
        )
Esempio n. 4
0
 def metric_call(x, y):
     return bench.log_loss(x, y)
Esempio n. 5
0
def main():
    from sklearn.svm import SVC

    X_train, X_test, y_train, y_test = bench.load_data(params)
    y_train = np.asfortranarray(y_train).ravel()

    if params.gamma is None:
        params.gamma = 1.0 / X_train.shape[1]

    cache_size_bytes = bench.get_optimal_cache_size(
        X_train.shape[0], max_cache=params.max_cache_size)
    params.cache_size_mb = cache_size_bytes / 1024**2
    params.n_classes = len(np.unique(y_train))

    clf = SVC(C=params.C,
              kernel=params.kernel,
              cache_size=params.cache_size_mb,
              tol=params.tol,
              gamma=params.gamma,
              probability=params.probability,
              random_state=43,
              degree=params.degree)

    fit_time, _ = bench.measure_function_time(clf.fit,
                                              X_train,
                                              y_train,
                                              params=params)
    params.sv_len = clf.support_.shape[0]

    if params.probability:
        state_predict = 'predict_proba'
        clf_predict = clf.predict_proba
        train_acc = None
        test_acc = None

        predict_train_time, y_pred = bench.measure_function_time(clf_predict,
                                                                 X_train,
                                                                 params=params)
        train_log_loss = bench.log_loss(y_train, y_pred)
        train_roc_auc = bench.roc_auc_score(y_train, y_pred)

        _, y_pred = bench.measure_function_time(clf_predict,
                                                X_test,
                                                params=params)
        test_log_loss = bench.log_loss(y_test, y_pred)
        test_roc_auc = bench.roc_auc_score(y_test, y_pred)
    else:
        state_predict = 'prediction'
        clf_predict = clf.predict
        train_log_loss = None
        test_log_loss = None
        train_roc_auc = None
        test_roc_auc = None

        predict_train_time, y_pred = bench.measure_function_time(clf_predict,
                                                                 X_train,
                                                                 params=params)
        train_acc = bench.accuracy_score(y_train, y_pred)

        _, y_pred = bench.measure_function_time(clf_predict,
                                                X_test,
                                                params=params)
        test_acc = bench.accuracy_score(y_test, y_pred)

    bench.print_output(
        library='sklearn',
        algorithm='SVC',
        stages=['training', state_predict],
        params=params,
        functions=['SVM.fit', f'SVM.{state_predict}'],
        times=[fit_time, predict_train_time],
        metric_type=['accuracy', 'log_loss', 'roc_auc', 'n_sv'],
        metrics=[
            [train_acc, test_acc],
            [train_log_loss, test_log_loss],
            [train_roc_auc, test_roc_auc],
            [int(clf.n_support_.sum()),
             int(clf.n_support_.sum())],
        ],
        data=[X_train, X_train],
        alg_instance=clf,
    )