Esempio n. 1
0
    def test_zero_offset_bezier_second_deriv_mat(self):
        bezier_order = 4
        t = .5
        f = lambda x: bezier.zero_offset_bezier_second_deriv(x.reshape((bezier_order, 3)), t)

        J_numeric = numdifftools.Jacobian(f)(np.zeros(bezier_order*3))
        J_analytic = bezier.zero_offset_bezier_second_deriv_mat(t, bezier_order, 3)

        np.testing.assert_array_almost_equal(J_numeric, J_analytic)
Esempio n. 2
0
def run_position_only_spline_epipolar():
    #
    # Construct ground truth
    #
    num_landmarks = 50
    num_frames = 4
    num_imu_readings = 80
    bezier_degree = 4
    out = 'out/position_only_bezier3'

    print 'Num landmarks:', num_landmarks
    print 'Num frames:', num_frames
    print 'Num IMU readings:', num_imu_readings
    print 'Bezier curve degree:', bezier_degree

    if not os.path.isdir(out):
        os.mkdir(out)

    # Both splines should start at 0,0,0
    frame_times = np.linspace(0, .9, num_frames)
    imu_times = np.linspace(0, 1, num_imu_readings)

    true_rot_controls = np.random.rand(bezier_degree-1, 3)
    true_pos_controls = np.random.rand(bezier_degree-1, 3)

    true_landmarks = np.random.randn(num_landmarks, 3)

    true_positions = np.array([zero_offset_bezier(true_pos_controls, t) for t in frame_times])
    true_cayleys = np.array([zero_offset_bezier(true_rot_controls, t) for t in frame_times])
    true_rotations = map(cayley, true_cayleys)

    true_imu_cayleys = np.array([zero_offset_bezier(true_rot_controls, t) for t in imu_times])
    true_imu_rotations = map(cayley, true_imu_cayleys)

    true_gravity = normalized(np.random.rand(3)) * 9.8
    true_accel_bias = np.random.rand(3)
    true_global_accels = np.array([zero_offset_bezier_second_deriv(true_pos_controls, t) for t in imu_times])
    true_accels = [np.dot(R, a + true_gravity) + true_accel_bias
                   for R, a in zip(true_imu_rotations, true_global_accels)]

    true_uprojections = [[np.dot(R, x-p) for x in true_landmarks]
                         for R, p in zip(true_rotations, true_positions)]

    true_projections = [[normalized(zu) for zu in row] for row in true_uprojections]

    #
    # Construct symbolic versions of the above
    #
    position_offs = 0
    accel_bias_offset = position_offs + (bezier_degree-1)*3
    gravity_offset = accel_bias_offset + 3
    num_vars = gravity_offset + 3

    sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
    sym_pos_controls = np.reshape(sym_vars[position_offs:position_offs+(bezier_degree-1)*3], (bezier_degree-1, 3))
    sym_accel_bias = np.asarray(sym_vars[accel_bias_offset:accel_bias_offset+3])
    sym_gravity = np.asarray(sym_vars[gravity_offset:gravity_offset+3])

    true_vars = np.hstack((true_pos_controls.flatten(), true_accel_bias, true_gravity))
    assert len(true_vars) == len(sym_vars)

    residuals = []

    #
    # Accel residuals
    #
    print '\nAccel residuals:'
    for i in range(num_imu_readings):
        true_R = true_imu_rotations[i]
        sym_global_accel = zero_offset_bezier_second_deriv(sym_pos_controls, imu_times[i])
        sym_accel = np.dot(true_R, sym_global_accel + sym_gravity) + sym_accel_bias
        residual = sym_accel - true_accels[i]
        for i in range(3):
            print '  Degree of global accel = %d, local accel = %d, residual = %d' % \
                  (sym_global_accel[i].total_degree, sym_accel[i].total_degree, residual[i].total_degree)
        residuals.extend(residual)

    #
    # Epipolar residuals
    #
    p0 = np.zeros(3)
    R0 = np.eye(3)
    for i in range(1, num_frames):
        true_s = true_cayleys[i]
        true_R = cayley_mat(true_s)
        sym_p = zero_offset_bezier(sym_pos_controls, frame_times[i])
        sym_E = essential_matrix(R0, p0, true_R, sym_p)
        for j in range(num_landmarks):
            z = true_projections[i][j]
            z0 = true_projections[0][j]
            residual = np.dot(z, np.dot(sym_E, z0))
            residuals.append(residual)

    print '\nNum vars:', num_vars
    print 'Num residuals:', len(residuals)

    print '\nResiduals:', len(residuals)
    cost = Polynomial(num_vars)
    for r in residuals:
        cost += r*r
        print '  %f   (degree=%d, length=%d)' % (r(*true_vars), r.total_degree, len(r))

    print '\nCost:'
    print '  Num terms: %d' % len(cost)
    print '  Degree: %d' % cost.total_degree
    for term in cost:
        print '    ',term

    print '\nGradients:'
    gradients = cost.partial_derivatives()
    for gradient in gradients:
        print '  %d  (degree=%d, length=%d)' % (gradient(*true_vars), gradient.total_degree, len(gradient))

    jacobians = np.array([r.partial_derivatives() for r in residuals])

    J = evaluate_array(jacobians, *true_vars)

    U, S, V = np.linalg.svd(J)

    print '\nJacobian singular values:'
    print J.shape
    print S

    print '\nHessian eigenvalues:'
    H = np.dot(J.T, J)
    print H.shape
    print np.linalg.eigvals(H)

    null_space_dims = sum(np.abs(S) < 1e-5)
    print '\nNull space dimensions:', null_space_dims
    if null_space_dims > 0:
        for i in range(null_space_dims):
            print '  ',V[-i]

    null_monomial = (0,) * num_vars
    coordinate_monomials = [list(var.monomials)[0] for var in sym_vars]
    A, _ = matrix_form(gradients, coordinate_monomials)
    b, _ = matrix_form(gradients, [null_monomial])
    b = np.squeeze(b)

    AA, bb, kk = quadratic_form(cost)

    estimated_vars = np.squeeze(numpy.linalg.solve(AA*2, -b))

    print '\nEstimated:'
    print estimated_vars

    print '\nGround truth:'
    print true_vars

    print '\nError:'
    print np.linalg.norm(estimated_vars - true_vars)

    # Output to file
    write_polynomials(cost, out+'/cost.txt')
    write_polynomials(residuals, out+'/residuals.txt')
    write_polynomials(gradients, out+'/gradients.txt')
    write_polynomials(jacobians.flat, out+'/jacobians.txt')
    write_solution(true_vars, out+'/solution.txt')
Esempio n. 3
0
def run_spline_epipolar():
    # Construct symbolic problem
    num_landmarks = 10
    num_frames = 3
    num_imu_readings = 8
    bezier_degree = 4
    out = 'out/epipolar_accel_bezier3'

    if not os.path.isdir(out):
        os.mkdir(out)

    # Both splines should start at 0,0,0
    frame_times = np.linspace(0, .9, num_frames)
    imu_times = np.linspace(0, 1, num_imu_readings)

    true_rot_controls = np.random.rand(bezier_degree-1, 3)
    true_pos_controls = np.random.rand(bezier_degree-1, 3)

    true_landmarks = np.random.randn(num_landmarks, 3)
    true_cayleys = np.array([zero_offset_bezier(true_rot_controls, t) for t in frame_times])
    true_positions = np.array([zero_offset_bezier(true_pos_controls, t) for t in frame_times])

    true_accels = np.array([zero_offset_bezier_second_deriv(true_pos_controls, t) for t in imu_times])

    true_qs = map(cayley_mat, true_cayleys)
    true_rotations = map(cayley, true_cayleys)

    true_uprojections = [[np.dot(R, x-p) for x in true_landmarks]
                         for R,p in zip(true_rotations, true_positions)]

    true_projections = [[normalized(zu) for zu in row] for row in true_uprojections]

    p0 = true_positions[0]
    q0 = true_qs[0]
    for i in range(1, num_frames):
        p = true_positions[i]
        q = true_qs[i]
        E = essential_matrix(q0, p0, q, p)
        for j in range(num_landmarks):
            z = true_projections[i][j]
            z0 = true_projections[0][j]
            #print np.dot(z, np.dot(E, z0))

    # construct symbolic versions of the above
    s_offs = 0
    p_offs = s_offs + (bezier_degree-1)*3
    num_vars = p_offs + (bezier_degree-1)*3

    sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
    sym_rot_controls = np.reshape(sym_vars[s_offs:s_offs+(bezier_degree-1)*3], (bezier_degree-1, 3))
    sym_pos_controls = np.reshape(sym_vars[p_offs:p_offs+(bezier_degree-1)*3], (bezier_degree-1, 3))

    true_vars = np.hstack((true_rot_controls.flatten(),
                           true_pos_controls.flatten()))

    residuals = []

    # Accel residuals
    for i in range(num_imu_readings):
        sym_a = zero_offset_bezier_second_deriv(sym_pos_controls, imu_times[i])
        residual = sym_a - true_accels[i]
        residuals.extend(residual)

    # Epipolar residuals
    p0 = np.zeros(3)
    R0 = np.eye(3)
    for i in range(1, num_frames):
        sym_s = zero_offset_bezier(sym_rot_controls, frame_times[i])
        sym_p = zero_offset_bezier(sym_pos_controls, frame_times[i])
        sym_q = cayley_mat(sym_s)
        #sym_q = np.eye(3) * (1. - np.dot(sym_s, sym_s)) + 2.*skew(sym_s) + 2.*np.outer(sym_s, sym_s)
        sym_E = essential_matrix(R0, p0, sym_q, sym_p)
        for j in range(num_landmarks):
            z = true_projections[i][j]
            z0 = true_projections[0][j]
            residual = np.dot(z, np.dot(sym_E, z0))
            residuals.append(residual)

    print 'Num vars:',num_vars
    print 'Num residuals:',len(residuals)

    print 'Residuals:', len(residuals)
    cost = Polynomial(num_vars)
    for r in residuals:
        cost += r*r
        print '  %f   (degree=%d, length=%d)' % (r(*true_vars), r.total_degree, len(r))

    print '\nCost:'
    print '  Num terms: %d' % len(cost)
    print '  Degree: %d' % cost.total_degree

    print '\nGradients:'
    gradients = cost.partial_derivatives()
    for gradient in gradients:
        print '  %d  (degree=%d, length=%d)' % (gradient(*true_vars), gradient.total_degree, len(gradient))

    jacobians = [r.partial_derivatives() for r in residuals]

    J = np.array([[J_ij(*true_vars) for J_ij in row] for row in jacobians])

    U, S, V = np.linalg.svd(J)

    print '\nJacobian singular values:'
    print J.shape
    print S
    null_space_dims = sum(np.abs(S) < 1e-5)
    if null_space_dims > 0:
        print '\nNull space:'
        for i in null_space_dims:
            print V[-i]
            print V[-2]

    print '\nHessian eigenvalues:'
    H = np.dot(J.T, J)
    print H.shape
    print np.linalg.eigvals(H)

    # Output to file
    write_polynomials(cost, out+'/cost.txt')
    write_polynomials(residuals, out+'/residuals.txt')
    write_polynomials(gradients, out+'/gradients.txt')
    write_polynomials(jacobians, out+'/jacobians.txt')
    write_solution(true_vars, out+'/solution.txt')
def main():
    np.random.seed(1)

    #
    # Construct ground truth
    #
    num_frames = 5
    num_landmarks = 10
    num_imu_readings = 8
    bezier_degree = 3
    out = 'out/full_initialization'

    print 'Num landmarks:', num_landmarks
    print 'Num frames:', num_frames
    print 'Num IMU readings:', num_imu_readings
    print 'Bezier curve degree:', bezier_degree

    if not os.path.isdir(out):
        os.mkdir(out)

    # Both splines should start at 0,0,0
    frame_times = np.linspace(0, .9, num_frames)
    accel_times = np.linspace(0, 1, num_imu_readings)

    true_pos_controls = np.random.randn(bezier_degree-1, 3)
    true_orient_controls = np.random.randn(bezier_degree-1, 3)

    true_landmarks = np.random.randn(num_landmarks, 3)

    true_frame_positions = np.array([zero_offset_bezier(true_pos_controls, t) for t in frame_times])
    true_frame_cayleys = np.array([zero_offset_bezier(true_orient_controls, t) for t in frame_times])
    true_frame_orientations = np.array(map(cayley, true_frame_cayleys))

    true_imu_cayleys = np.array([zero_offset_bezier(true_orient_controls, t) for t in accel_times])
    true_imu_orientations = np.array(map(cayley, true_imu_cayleys))

    true_gravity_magnitude = 9.8
    true_gravity = normalized(np.random.rand(3)) * true_gravity_magnitude
    true_accel_bias = np.random.randn(3)
    true_global_accels = np.array([zero_offset_bezier_second_deriv(true_pos_controls, t) for t in accel_times])
    true_accels = np.array([np.dot(R, a + true_gravity) + true_accel_bias
                            for R, a in zip(true_imu_orientations, true_global_accels)])

    true_features = np.array([[normalized(np.dot(R, x-p)) for x in true_landmarks]
                              for R, p in zip(true_frame_orientations, true_frame_positions)])

    true_vars = np.hstack((true_pos_controls.flatten(),
                           true_orient_controls.flatten(),
                           true_accel_bias,
                           true_gravity))

    print np.min(true_features.reshape((-1, 3)), axis=0)
    print np.max(true_features.reshape((-1, 3)), axis=0)

    #
    # Add sensor noise
    #

    accel_noise = 0
    feature_noise = 0

    observed_features = true_features.copy()
    observed_accels = true_accels.copy()

    if accel_noise > 0:
        observed_accels += np.random.randn(*observed_accels.shape) * accel_noise

    if feature_noise > 0:
        observed_features += np.random.rand(*observed_features.shape) * feature_noise

    #
    # Construct symbolic versions of the above
    #
    num_position_vars = (bezier_degree-1)*3
    num_orientation_vars = (bezier_degree-1)*3
    num_accel_bias_vars = 3
    num_gravity_vars = 3

    block_sizes = [num_position_vars, num_orientation_vars, num_accel_bias_vars, num_gravity_vars]
    num_vars = sum(block_sizes)

    sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
    sym_pos_controls, sym_orient_controls, sym_accel_bias, sym_gravity = map(np.array, chop(sym_vars, block_sizes))

    sym_pos_controls = sym_pos_controls.reshape((-1, 3))
    sym_orient_controls = sym_orient_controls.reshape((-1, 3))

    assert len(true_vars) == len(sym_vars)

    #
    # Accel residuals
    #
    residuals = []

    print 'Accel residuals:'
    for i, t in enumerate(accel_times):
        sym_cayley = zero_offset_bezier(sym_orient_controls, t)
        sym_orient = cayley_mat(sym_cayley)
        sym_denom = cayley_denom(sym_cayley)
        sym_global_accel = zero_offset_bezier_second_deriv(sym_pos_controls, t)
        sym_accel = np.dot(sym_orient, sym_global_accel + sym_gravity) + sym_denom * sym_accel_bias
        residual = sym_accel - sym_denom * observed_accels[i]
        residuals.extend(residual)
        for r in residual:
            print '  %f   (degree=%d, length=%d)' % (r(*true_vars), r.total_degree, len(r))

    #
    # Epipolar residuals
    #

    print 'Epipolar residuals:'
    for i, ti in enumerate(frame_times):
        if i == 0: continue
        sym_Ri = cayley_mat(zero_offset_bezier(sym_orient_controls, ti))
        sym_pi = zero_offset_bezier(sym_pos_controls, ti)
        sym_E = essential_matrix_from_relative_pose(sym_Ri, sym_pi)
        for k in range(num_landmarks):
            z1 = observed_features[0][k]
            zi = observed_features[i][k]
            residual = np.dot(zi, np.dot(sym_E, z1))
            residuals.append(residual)
            r = residual
            print '  %f   (degree=%d, length=%d)' % (r(*true_vars), r.total_degree, len(r))

    #
    # Construct cost
    #

    cost = Polynomial(num_vars)
    for r in residuals:
        cost += r*r

    gradients = cost.partial_derivatives()

    print '\nNum vars:', num_vars
    print 'Num residuals:', len(residuals)
    print '\nCost:'
    print '  Num terms: %d' % len(cost)
    print '  Degree: %d' % cost.total_degree


    #
    # Output to file
    #
    write_polynomials(cost, out+'/cost.txt')
    write_polynomials(residuals, out+'/residuals.txt')
    write_polynomials(gradients, out+'/gradients.txt')
    write_solution(true_vars, out+'/solution.txt')

    np.savetxt(out+'/feature_measurements.txt', observed_features.reshape((-1, 3)))
    np.savetxt(out+'/accel_measurements.txt', observed_accels)
    np.savetxt(out+'/problem_size.txt', [num_frames, num_landmarks, num_imu_readings])
    np.savetxt(out+'/frame_times.txt', frame_times)
    np.savetxt(out+'/accel_times.txt', accel_times)

    np.savetxt(out+'/true_pos_controls.txt', true_pos_controls)
    np.savetxt(out+'/true_orient_controls.txt', true_orient_controls)
    np.savetxt(out+'/true_accel_bias.txt', true_accel_bias)
    np.savetxt(out+'/true_gravity.txt', true_gravity)


    return

    #
    # Plot
    #
    fig = plt.figure(figsize=(14,6))
    ax = fig.add_subplot(1, 2, 1, projection='3d')

    ts = np.linspace(0, 1, 100)
    true_ps = np.array([zero_offset_bezier(true_pos_controls, t) for t in ts])

    ax.plot(true_ps[:, 0], true_ps[:, 1], true_ps[:, 2], '-b')

    plt.show()
Esempio n. 5
0
def run_simulation_nonsymbolic():
    np.random.seed(1)

    #
    # Construct ground truth
    #
    num_frames = 5
    num_landmarks = 50
    num_imu_readings = 80
    bezier_degree = 4
    out = 'out/position_only_bezier3'

    print 'Num landmarks:', num_landmarks
    print 'Num frames:', num_frames
    print 'Num IMU readings:', num_imu_readings
    print 'Bezier curve degree:', bezier_degree

    if not os.path.isdir(out):
        os.mkdir(out)

    # Both splines should start at 0,0,0
    frame_times = np.linspace(0, .9, num_frames)
    accel_timestamps = np.linspace(0, 1, num_imu_readings)

    true_rot_controls = np.random.randn(bezier_degree-1, 3)
    true_pos_controls = np.random.randn(bezier_degree-1, 3)

    true_landmarks = np.random.randn(num_landmarks, 3)

    true_frame_cayleys = np.array([bezier.zero_offset_bezier(true_rot_controls, t) for t in frame_times])
    true_frame_orientations = np.array(map(cayley, true_frame_cayleys))
    true_frame_positions = np.array([bezier.zero_offset_bezier(true_pos_controls, t) for t in frame_times])

    true_imu_cayleys = np.array([bezier.zero_offset_bezier(true_rot_controls, t) for t in accel_timestamps])
    true_imu_orientations = np.array(map(cayley, true_imu_cayleys))

    true_gravity_magnitude = 9.8
    true_gravity = normalized(np.random.rand(3)) * true_gravity_magnitude
    true_accel_bias = np.random.randn(3)
    true_global_accels = np.array([bezier.zero_offset_bezier_second_deriv(true_pos_controls, t) for t in accel_timestamps])
    true_accels = np.array([np.dot(R, a + true_gravity) + true_accel_bias
                            for R, a in zip(true_imu_orientations, true_global_accels)])

    true_features = np.array([[normalized(np.dot(R, x-p)) for x in true_landmarks]
                              for R, p in zip(true_frame_orientations, true_frame_positions)])

    print np.min(true_features.reshape((-1, 3)), axis=0)
    print np.max(true_features.reshape((-1, 3)), axis=0)

    #
    # Add sensor noise
    #

    accel_noise = 0#0.001
    feature_noise = 0#0.01
    orientation_noise = 0.01

    observed_frame_orientations = true_frame_orientations.copy()
    observed_imu_orientations = true_imu_orientations.copy()
    observed_features = true_features.copy()
    observed_accels = true_accels.copy()

    if orientation_noise > 0:
        for i, R in enumerate(observed_frame_orientations):
            R_noise = SO3.exp(np.random.randn(3)*orientation_noise)
            observed_frame_orientations[i] = np.dot(R_noise, R)
        for i, R in enumerate(observed_imu_orientations):
            R_noise = SO3.exp(np.random.randn(3)*orientation_noise)
            observed_imu_orientations[i] = np.dot(R_noise, R)

    if accel_noise > 0:
        observed_accels += np.random.randn(*observed_accels.shape) * accel_noise

    if feature_noise > 0:
        observed_features += np.random.rand(*observed_features.shape) * feature_noise

    position_offs = 0
    accel_bias_offset = position_offs + (bezier_degree-1)*3
    gravity_offset = accel_bias_offset + 3

    true_vars = np.hstack((true_pos_controls.flatten(), true_accel_bias, true_gravity))

    #
    # Compute system non-symbolically
    #

    accel_r = evaluate_accel_residuals(np.zeros((bezier_degree-1, 3)), np.zeros(3), np.zeros(3),
                                       accel_timestamps, observed_accels, observed_imu_orientations)
    accel_j = evaluate_accel_jacobians(bezier_degree-1, accel_timestamps, observed_imu_orientations)

    epipolar_r = evaluate_epipolar_residuals(np.zeros((bezier_degree-1, 3)), frame_times,
                                             observed_frame_orientations, observed_features)
    epipolar_j = evaluate_epipolar_jacobians(bezier_degree-1, frame_times,
                                             observed_frame_orientations, observed_features)
    epipolar_j = np.hstack((epipolar_j, np.zeros((epipolar_j.shape[0], 6))))

    residual = np.hstack((accel_r, epipolar_r))
    jacobian = np.vstack((accel_j, epipolar_j))

    #
    # Solve
    #

    JtJ = np.dot(jacobian.T, jacobian)
    Jtr = np.dot(jacobian.T, residual)
    estimated_vars = np.squeeze(np.linalg.solve(JtJ, -Jtr))

    #
    # Unpack result and compute error
    #

    estimated_pos_controls = np.reshape(estimated_vars[position_offs:position_offs+(bezier_degree-1)*3], (bezier_degree-1, 3))
    estimated_positions = np.array([bezier.zero_offset_bezier(estimated_pos_controls, t) for t in frame_times])
    estimated_accel_bias = np.asarray(estimated_vars[accel_bias_offset:accel_bias_offset+3])
    estimated_gravity = np.asarray(estimated_vars[gravity_offset:gravity_offset+3])
    re_estimated_gravity = normalized(estimated_gravity) * true_gravity_magnitude

    print '\nEstimated:'
    print estimated_vars

    print '\nGround truth:'
    print true_vars

    print '\nTotal Error:', np.linalg.norm(estimated_vars - true_vars)
    print 'Accel bias error:', np.linalg.norm(estimated_accel_bias - true_accel_bias)
    print 'Gravity error:', np.linalg.norm(estimated_gravity - true_gravity)
    print '  True gravity:', true_gravity
    print '  Estimated gravity:', estimated_gravity
    print '  Estimated gravity magnitude:', np.linalg.norm(estimated_gravity)
    print '  Re-normalized gravity error: ', np.linalg.norm(re_estimated_gravity - true_gravity)
    for i in range(num_frames):
        print 'Frame %d error: %f' % (i, np.linalg.norm(estimated_positions[i] - true_frame_positions[i]))

    fig = plt.figure(figsize=(14,6))
    ax = fig.add_subplot(1, 2, 1, projection='3d')

    ts = np.linspace(0, 1, 100)
    true_ps = np.array([bezier.zero_offset_bezier(true_pos_controls, t) for t in ts])
    estimated_ps = np.array([bezier.zero_offset_bezier(estimated_pos_controls, t) for t in ts])

    ax.plot(true_ps[:, 0], true_ps[:, 1], true_ps[:, 2], '-b')
    ax.plot(estimated_ps[:, 0], estimated_ps[:, 1], estimated_ps[:, 2], '-r')

    plt.show()
Esempio n. 6
0
def run_simulation():
    np.random.seed(1)

    #
    # Construct ground truth
    #
    num_frames = 5
    num_landmarks = 50
    num_imu_readings = 80
    bezier_degree = 4
    out = 'out/position_only_bezier3'

    print 'Num landmarks:', num_landmarks
    print 'Num frames:', num_frames
    print 'Num IMU readings:', num_imu_readings
    print 'Bezier curve degree:', bezier_degree

    if not os.path.isdir(out):
        os.mkdir(out)

    # Both splines should start at 0,0,0
    frame_times = np.linspace(0, .9, num_frames)
    imu_times = np.linspace(0, 1, num_imu_readings)

    true_rot_controls = np.random.randn(bezier_degree-1, 3)
    true_pos_controls = np.random.randn(bezier_degree-1, 3)

    true_landmarks = np.random.randn(num_landmarks, 3)

    true_frame_cayleys = np.array([bezier.zero_offset_bezier(true_rot_controls, t) for t in frame_times])
    true_frame_orientations = np.array(map(cayley, true_frame_cayleys))
    true_frame_positions = np.array([bezier.zero_offset_bezier(true_pos_controls, t) for t in frame_times])

    true_imu_cayleys = np.array([bezier.zero_offset_bezier(true_rot_controls, t) for t in imu_times])
    true_imu_orientations = np.array(map(cayley, true_imu_cayleys))

    true_gravity_magnitude = 9.8
    true_gravity = normalized(np.random.rand(3)) * true_gravity_magnitude
    true_accel_bias = np.random.randn(3)
    true_global_accels = np.array([bezier.zero_offset_bezier_second_deriv(true_pos_controls, t) for t in imu_times])
    true_accels = np.array([np.dot(R, a + true_gravity) + true_accel_bias
                            for R, a in zip(true_imu_orientations, true_global_accels)])

    true_features = np.array([[normalized(np.dot(R, x-p)) for x in true_landmarks]
                              for R, p in zip(true_frame_orientations, true_frame_positions)])

    print np.min(true_features.reshape((-1, 3)), axis=0)
    print np.max(true_features.reshape((-1, 3)), axis=0)

    #
    # Add sensor noise
    #

    accel_noise = 0#0.001
    feature_noise = 0#0.01
    orientation_noise = 0.01

    observed_frame_orientations = true_frame_orientations.copy()
    observed_imu_orientations = true_imu_orientations.copy()
    observed_features = true_features.copy()
    observed_accels = true_accels.copy()

    if orientation_noise > 0:
        for i, R in enumerate(observed_frame_orientations):
            R_noise = SO3.exp(np.random.randn(3)*orientation_noise)
            observed_frame_orientations[i] = np.dot(R_noise, R)
        for i, R in enumerate(observed_imu_orientations):
            R_noise = SO3.exp(np.random.randn(3)*orientation_noise)
            observed_imu_orientations[i] = np.dot(R_noise, R)

    if accel_noise > 0:
        observed_accels += np.random.randn(*observed_accels.shape) * accel_noise

    if feature_noise > 0:
        observed_features += np.random.rand(*observed_features.shape) * feature_noise

    #
    # Construct symbolic versions of the above
    #
    position_offs = 0
    accel_bias_offset = position_offs + (bezier_degree-1)*3
    gravity_offset = accel_bias_offset + 3
    num_vars = gravity_offset + 3

    sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
    sym_pos_controls = np.reshape(sym_vars[position_offs:position_offs+(bezier_degree-1)*3], (bezier_degree-1, 3))
    sym_accel_bias = np.asarray(sym_vars[accel_bias_offset:accel_bias_offset+3])
    sym_gravity = np.asarray(sym_vars[gravity_offset:gravity_offset+3])

    true_vars = np.hstack((true_pos_controls.flatten(), true_accel_bias, true_gravity))
    assert len(true_vars) == len(sym_vars)

    #
    # Compute residuals
    #

    epipolar_residuals = evaluate_epipolar_residuals(sym_pos_controls, frame_times,
                                                     observed_frame_orientations, observed_features)
    accel_residuals = evaluate_accel_residuals(sym_pos_controls, sym_accel_bias, sym_gravity,
                                               imu_times, observed_accels, observed_imu_orientations)

    residuals = np.hstack((accel_residuals, epipolar_residuals))

    print '\nNum vars:', num_vars
    print 'Num residuals:', len(residuals)

    print '\nResiduals:', len(residuals)
    cost = Polynomial(num_vars)
    for r in residuals:
        cost += r*r
        print '  %f   (degree=%d, length=%d)' % (r(*true_vars), r.total_degree, len(r))

    print '\nCost:'
    print '  Num terms: %d' % len(cost)
    print '  Degree: %d' % cost.total_degree

    # Solve
    A, b, k = quadratic_form(cost)
    estimated_vars = np.squeeze(np.linalg.solve(A*2, -b))
    estimated_pos_controls = np.reshape(estimated_vars[position_offs:position_offs+(bezier_degree-1)*3], (bezier_degree-1, 3))
    estimated_positions = np.array([bezier.zero_offset_bezier(estimated_pos_controls, t) for t in frame_times])
    estimated_accel_bias = np.asarray(estimated_vars[accel_bias_offset:accel_bias_offset+3])
    estimated_gravity = np.asarray(estimated_vars[gravity_offset:gravity_offset+3])
    re_estimated_gravity = normalized(estimated_gravity) * true_gravity_magnitude

    print '\nEstimated:'
    print estimated_vars

    print '\nGround truth:'
    print true_vars

    print '\nTotal Error:', np.linalg.norm(estimated_vars - true_vars)
    print 'Accel bias error:', np.linalg.norm(estimated_accel_bias - true_accel_bias)
    print 'Gravity error:', np.linalg.norm(estimated_gravity - true_gravity)
    print '  True gravity:', true_gravity
    print '  Estimated gravity:', estimated_gravity
    print '  Estimated gravity magnitude:', np.linalg.norm(estimated_gravity)
    print '  Re-normalized gravity error: ', np.linalg.norm(re_estimated_gravity - true_gravity)
    for i in range(num_frames):
        print 'Frame %d error: %f' % (i, np.linalg.norm(estimated_positions[i] - true_frame_positions[i]))

    fig = plt.figure(figsize=(14,6))
    ax = fig.add_subplot(1, 2, 1, projection='3d')

    ts = np.linspace(0, 1, 100)
    true_ps = np.array([bezier.zero_offset_bezier(true_pos_controls, t) for t in ts])
    estimated_ps = np.array([bezier.zero_offset_bezier(estimated_pos_controls, t) for t in ts])

    ax.plot(true_ps[:, 0], true_ps[:, 1], true_ps[:, 2], '-b')
    ax.plot(estimated_ps[:, 0], estimated_ps[:, 1], estimated_ps[:, 2], '-r')

    plt.show()
Esempio n. 7
0
def accel_residual(pos_controls, accel_bias, gravity,
                   timestamp, accel_reading, orientation):
    global_accel = bezier.zero_offset_bezier_second_deriv(pos_controls, timestamp)
    apparent_accel = np.dot(orientation, global_accel + gravity) + accel_bias
    return apparent_accel - accel_reading
def predict_accel(pos_controls, orient_controls, accel_bias, gravity, t):
    orientation = cayley(zero_offset_bezier(orient_controls, t))
    global_accel = zero_offset_bezier_second_deriv(pos_controls, t)
    return np.dot(orientation, global_accel + gravity) + accel_bias
Esempio n. 9
0
 def test_zero_offset_second_derivative(self):
     w = np.array([1.7, 2.8, 1.4, -3.6])
     f = lambda t: bezier.zero_offset_bezier(w, t)
     g2 = numdifftools.Hessdiag(f)
     np.testing.assert_array_almost_equal(g2(.9),
                                          bezier.zero_offset_bezier_second_deriv(w, .9))