Esempio n. 1
0
    def test_minimize(self):
        print('Finding maximum likelihood')
        sampler_args = {
            "method":'Powell',
            "tol":None,
            "callback":None,
            "options":{'xtol':1E-4,'ftol':1E-4,'maxiter':None,'maxfev':None,'direc':None}
            }
        rdict=clean_pixels(self.maplike,run_minimize,**sampler_args)

        print("Results: ",)
        if rdict['ML_success'] :
            print(" Successful maximization")
        else :
            print(" Unsuccessful maximization")
        print(" Param truth: ",self.true_params)
        print(" Param ML: ",rdict['params_ML'])
        print("\n")
Esempio n. 2
0
    def test_emcee(self):
        # Calculate the p value and reduced chi squred for the true parameter values
        # in the 4 pixels above.

        sampler_args = {
            "nwalkers": 20,
            "nsamps": 500,
            "nburn": 100,
            "verbose": True
        }
        samples=clean_pixels(self.maplike,run_emcee,**sampler_args)['chains']
        ranges = lambda v: (v[1], v[2]-v[1], v[1]-v[0])
        params_mcmc = list(map(ranges, zip(*np.percentile(samples, [16, 50, 84], axis=0))))
        print("Results:", )
        print("Param medians: ", [p[0] for p in params_mcmc])
        print("Param spread, 14th to 84th percentile: ", [p[1] + p[2] for p in params_mcmc])
        labels = [r"$\beta_s$", r"$\beta_d$", r"$T_d$", r"$\beta_c$"]
        fig = corner.corner(samples, labels=labels, truths=self.true_params)
        plt.show()
        print("\n")
Esempio n. 3
0
    def test_fisher(self):
        print('Fisher sampler')
        sampler_args = {
            "ml_first": True,
            "ml_method":'Powell',
            "ml_options":{'xtol':1E-4,'ftol':1E-4,'maxiter':None,'maxfev':None,'direc':None}
            }
        rdict=clean_pixels(self.maplike,run_fisher,**sampler_args)
        covar=np.linalg.inv(rdict['fisher_m'])
        pbias=np.dot(covar,rdict['fisher_v'])

        print("Results: ",)
        if rdict['ML_success'] :
            print(" Successful maximization")
        else :
            print(" Unsuccessful maximization")
        print(" Param truth: ",self.true_params)
        print(" Param ML: ",rdict['params_cent'])
        print(" Param sigma: ",np.sqrt(np.diag(covar)))
        print(" Paramb bias: ",pbias)
        print("\n")
Esempio n. 4
0
         'var_prior_mean': var_prior_mean,
         'var_prior_width': var_prior_width,
         'var_prior_type': ['tophat' for b in var_pars]
     }, sky_true, instrument)
 if W_FWHM:
     ml_rw = mpl.MapLike(
         {
             'data': mps_d_rw[isim][:, ips, :],
             'noisevar': mps_nv[:, ips, :]**2,
             'fixed_pars': fixed_pars,
             'var_pars': var_pars,
             'var_prior_mean': var_prior_mean,
             'var_prior_width': var_prior_width,
             'var_prior_type': ['tophat' for b in var_pars]
         }, sky_true, instrument)
 rdict = clean_pixels(ml, run_minimize, **sampler_args)
 if VERBOSE > 1:
     print("  - %d function evaluations" % (rdict['ML_nev']))
 if W_FWHM:
     amps = ml_rw.get_amplitude_mean(rdict['params_ML']).reshape(
         [2, npix_here, 3])
     cova = np.linalg.inv(
         ml_rw.get_amplitude_covariance(rdict['params_ML'])).reshape(
             [2, npix_here, 3, 3])
 else:
     amps = ml.get_amplitude_mean(rdict['params_ML']).reshape(
         [2, npix_here, 3])
     cova = np.linalg.inv(
         ml.get_amplitude_covariance(rdict['params_ML'])).reshape(
             [2, npix_here, 3, 3])
 spec_o[isim, 0][ips] = rdict['params_ML'][0]
Esempio n. 5
0
def clean_maps(k, fn, sdir):
    testmap = hp.read_map(f'{fn}maps_sky_signal.fits', field=np.arange(12), verbose=False)
    Qs = testmap[::2, sat_mask>0]
    Us = testmap[1::2, sat_mask>0]
    skymaps = np.array([np.transpose(Qs), np.transpose(Us)])

    nu_ref_sync_p=23.
    beta_sync_fid=-3.
    curv_sync_fid=0.

    nu_ref_dust_p=353.
    beta_dust_fid=1.5
    temp_dust_fid=19.6

    spec_i=np.zeros([2, npix]);
    spec_o=np.zeros([2, npix]);
    amps_o=np.zeros([3, 2, npix]);
    cova_o=np.zeros([6, 2, npix]);

    bs=beta_sync_fid; bd=beta_dust_fid; td=temp_dust_fid; cs=curv_sync_fid;
    sbs=3.0; sbd=3.0; 
    spec_i[0]=bs; spec_i[1]=bd

    fixed_pars={'nu_ref_d':nu_ref_dust_p,'nu_ref_s':nu_ref_sync_p,'T_d':td}
    var_pars=['beta_s','beta_d']
    var_prior_mean=[bs,bd]
    var_prior_width=[sbs,sbd]

    sky_true=sky.SkyModel(['syncpl', 'dustmbb', 'unit_response'])
    nus = [27., 39., 93., 145., 225., 280.]
    bps=np.array([{'nu':np.array([n-0.5,n+0.5]),'bps':np.array([1])} for n in nus])
    instrument=ins.InstrumentModel(bps)
    ml=mpl.MapLike({'data': skymaps, 
                    'noisevar':np.ones_like(skymaps),
                    'fixed_pars':fixed_pars,
                    'var_pars':var_pars,
                    'var_prior_mean':var_prior_mean,
                    'var_prior_width':var_prior_width,
                    'var_prior_type':['tophat' for b in var_pars]}, 
                   sky_true, 
                   instrument)
    sampler_args = {
        "method" : 'Powell',
        "tol" : None,
        "callback" : None,
        "options" : {'xtol':1E-4,'ftol':1E-4,'maxiter':None,'maxfev':None,'direc':None}
        }
    rdict = clean_pixels(ml, run_minimize, **sampler_args)

    Sbar = ml.f_matrix(rdict['params_ML']).T
    Sninv = np.linalg.inv(np.dot(Sbar.T, Sbar))
    P = np.diag([1., 1., 0.])
    Q = np.identity(6) - Sbar.dot(P).dot(Sninv).dot(Sbar.T)
    reducedmaps = np.einsum('ab, cdb', Q, skymaps).reshape((12, -1))
    
    filled_maps = np.zeros((12, hp.nside2npix(nside))) 
    filled_maps[:, sat_mask>0] = reducedmaps
    
    np.savez(f'{sdir}{sname}_hybrid_params_{k}', params=rdict['params_ML'], Sbar=Sbar, Q=Q)
    hp.write_map(f'{sdir}{sname}_residualmaps_{k}.fits', filled_maps, overwrite=True)
    return