Esempio n. 1
0
def load(bento_service_cls, path=None):
    # TODO: add model.env.verify() to check dependencies and python version etc

    if bento_service_cls._bento_module_path is not None:
        # When calling load from pip installled bento model, use installed
        # python package for loading and the same path for '/artifacts'

        # TODO: warn user that 'path' parameter is ignored if it's not None here
        path = bento_service_cls._bento_module_path
        artifacts_path = path
    else:
        if path is None:
            raise BentoMLException("Loading path is required for BentoArchive: {}.".format(
                bento_service_cls.name()))

        # When calling load on generated archive directory, look for /artifacts
        # directory under module sub-directory
        if is_s3_url(path):
            temporary_path = tempfile.mkdtemp()
            download_from_s3(path, temporary_path)
            # Use loacl temp path for the following loading operations
            path = temporary_path

        artifacts_path = os.path.join(path, bento_service_cls.name())

    bentoml_config = load_bentoml_config(path)

    bento_service = bento_service_cls.load(artifacts_path)

    bento_service._version = bentoml_config['service_version']
    return bento_service
Esempio n. 2
0
    def resolve_bundle_path(bento, pip_installed_bundle_path):
        if pip_installed_bundle_path:
            assert (
                bento is None
            ), "pip installed BentoService commands should not have Bento argument"
            return pip_installed_bundle_path

        if os.path.isdir(bento) or is_s3_url(bento):
            # bundler already support loading local and s3 path
            return bento

        elif ":" in bento:
            # assuming passing in BentoService in the form of Name:Version tag
            yatai_client = YataiClient()
            name, version = bento.split(':')
            get_bento_result = yatai_client.repository.get(name, version)
            if get_bento_result.status.status_code != status_pb2.Status.OK:
                error_code, error_message = status_pb_to_error_code_and_message(
                    get_bento_result.status)
                raise BentoMLException(
                    f'BentoService {name}:{version} not found - '
                    f'{error_code}:{error_message}')
            return get_bento_result.bento.uri.uri
        else:
            raise BentoMLException(
                f'BentoService "{bento}" not found - either specify the file path of '
                f'the BentoService saved bundle, or the BentoService id in the form of '
                f'"name:version"')
Esempio n. 3
0
def resolve_bundle_path(bento, pip_installed_bundle_path, yatai_url=None):
    from bentoml.yatai.client import get_yatai_client
    from bentoml.exceptions import BentoMLException

    if pip_installed_bundle_path:
        assert (
            bento is None
        ), "pip installed BentoService commands should not have Bento argument"
        return pip_installed_bundle_path

    if os.path.isdir(bento) or is_s3_url(bento) or is_gcs_url(bento):
        # saved_bundle already support loading local, s3 path and gcs path
        return bento

    elif ":" in bento:
        # assuming passing in BentoService in the form of Name:Version tag
        yatai_client = get_yatai_client(yatai_url)
        bento_pb = yatai_client.repository.get(bento)
        if bento_pb.uri.s3_presigned_url:
            # Use s3 presigned URL for downloading the repository if it is presented
            return bento_pb.uri.s3_presigned_url
        if bento_pb.uri.gcs_presigned_url:
            return bento_pb.uri.gcs_presigned_url
        else:
            return bento_pb.uri.uri
    else:
        raise BentoMLException(
            f'BentoService "{bento}" not found - either specify the file path of '
            f"the BentoService saved bundle, or the BentoService id in the form of "
            f'"name:version"')
Esempio n. 4
0
def _resolve_remote_bundle_path(bundle_path):
    if is_s3_url(bundle_path):
        import boto3

        parsed_url = urlparse(bundle_path)
        bucket_name = parsed_url.netloc
        object_name = parsed_url.path.lstrip('/')

        s3 = boto3.client('s3')
        fileobj = io.BytesIO()
        s3.download_fileobj(bucket_name, object_name, fileobj)
        fileobj.seek(0, 0)
    elif _is_http_url(bundle_path):
        import requests

        response = requests.get(bundle_path)
        fileobj = io.BytesIO()
        fileobj.write(response.content)
        fileobj.seek(0, 0)
    else:
        raise BentoMLException(
            f"Saved bundle path: '{bundle_path}' is not supported")

    with tarfile.open(mode="r:gz", fileobj=fileobj) as tar:
        with tempfile.TemporaryDirectory() as tmpdir:
            filename = tar.getmembers()[0].name
            tar.extractall(path=tmpdir)
            yield os.path.join(tmpdir, filename)
Esempio n. 5
0
def load_bento_service_class(archive_path):
    """
    Load a BentoService class from saved archive in given path

    :param archive_path: A BentoArchive path generated from BentoService.save call
        or the path to pip installed BentoArchive directory
    :return: BentoService class
    """
    if is_s3_url(archive_path):
        tempdir = tempfile.mkdtemp()
        download_from_s3(archive_path, tempdir)
        archive_path = tempdir

    config = load_bentoml_config(archive_path)

    # Load target module containing BentoService class from given path
    module_file_path = os.path.join(archive_path, config['service_name'],
                                    config['module_file'])
    if not os.path.isfile(module_file_path):
        # Try loading without service_name prefix, for loading from a installed PyPi
        module_file_path = os.path.join(archive_path, config['module_file'])

    if not os.path.isfile(module_file_path):
        raise BentoMLException(
            'Can not locate module_file {} in archive {}'.format(
                config['module_file'], archive_path))

    # Prepend archive_path to sys.path for loading extra python dependencies
    sys.path.insert(0, archive_path)

    module_name = config['module_name']
    if module_name in sys.modules:
        # module already loaded, TODO: add warning
        module = sys.modules[module_name]
    elif sys.version_info >= (3, 5):
        import importlib.util
        spec = importlib.util.spec_from_file_location(module_name,
                                                      module_file_path)
        module = importlib.util.module_from_spec(spec)
        spec.loader.exec_module(module)
    elif sys.version_info >= (3, 3):
        from importlib.machinery import SourceFileLoader
        # pylint:disable=deprecated-method
        module = SourceFileLoader(module_name,
                                  module_file_path).load_module(module_name)
        # pylint:enable=deprecated-method
    else:
        import imp
        module = imp.load_source(module_name, module_file_path)

    # Remove archive_path from sys.path to avoid import naming conflicts
    sys.path.remove(archive_path)

    model_service_class = module.__getattribute__(config['service_name'])
    # Set _bento_archive_path, which tells BentoService where to load its artifacts
    model_service_class._bento_archive_path = archive_path
    # Set cls._version, service instance can access it via svc.version
    model_service_class._bento_service_version = config['service_version']

    return model_service_class
Esempio n. 6
0
def resolve_bundle_path(
    bento: str,
    pip_installed_bundle_path: Optional[str] = None,
    yatai_url: Optional[str] = None,
) -> str:
    from bentoml.exceptions import BentoMLException
    from bentoml.yatai.client import get_yatai_client

    if pip_installed_bundle_path:
        assert (
            bento is None
        ), "pip installed BentoService commands should not have Bento argument"
        return pip_installed_bundle_path

    if os.path.isdir(bento) or is_s3_url(bento) or is_gcs_url(bento):
        # saved_bundle already support loading local, s3 path and gcs path
        return bento

    elif ":" in bento:
        # assuming passing in BentoService in the form of Name:Version tag
        yatai_client = get_yatai_client(yatai_url)
        bento_pb = yatai_client.repository.get(bento)
        return resolve_bento_bundle_uri(bento_pb)
    else:
        raise BentoMLException(
            f'BentoService "{bento}" not found - either specify the file path of '
            f"the BentoService saved bundle, or the BentoService id in the form of "
            f'"name:version"')
Esempio n. 7
0
    def from_archive(cls, path):
        from bentoml.archive import load_bentoml_config

        # TODO: add model.env.verify() to check dependencies and python version etc
        if cls._bento_archive_path is not None and cls._bento_archive_path != path:
            raise BentoMLException(
                "Loaded BentoArchive(from {}) can't be loaded again from a different"
                "archive path {}".format(cls._bento_archive_path, path))

        if is_s3_url(path):
            temporary_path = tempfile.mkdtemp()
            download_from_s3(path, temporary_path)
            # Use loacl temp path for the following loading operations
            path = temporary_path

        artifacts_path = path
        # For pip installed BentoService, artifacts directory is located at
        # 'package_path/artifacts/', but for loading from BentoArchive, it is
        # in 'path/{service_name}/artifacts/'
        if not os.path.isdir(os.path.join(path, 'artifacts')):
            artifacts_path = os.path.join(path, cls.name())

        bentoml_config = load_bentoml_config(path)
        # TODO: check archive type and allow loading archive only
        if bentoml_config['service_name'] != cls.name():
            raise BentoMLException(
                'BentoService name does not match with BentoML Archive in path: {}'
                .format(path))

        artifacts = ArtifactCollection.load(artifacts_path,
                                            cls._artifacts_spec)
        svc = cls(artifacts)
        return svc
Esempio n. 8
0
def save(bento_service, dst, version=None):
    """
    Save given BentoService along with all artifacts to target path
    """

    if version is None:
        version = _generate_new_version_str()
    _validate_version_str(version)

    if bento_service._version_major is not None and bento_service._version_minor is not None:
        # BentoML uses semantic versioning for BentoService distribution
        # when user specified the MAJOR and MINOR version number along with
        # the BentoService class definition with '@ver' decorator.
        # The parameter version(or auto generated version) here will be used as
        # PATCH field in the final version:
        version = '.'.join(
            [str(bento_service._version_major),
             str(bento_service._version_minor), version])

    # Full path containing saved BentoArchive, it the dst path with service name
    # and service version as prefix. e.g.:
    # - s3://my-bucket/base_path => s3://my-bucket/base_path/service_name/version/
    # - /tmp/my_bento_archive/ => /tmp/my_bento_archive/service_name/version/
    full_saved_path = os.path.join(dst, bento_service.name, version)

    if is_s3_url(dst):
        with TempDirectory() as tempdir:
            _save(bento_service, tempdir, version)
            upload_to_s3(full_saved_path, tempdir)
    else:
        _save(bento_service, dst, version)

    return full_saved_path
Esempio n. 9
0
    def __init__(self, base_url=None):
        if base_url is None:
            base_url = config().get('default_repository_base_url')

        if is_s3_url(base_url):
            self._repo = _S3BentoRepository(base_url)
        else:
            self._repo = _LocalBentoRepository(base_url)
Esempio n. 10
0
    def handle_cli(self, args, func):
        parser = argparse.ArgumentParser()
        parser.add_argument("--input", required=True)
        parser.add_argument("-o",
                            "--output",
                            default="str",
                            choices=["str", "json"])
        parser.add_argument(
            "--orient",
            default=self.orient,
            choices=PANDAS_DATAFRAME_TO_DICT_ORIENT_OPTIONS,
        )
        parser.add_argument(
            "--output_orient",
            default=self.output_orient,
            choices=PANDAS_DATAFRAME_TO_DICT_ORIENT_OPTIONS,
        )
        parsed_args = parser.parse_args(args)

        orient = parsed_args.orient
        output_orient = parsed_args.output_orient
        cli_input = parsed_args.input

        if os.path.isfile(cli_input) or is_s3_url(cli_input) or is_url(
                cli_input):
            if cli_input.endswith(".csv"):
                df = pd.read_csv(cli_input)
            elif cli_input.endswith(".json"):
                df = pd.read_json(cli_input,
                                  orient=orient,
                                  typ=self.typ,
                                  dtype=False)
            else:
                raise BadInput(
                    "Input file format not supported, BentoML cli only accepts .json "
                    "and .csv file")
        else:
            # Assuming input string is JSON format
            try:
                df = pd.read_json(cli_input,
                                  orient=orient,
                                  typ=self.typ,
                                  dtype=False)
            except ValueError as e:
                raise BadInput(
                    "Unexpected input format, BentoML DataframeHandler expects json "
                    "string as input: {}".format(e))

        if self.typ == "frame" and self.input_dtypes is not None:
            _check_dataframe_column_contains(self.input_dtypes, df)

        result = func(df)
        if parsed_args.output == 'json':
            result = api_func_result_to_json(
                result, pandas_dataframe_orient=output_orient)
        else:
            result = str(result)
        print(result)
Esempio n. 11
0
    def yatai_service_start(
        db_url,
        repo_base_url,
        grpc_port,
        ui_port,
        ui,
        web_prefix_path,
        repository_type,
        file_system_directory,
        s3_url,
        s3_endpoint_url,
        gcs_url,
    ):
        from bentoml.utils.s3 import is_s3_url
        from bentoml.utils.gcs import is_gcs_url

        if repo_base_url:
            logger.warning(
                "Option --repo-base-url has been deprecated but is still supported "
                "in the current release. Consider using --repository-type and its "
                "corresponding options in the upcoming releases. ")
            if is_s3_url(repo_base_url):
                repository_type = YATAI_REPOSITORY_S3
                s3_url = repo_base_url
            elif is_gcs_url(repo_base_url):
                repository_type = YATAI_REPOSITORY_GCS
                gcs_url = repo_base_url
            else:
                repository_type = YATAI_REPOSITORY_FILE_SYSTEM
                file_system_directory = repo_base_url

        if repository_type == YATAI_REPOSITORY_S3 and s3_url is None:
            logger.error("'--s3-url' must be specified for S3 repository type")
            return
        elif repository_type == YATAI_REPOSITORY_GCS and gcs_url is None:
            logger.error(
                "'--gcs-url' must be specified for GCS repository type")
            return
        elif (repository_type == YATAI_REPOSITORY_FILE_SYSTEM
              and file_system_directory is None):
            logger.error(
                "'--file-system-directory' must be specified for file system "
                "repository type")
            return
        else:
            start_yatai_service_grpc_server(
                db_url=db_url,
                grpc_port=grpc_port,
                ui_port=ui_port,
                with_ui=ui,
                base_url=web_prefix_path,
                repository_type=repository_type,
                file_system_directory=file_system_directory,
                s3_url=s3_url,
                s3_endpoint_url=s3_endpoint_url,
                gcs_url=gcs_url,
            )
Esempio n. 12
0
def load_model_service(model_path):
    if is_s3_url(model_path):
        temp_dir = tempfile.mkdtemp()
        download_from_s3(model_path, temp_dir)
        model_path = temp_dir
    else:
        if not os.path.isabs(model_path):
            model_path = os.path.abspath(model_path)

    model_service = load(model_path)
    return model_service
Esempio n. 13
0
    def __init__(self, base_url=None, s3_endpoint_url=None):
        """
        :param base_url: either a local file system path or a s3-compatible path such as
            s3://my-bucket/some-prefix/
        :param s3_endpoint_url: configuring S3Repository to talk to a specific s3
            endpoint
        """

        if base_url is None:
            base_url = config().get('default_repository_base_url')

        if is_s3_url(base_url):
            self._repo = S3Repository(base_url, s3_endpoint_url)
        else:
            self._repo = LocalRepository(base_url)
Esempio n. 14
0
def save(bento_service, dst, version=None):
    """Save given BentoService along with all its artifacts, source code and
    dependencies to target path

    Args:
        bento_service (bentoml.service.BentoService): a Bento Service instance
        dst (str): Destination of where the bento service will be saved. It could
            be a local file path or a s3 path
        version (:obj:`str`, optional): version text to use for saved archive

    Returns:
        string: The complete path of saved Bento service.
    """

    if version is None:
        version = _generate_new_version_str()
    _validate_version_str(version)

    if (bento_service._version_major is not None
            and bento_service._version_minor is not None):
        # BentoML uses semantic versioning for BentoService distribution
        # when user specified the MAJOR and MINOR version number along with
        # the BentoService class definition with '@ver' decorator.
        # The parameter version(or auto generated version) here will be used as
        # PATCH field in the final version:
        version = ".".join([
            str(bento_service._version_major),
            str(bento_service._version_minor),
            version,
        ])

    # Full path containing saved BentoArchive, it the dst path with service name
    # and service version as prefix. e.g.:
    # - s3://my-bucket/base_path => s3://my-bucket/base_path/service_name/version/
    # - /tmp/my_bento_archive/ => /tmp/my_bento_archive/service_name/version/
    full_saved_path = os.path.join(dst, bento_service.name, version)

    if is_s3_url(dst):
        with TempDirectory() as tempdir:
            _save(bento_service, tempdir, version)
            upload_to_s3(full_saved_path, tempdir)
    else:
        _save(bento_service, dst, version)

    LOG.info("BentoService %s:%s saved to %s", bento_service.name, version,
             full_saved_path)
    return full_saved_path
Esempio n. 15
0
    def handle_cli(self, args, func):
        parser = argparse.ArgumentParser()
        parser.add_argument('--input', required=True)
        parser.add_argument('-o',
                            '--output',
                            default="str",
                            choices=['str', 'json', 'yaml'])
        parser.add_argument('--orient', default=self.orient)
        parser.add_argument('--output_orient', default=self.output_orient)
        parsed_args = parser.parse_args(args)

        orient = parsed_args.orient
        output_orient = parsed_args.output_orient
        cli_input = parsed_args.input

        if os.path.isfile(cli_input) or is_s3_url(cli_input) or is_url(
                cli_input):
            if cli_input.endswith('.csv'):
                df = pd.read_csv(cli_input)
            elif cli_input.endswith('.json'):
                df = pd.read_json(cli_input,
                                  orient=orient,
                                  typ=self.typ,
                                  dtype=False)
            else:
                raise ValueError(
                    "Input file format not supported, BentoML cli only accepts .json and .csv file"
                )
        else:
            # Assuming input string is JSON format
            try:
                df = pd.read_json(cli_input,
                                  orient=orient,
                                  typ=self.typ,
                                  dtype=False)
            except ValueError as e:
                raise ValueError(
                    "Unexpected input format, BentoML DataframeHandler expects json string as"
                    "input: {}".format(e))

        if self.typ == 'frame' and self.input_columns is not None:
            check_dataframe_column_contains(self.input_columns, df)

        result = func(df)
        result = get_output_str(result, parsed_args.output, output_orient)
        print(result)
Esempio n. 16
0
def load(path, lazy_load=False):
    """
    Load a BentoService or BentoModel from saved archive in given path

    :param path: A BentoArchive path generated from BentoService.save call
    :return: BentoService
    """
    if is_s3_url(path):
        tempdir = tempfile.mkdtemp()
        download_from_s3(path, tempdir)
        path = tempdir

    config = load_bentoml_config(path)

    # Load target module containing BentoService class from given path
    module_file_path = os.path.join(path, config['service_name'],
                                    config['module_file'])

    module_name = config['module_name']
    if module_name in sys.modules:
        # module already loaded, TODO: add warning
        module = sys.modules[module_name]
    elif sys.version_info >= (3, 5):
        import importlib.util
        spec = importlib.util.spec_from_file_location(module_name,
                                                      module_file_path)
        module = importlib.util.module_from_spec(spec)
        spec.loader.exec_module(module)
    elif sys.version_info >= (3, 3):
        from importlib.machinery import SourceFileLoader
        # pylint:disable=deprecated-method
        module = SourceFileLoader(module_name,
                                  module_file_path).load_module(module_name)
        # pylint:enable=deprecated-method
    else:
        import imp
        module = imp.load_source(module_name, module_file_path)

    model_service_class = module.__getattribute__(config['service_name'])
    loaded_model = _LoadedBentoServiceWrapper(model_service_class, path,
                                              config)

    if not lazy_load:
        loaded_model.load()

    return loaded_model
Esempio n. 17
0
def _resolve_remote_bundle_path(bundle_path):
    if is_s3_url(bundle_path):
        import boto3

        parsed_url = urlparse(bundle_path)
        bucket_name = parsed_url.netloc
        object_name = parsed_url.path.lstrip('/')

        s3 = boto3.client('s3')
        fileobj = io.BytesIO()
        s3.download_fileobj(bucket_name, object_name, fileobj)
        fileobj.seek(0, 0)
    elif is_gcs_url(bundle_path):
        try:
            from google.cloud import storage
        except ImportError:
            raise BentoMLException(
                '"google-cloud-storage" package is required. You can install it with '
                'pip: "pip install google-cloud-storage"'
            )

        gcs = storage.Client()
        fileobj = io.BytesIO()
        gcs.download_blob_to_file(bundle_path, fileobj)
        fileobj.seek(0, 0)
    elif _is_http_url(bundle_path):
        import requests

        response = requests.get(bundle_path)
        if response.status_code != 200:
            raise BentoMLException(
                f"Error retrieving BentoService bundle. "
                f"{response.status_code}: {response.text}"
            )
        fileobj = io.BytesIO()
        fileobj.write(response.content)
        fileobj.seek(0, 0)
    else:
        raise BentoMLException(f"Saved bundle path: '{bundle_path}' is not supported")

    with tarfile.open(mode="r:gz", fileobj=fileobj) as tar:
        with tempfile.TemporaryDirectory() as tmpdir:
            filename = tar.getmembers()[0].name
            tar.extractall(path=tmpdir)
            yield os.path.join(tmpdir, filename)
Esempio n. 18
0
def resolve_bundle_path(bento, pip_installed_bundle_path):
    from bentoml.exceptions import BentoMLException

    if pip_installed_bundle_path:
        assert (
            bento is None
        ), "pip installed BentoService commands should not have Bento argument"
        return pip_installed_bundle_path

    if os.path.isdir(bento) or is_s3_url(bento) or is_gcs_url(bento):
        # saved_bundle already support loading local, s3 path and gcs path
        return bento

    elif ":" in bento:
        # assuming passing in BentoService in the form of Name:Version tag
        yatai_client = get_default_yatai_client()
        name, version = bento.split(":")
        get_bento_result = yatai_client.repository.get(name, version)
        if get_bento_result.status.status_code != yatai_proto.status_pb2.Status.OK:
            error_code, error_message = status_pb_to_error_code_and_message(
                get_bento_result.status
            )
            raise BentoMLException(
                f"BentoService {name}:{version} not found - "
                f"{error_code}:{error_message}"
            )
        if get_bento_result.bento.uri.s3_presigned_url:
            # Use s3 presigned URL for downloading the repository if it is presented
            return get_bento_result.bento.uri.s3_presigned_url
        if get_bento_result.bento.uri.gcs_presigned_url:
            return get_bento_result.bento.uri.gcs_presigned_url
        else:
            return get_bento_result.bento.uri.uri
    else:
        raise BentoMLException(
            f'BentoService "{bento}" not found - either specify the file path of '
            f"the BentoService saved bundle, or the BentoService id in the form of "
            f'"name:version"'
        )
Esempio n. 19
0
    def handle_cli(self, args, func):
        parser = argparse.ArgumentParser()
        parser.add_argument("--input", required=True)
        parser.add_argument(
            "--orient",
            default=self.orient,
            choices=PANDAS_DATAFRAME_TO_JSON_ORIENT_OPTIONS,
        )
        parsed_args, unknown_args = parser.parse_known_args(args)

        orient = parsed_args.orient
        cli_input = parsed_args.input

        if os.path.isfile(cli_input) or is_s3_url(cli_input) or is_url(cli_input):
            if cli_input.endswith(".csv"):
                df = pd.read_csv(cli_input)
            elif cli_input.endswith(".json"):
                df = pd.read_json(cli_input, orient=orient, typ=self.typ)
            else:
                raise BadInput(
                    "Input file format not supported, BentoML cli only accepts .json "
                    "and .csv file"
                )
        else:
            # Assuming input string is JSON format
            try:
                df = pd.read_json(cli_input, orient=orient, typ=self.typ)
            except ValueError as e:
                raise BadInput(
                    "Unexpected input format, BentoML DataframeInput expects json "
                    "string as input: {}".format(e)
                )

        if self.typ == "frame" and self.input_dtypes is not None:
            check_dataframe_column_contains(self.input_dtypes, df)

        result = func(df)
        self.output_adapter.to_cli(result, unknown_args)
Esempio n. 20
0
def save(bento_service, dst, version=None, pypi_package_version="1.0.0"):
    """
    Save given BentoService along with all artifacts to target path
    """

    if version is None:
        version = _generate_new_version_str()
    _validate_version_str(version)

    # Full path containing saved BentoArchive, it the dst path with service name
    # and service version as prefix. e.g.:
    # - s3://my-bucket/base_path => s3://my-bucket/base_path/service_name/version/
    # - /tmp/my_bento_archive/ => /tmp/my_bento_archive/service_name/version/
    full_saved_path = os.path.join(dst, bento_service.name, version)

    if is_s3_url(dst):
        with TempDirectory() as tempdir:
            _save(bento_service, tempdir, version, pypi_package_version)
            upload_to_s3(full_saved_path, tempdir)
    else:
        _save(bento_service, dst, version, pypi_package_version)

    return full_saved_path
Esempio n. 21
0
    def from_archive(cls, path):
        from bentoml.archive import load_bentoml_config

        if cls._bento_archive_path is not None and cls._bento_archive_path != path:
            raise BentoMLException(
                "Loaded BentoArchive(from {}) can't be loaded again from a different"
                "archive path {}".format(cls._bento_archive_path, path))

        if is_s3_url(path):
            temporary_path = tempfile.mkdtemp()
            download_from_s3(path, temporary_path)
            # Use loacl temp path for the following loading operations
            path = temporary_path

        artifacts_path = path
        # For pip installed BentoService, artifacts directory is located at
        # 'package_path/artifacts/', but for loading from BentoArchive, it is
        # in 'path/{service_name}/artifacts/'
        if not os.path.isdir(os.path.join(path, "artifacts")):
            artifacts_path = os.path.join(path, cls.name())

        bentoml_config = load_bentoml_config(path)
        if bentoml_config["metadata"]["service_name"] != cls.name():
            raise BentoMLException(
                "BentoService name does not match with BentoArchive in path: {}"
                .format(path))

        if bentoml_config["kind"] != "BentoService":
            raise BentoMLException(
                "BentoArchive type '{}' can not be loaded as a BentoService".
                format(bentoml_config["kind"]))

        artifacts = ArtifactCollection.load(artifacts_path,
                                            cls._artifacts_spec)
        svc = cls(artifacts)
        return svc
Esempio n. 22
0
def _is_remote_path(bundle_path):
    return is_s3_url(bundle_path)
Esempio n. 23
0
def _is_remote_path(bundle_path):
    return isinstance(bundle_path, str) and (is_s3_url(bundle_path)
                                             or is_gcs_url(bundle_path)
                                             or _is_http_url(bundle_path))
Esempio n. 24
0
def _is_remote_path(bundle_path):
    return (
        is_s3_url(bundle_path) or is_gcs_url(bundle_path) or _is_http_url(bundle_path)
    )
Esempio n. 25
0
def save(bento_service, dst, version=None, pypi_package_version="1.0.0"):
    """
    Save given BentoService along with all artifacts to target path
    """

    if version is None:
        version = _generate_new_version_str()
    _validate_version_str(version)

    s3_url = None
    if is_s3_url(dst):
        s3_url = os.path.join(dst, bento_service.name, version)
        # TODO: check s3_url not exist, otherwise raise exception
        temp_dir = tempfile.mkdtemp()
        Path(temp_dir, bento_service.name).mkdir(parents=True, exist_ok=True)
        # Update path to subfolder in the form of 'base/service_name/version/'
        path = os.path.join(temp_dir, bento_service.name, version)
    else:
        Path(os.path.join(dst), bento_service.name).mkdir(parents=True, exist_ok=True)
        # Update path to subfolder in the form of 'base/service_name/version/'
        path = os.path.join(dst, bento_service.name, version)

        if os.path.exists(path):
            raise ValueError("Version {version} in Path: {dst} already "
                             "exist.".format(version=version, dst=dst))

    os.mkdir(path)
    module_base_path = os.path.join(path, bento_service.name)
    os.mkdir(module_base_path)

    # write README.md with user model's docstring
    if bento_service.__class__.__doc__:
        model_description = bento_service.__class__.__doc__.strip()
    else:
        model_description = DEFAULT_BENTO_ARCHIVE_DESCRIPTION
    with open(os.path.join(path, 'README.md'), 'w') as f:
        f.write(model_description)

    # save all model artifacts to 'base_path/name/artifacts/' directory
    bento_service.artifacts.save(module_base_path)

    # write conda environment, requirement.txt
    bento_service.env.save(path)

    # TODO: add bentoml.find_packages helper for more fine grained control over
    # this process, e.g. packages=find_packages(base, [], exclude=[], used_module_only=True)
    # copy over all custom model code
    module_name, module_file = copy_used_py_modules(bento_service.__class__.__module__,
                                                    os.path.join(path, bento_service.name))

    if os.path.isabs(module_file):
        module_file = module_name.replace('.', os.sep) + '.py'

    # create __init__.py
    with open(os.path.join(path, bento_service.name, '__init__.py'), "w") as f:
        f.write(
            INIT_PY_TEMPLATE.format(service_name=bento_service.name, module_name=module_name,
                                    pypi_package_version=pypi_package_version))

    # write setup.py, make exported model pip installable
    setup_py_content = BENTO_MODEL_SETUP_PY_TEMPLATE.format(
        name=bento_service.name, pypi_package_version=pypi_package_version,
        long_description=model_description)
    with open(os.path.join(path, 'setup.py'), 'w') as f:
        f.write(setup_py_content)

    with open(os.path.join(path, 'MANIFEST.in'), 'w') as f:
        f.write(MANIFEST_IN_TEMPLATE.format(service_name=bento_service.name))

    # write Dockerfile
    with open(os.path.join(path, 'Dockerfile'), 'w') as f:
        f.write(
            BENTO_SERVER_SINGLE_MODEL_DOCKERFILE_TEMPLATE.format(
                conda_env_name=bento_service.env.get_conda_env_name()))

    # write bentoml.yml
    bentoml_yml_content = BENTOML_CONFIG_YAML_TEMPLATE.format(
        service_name=bento_service.name, bentoml_version=BENTOML_VERSION, service_version=version,
        module_name=module_name, module_file=module_file, created_at=str(datetime.now()))
    with open(os.path.join(path, 'bentoml.yml'), 'w') as f:
        f.write(bentoml_yml_content)
    # Also write bentoml.yml to module base path to make it accessible
    # as package data after pip installed as a python package
    with open(os.path.join(module_base_path, 'bentoml.yml'), 'w') as f:
        f.write(bentoml_yml_content)

    if s3_url:
        upload_to_s3(s3_url, path)
        return s3_url
    else:
        return path