Esempio n. 1
0
 def __init__(self, sents_src, sents_tgt, vocab_path):
     # 一般init函数是加载所有数据
     super(BertDataset, self).__init__()
     self.sents_src = sents_src
     self.sents_tgt = sents_tgt
     self.word2idx = load_chinese_base_vocab(vocab_path)
     self.idx2word = {k: v for v, k in self.word2idx.items()}
     self.tokenizer = Tokenizer(self.word2idx)
Esempio n. 2
0
def read_corpus(dir_path, vocab_path):
    sents_src = []
    sents_tgt = []
    word2idx = load_chinese_base_vocab(vocab_path)
    tokenizer = Tokenizer(word2idx)
    files = os.listdir(dir_path)
    for file1 in files:
        if not os.path.isdir(file1):
            file_path = dir_path + "/" + file1
            print(file_path)
            if file_path[-3:] != "csv":
                continue
            df = pd.read_csv(file_path)
            for index, row in df.iterrows():
                if type(row[0]) is not str or type(row[3]) is not str:
                    continue
                if len(row[0]) > 8 or len(row[0]) < 2:
                    # 过滤掉题目长度过长和过短的诗句
                    continue
                if len(row[0].split(" ")) > 1:
                    # 说明题目里面存在空格,只要空格前面的数据
                    row[0] = row[0].split(" ")[0]
                encode_text = tokenizer.encode(row[3])[0]
                if word2idx["[UNK]"] in encode_text:
                    continue
                if len(row[3]) == 24 and (row[3][5] == ","
                                          or row[3][5] == "。"):
                    # 五言绝句
                    sents_src.append(row[0] + "##" + "五言绝句")
                    sents_tgt.append(row[3])
                elif len(row[3]) == 32 and (row[3][7] == ","
                                            or row[3][7] == "。"):
                    # 七言绝句
                    sents_src.append(row[0] + "##" + "七言绝句")
                    sents_tgt.append(row[3])
                elif len(row[3]) == 48 and (row[3][5] == ","
                                            or row[3][5] == "。"):
                    # 五言律诗
                    sents_src.append(row[0] + "##" + "五言律诗")
                    sents_tgt.append(row[3])
                elif len(row[3]) == 64 and (row[3][7] == ","
                                            or row[3][7] == "。"):
                    # 七言律诗
                    sents_src.append(row[0] + "##" + "七言律诗")
                    sents_tgt.append(row[3])

    print("诗句共: " + str(len(sents_src)) + "篇")
    return sents_src, sents_tgt
Esempio n. 3
0
class BertDataset(Dataset):
    """
    针对特定数据集,定义一个相关的取数据的方式
    """
    def __init__(self, sents_src, sents_tgt, vocab_path):
        # 一般init函数是加载所有数据
        super(BertDataset, self).__init__()
        self.sents_src = sents_src
        self.sents_tgt = sents_tgt
        self.word2idx = load_chinese_base_vocab(vocab_path)
        self.idx2word = {k: v for v, k in self.word2idx.items()}
        self.tokenizer = Tokenizer(self.word2idx)

    def __getitem__(self, i):
        src = self.sents_src[i]
        tgt = self.sents_tgt[i]
        token_ids, token_type_ids = self.tokenizer.encode(src, tgt)
        output = {
            "token_ids": token_ids,
            "token_type_ids": token_type_ids,
        }
        return output

    def __len__(self):

        return len(self.sents_src)
    def __init__(self, vocab_path, model_name="roberta"):
        super(Seq2SeqModel, self).__init__()
        self.word2ix = load_chinese_base_vocab(vocab_path)
        self.tokenizer = Tokenizer(self.word2ix)
        config = ""
        if model_name == "roberta":
            from bert.seq2seq.model.roberta_model import BertModel, BertConfig, BertLMPredictionHead
            config = BertConfig(len(self.word2ix))
            self.bert = BertModel(config)
            self.decoder = BertLMPredictionHead(
                config, self.bert.embeddings.word_embeddings.weight)
        elif model_name == "bert":
            from bert.seq2seq.model.bert_model import BertConfig, BertModel, BertLMPredictionHead
            config = BertConfig(len(self.word2ix))
            self.bert = BertModel(config)
            self.decoder = BertLMPredictionHead(
                config, self.bert.embeddings.word_embeddings.weight)
        else:
            raise Exception("model_name_err")

        self.hidden_dim = config.hidden_size
        self.vocab_size = config.vocab_size
 def __init__(self, vocab_path, target_size, model_name="roberta"):
     super(BertClsClassifier, self).__init__()
     self.word2ix = load_chinese_base_vocab(vocab_path)
     self.tokenizer = Tokenizer(self.word2ix)
     self.target_size = target_size
     config = ""
     if model_name == "roberta":
         from bert.seq2seq.model.roberta_model import BertModel, BertConfig
         config = BertConfig(len(self.word2ix))
         self.bert = BertModel(config)
     elif model_name == "bert":
         from bert.seq2seq.model.bert_model import BertConfig, BertModel
         config = BertConfig(len(self.word2ix))
         self.bert = BertModel(config)
     else :
         raise Exception("model_name_err")
         
     self.final_dense = nn.Linear(config.hidden_size, self.target_size)
class Seq2SeqModel(nn.Module):
    """
    """
    def __init__(self, vocab_path, model_name="roberta"):
        super(Seq2SeqModel, self).__init__()
        self.word2ix = load_chinese_base_vocab(vocab_path)
        self.tokenizer = Tokenizer(self.word2ix)
        config = ""
        if model_name == "roberta":
            from bert.seq2seq.model.roberta_model import BertModel, BertConfig, BertLMPredictionHead
            config = BertConfig(len(self.word2ix))
            self.bert = BertModel(config)
            self.decoder = BertLMPredictionHead(
                config, self.bert.embeddings.word_embeddings.weight)
        elif model_name == "bert":
            from bert.seq2seq.model.bert_model import BertConfig, BertModel, BertLMPredictionHead
            config = BertConfig(len(self.word2ix))
            self.bert = BertModel(config)
            self.decoder = BertLMPredictionHead(
                config, self.bert.embeddings.word_embeddings.weight)
        else:
            raise Exception("model_name_err")

        self.hidden_dim = config.hidden_size
        self.vocab_size = config.vocab_size

    def compute_loss(self, predictions, labels, target_mask):
        """
        target_mask : 句子a部分和pad部分全为0, 而句子b部分为1
        """
        predictions = predictions.view(-1, self.vocab_size)
        labels = labels.view(-1)
        target_mask = target_mask.view(-1).float()
        loss = nn.CrossEntropyLoss(ignore_index=0, reduction="none")
        # 通过mask 取消 pad 和句子a部分预测的影响
        return (loss(predictions, labels) *
                target_mask).sum() / target_mask.sum()

    def forward(self,
                input_tensor,
                token_type_id,
                position_enc=None,
                labels=None,
                device="cpu"):
        # 传入输入,位置编码,token type id ,还有句子a 和句子b的长度,注意都是传入一个batch数据
        # 传入的几个值,在seq2seq 的batch iter 函数里面都可以返回
        input_shape = input_tensor.shape
        batch_size = input_shape[0]
        seq_len = input_shape[1]
        # 构建特殊的mask
        ones = torch.ones((1, 1, seq_len, seq_len),
                          dtype=torch.float32,
                          device=device)
        a_mask = ones.tril()  # 下三角矩阵
        s_ex12 = token_type_id.unsqueeze(1).unsqueeze(2).float()
        s_ex13 = token_type_id.unsqueeze(1).unsqueeze(3).float()
        a_mask = (1.0 - s_ex12) * (1.0 - s_ex13) + s_ex13 * a_mask

        enc_layers, _ = self.bert(input_tensor,
                                  position_ids=position_enc,
                                  token_type_ids=token_type_id,
                                  attention_mask=a_mask,
                                  output_all_encoded_layers=True)
        squence_out = enc_layers[-1]  # 取出来最后一层输出

        predictions = self.decoder(squence_out)

        if labels is not None:
            # 计算loss
            # 需要构建特殊的输出mask 才能计算正确的loss
            # 预测的值不用取最后sep符号的结果 因此是到-1
            predictions = predictions[:, :-1].contiguous()
            target_mask = token_type_id[:, 1:].contiguous()
            loss = self.compute_loss(predictions, labels, target_mask)
            return predictions, loss
        else:
            return predictions

    def generate(self,
                 text,
                 out_max_length=80,
                 beam_size=1,
                 device="cpu",
                 is_poem=False):
        # 对 一个 句子生成相应的结果
        # 通过输出最大长度得到输入的最大长度,这里问题不大,如果超过最大长度会进行截断
        self.out_max_length = out_max_length
        input_max_length = max_length - out_max_length
        # print(text)
        token_ids, token_type_ids = self.tokenizer.encode(
            text, max_length=input_max_length)
        token_ids = torch.tensor(token_ids, device=device).view(1, -1)
        token_type_ids = torch.tensor(token_type_ids,
                                      device=device).view(1, -1)
        if is_poem:  # 古诗的beam-search稍有不同
            out_puts_ids = self.poem_beam_search(token_ids,
                                                 token_type_ids,
                                                 self.word2ix,
                                                 beam_size=beam_size,
                                                 device=device)
        else:
            out_puts_ids = self.beam_search(token_ids,
                                            token_type_ids,
                                            self.word2ix,
                                            beam_size=beam_size,
                                            device=device)

        # 解码 得到相应输出
        return self.tokenizer.decode(out_puts_ids)

    def poem_beam_search(self,
                         token_ids,
                         token_type_ids,
                         word2ix,
                         beam_size=1,
                         device="cpu"):
        """
        专门针对写诗的beam-search
        """
        ix2word = {v: k for k, v in word2ix.items()}
        sep_id = word2ix["[SEP]"]
        douhao_id = word2ix[","]  # 逗号
        juhao_id = word2ix["。"]  # 句号
        # 用来保存输出序列
        output_ids = [[]]
        word_list = {}  # 保证不重复生成
        last_chars = []
        yayun_save = -1
        # 用来保存累计得分
        output_scores = torch.zeros(token_ids.shape[0], device=device)
        flag = 0  # 判断第一次遇到逗号
        for step in range(self.out_max_length):
            scores = self.forward(token_ids, token_type_ids, device=device)
            if step == 0:
                # 重复beam-size次 输入ids
                token_ids = token_ids.view(1, -1).repeat(beam_size, 1)
                token_type_ids = token_type_ids.view(1,
                                                     -1).repeat(beam_size, 1)
            # 计算log 分值 (beam_size, vocab_size)
            logit_score = torch.log_softmax(scores, dim=-1)[:, -1]
            logit_score = output_scores.view(-1, 1) + logit_score  # 累计得分
            # 取topk的时候我们是展平了然后再去调用topk函数
            # 展平
            logit_score = logit_score.view(-1)
            hype_score, hype_pos = torch.topk(logit_score, beam_size)
            indice1 = hype_pos / scores.shape[-1]  # 行索引
            indice2 = hype_pos % scores.shape[-1]  # 列索引

            # 下面需要更新一下输出了
            new_hype_scores = []
            new_hype_ids = []
            next_chars = []  # 用来保存新预测出来的一个字符,继续接到输入序列后面,再去预测新字符
            index = 0
            for i_1, i_2, score in zip(indice1, indice2, hype_score):
                i_1 = i_1.item()
                i_2 = i_2.item()
                score = score.item()
                if i_2 != douhao_id and i_2 != juhao_id:
                    if i_2 not in word_list.keys():
                        word_list[i_2] = 1
                    else:
                        # 加惩罚
                        word_list[i_2] += 1
                        score -= 1 * word_list[i_2]
                        hype_score[index] -= 1 * word_list[i_2]
                if flag == 0 and i_2 == douhao_id and len(last_chars) > index:
                    flag += 1
                    word = ix2word[last_chars[index]]  # 找到上一个字符 记住其押韵情况
                    for i, each_yayun in enumerate(yayun_list):
                        if word in each_yayun:
                            yayun_save = i
                            break
                if i_2 == juhao_id and len(last_chars) > index:
                    word = ix2word[last_chars[index]]
                    # 找押韵 给奖励
                    if word in yayun_list[yayun_save]:
                        score += 5
                        hype_score[index] += 5
                    else:
                        score -= 2
                        hype_score[index] -= 2
                hype_id = output_ids[i_1] + [i_2]  # 保存所有输出的序列,而不仅仅是新预测的单个字符

                if i_2 == sep_id:
                    # 说明解码到最后了
                    if score == torch.max(hype_score).item():
                        return hype_id[:-1]
                    else:
                        # 完成一个解码了,但这个解码得分并不是最高,因此的话需要跳过这个序列
                        beam_size -= 1
                else:
                    new_hype_ids.append(hype_id)
                    new_hype_scores.append(score)
                    next_chars.append(i_2)  # 收集一下,需要连接到当前的输入序列之后
                index += 1

            output_ids = new_hype_ids

            last_chars = next_chars.copy()  # 记录一下上一个字符
            output_scores = torch.tensor(new_hype_scores,
                                         dtype=torch.float32,
                                         device=device)
            # 现在需要重新构造输入数据了,用上一次输入连接上这次新输出的字符,再输入bert中预测新字符
            # 截取,因为要过滤掉已经完成预测的序列
            token_ids = token_ids[:len(output_ids)].contiguous()
            token_type_ids = token_type_ids[:len(output_ids)].contiguous()

            next_chars = torch.tensor(next_chars,
                                      dtype=torch.long,
                                      device=device).view(-1, 1)
            next_token_type_ids = torch.ones_like(next_chars, device=device)
            # 连接
            token_ids = torch.cat((token_ids, next_chars), dim=1)
            token_type_ids = torch.cat((token_type_ids, next_token_type_ids),
                                       dim=1)
            if beam_size < 1:
                break

        # 如果达到最大长度的话 直接把得分最高的输出序列返回把
        return output_ids[output_scores.argmax().item()]

    def beam_search(self,
                    token_ids,
                    token_type_ids,
                    word2ix,
                    beam_size=1,
                    device="cpu"):
        """
        beam-search操作
        """
        sep_id = word2ix["[SEP]"]
        # 用来保存输出序列
        output_ids = [[]]
        # 用来保存累计得分
        output_scores = torch.zeros(token_ids.shape[0], device=device)
        for step in range(self.out_max_length):

            scores = self.forward(token_ids, token_type_ids, device=device)
            if step == 0:
                # 重复beam-size次 输入ids
                token_ids = token_ids.view(1, -1).repeat(beam_size, 1)
                token_type_ids = token_type_ids.view(1,
                                                     -1).repeat(beam_size, 1)
            # 计算log 分值 (beam_size, vocab_size)
            logit_score = torch.log_softmax(scores, dim=-1)[:, -1]
            logit_score = output_scores.view(-1, 1) + logit_score  # 累计得分
            # 取topk的时候我们是展平了然后再去调用topk函数
            # 展平
            logit_score = logit_score.view(-1)
            hype_score, hype_pos = torch.topk(logit_score, beam_size)
            indice1 = hype_pos / scores.shape[-1]  # 行索引
            indice2 = hype_pos % scores.shape[-1]  # 列索引

            # 下面需要更新一下输出了
            new_hype_scores = []
            new_hype_ids = []
            # 为啥有这个[],就是因为要过滤掉结束的序列。
            next_chars = []  # 用来保存新预测出来的一个字符,继续接到输入序列后面,再去预测新字符
            for i_1, i_2, score in zip(indice1, indice2, hype_score):
                i_1 = i_1.item()
                i_2 = i_2.item()
                score = score.item()

                hype_id = output_ids[i_1] + [i_2]  # 保存所有输出的序列,而不仅仅是新预测的单个字符

                if i_2 == sep_id:
                    # 说明解码到最后了
                    if score == torch.max(hype_score).item():
                        # 说明找到得分最大的那个序列了 直接返回即可
                        return hype_id[:-1]
                    else:
                        # 完成一个解码了,但这个解码得分并不是最高,因此的话需要跳过这个序列
                        beam_size -= 1
                else:
                    new_hype_ids.append(hype_id)
                    new_hype_scores.append(score)
                    next_chars.append(i_2)  # 收集一下,需要连接到当前的输入序列之后

            output_ids = new_hype_ids

            output_scores = torch.tensor(new_hype_scores,
                                         dtype=torch.float32,
                                         device=device)
            # 现在需要重新构造输入数据了,用上一次输入连接上这次新输出的字符,再输入bert中预测新字符
            # 截取,因为要过滤掉已经完成预测的序列
            token_ids = token_ids[:len(output_ids)].contiguous()
            token_type_ids = token_type_ids[:len(output_ids)].contiguous()

            next_chars = torch.tensor(next_chars,
                                      dtype=torch.long,
                                      device=device).view(-1, 1)
            next_token_type_ids = torch.ones_like(next_chars, device=device)
            # 连接
            token_ids = torch.cat((token_ids, next_chars), dim=1)
            token_type_ids = torch.cat((token_type_ids, next_token_type_ids),
                                       dim=1)
            if beam_size < 1:
                break

        # 如果达到最大长度的话 直接把得分最高的输出序列返回把
        return output_ids[output_scores.argmax().item()]