Esempio n. 1
0
 def test_computable_mvars(self):
     # for debugging we draw the sparse_powerset_graph of the actually present computers and mvars
     spsg = sparse_powerset_graph(bgc_md2_computers())
     f = plt.figure()
     ax = f.add_subplot(1, 1, 1)
     draw_ComputerSetMultiDiGraph_matplotlib(ax,
                                             spsg,
                                             bgc_md2_mvar_aliases(),
                                             bgc_md2_computer_aliases(),
                                             targetNode=frozenset(
                                                 {SmoothModelRun}))
     f.savefig("spgs.pdf")
     fig = plt.figure()
     draw_update_sequence(bgc_md2_computers(), max_it=8, fig=fig)
     fig.savefig("c1.pdf")
     # https://docs.python.org/3/library/unittest.html#distinguishing-test-iterations-using-subtests
     for mn in [
             "Potter1993GlobalBiogeochemicalCycles",
             "testVectorFree",
             "Williams2005GCB",  # just uncomment the one model you are working on and comment the others
     ]:
         with self.subTest(mn=mn):
             mvs = MVarSet.from_model_name(mn)
             mvars = mvs.computable_mvar_types()
             list_str = "\n".join(
                 ["<li> " + str(var.__name__) + " </li>" for var in mvars])
             print(list_str)
             for var in mvars:
                 print("########################################")
                 print(str(var.__name__))
                 print(mvs._get_single_mvar_value(var))
Esempio n. 2
0
 def test_from_model_name(self):
     # alternative constructor
     mvs= MVarSet.from_model_name("testVectorFree")
     res = frozenset(
         [
             InFluxesBySymbol,
             OutFluxesBySymbol,
             InternalFluxesBySymbol,
             TimeSymbol,
             StateVariableTuple,
         ]
     )
     self.assertSetEqual(mvs.provided_mvar_types, res)
Esempio n. 3
0
 def setUp(self):
     I_vl, I_vw = symbols("I_vl I_vw")
     vl, vw = symbols("vl vw")
     k_vl, k_vw = symbols("k_vl k_vw")
     self.provided_values=frozenset(
         [
             InFluxesBySymbol({vl: I_vl, vw: I_vw}),
             OutFluxesBySymbol({vl: k_vl * vl, vw: k_vw * vw}),
             InternalFluxesBySymbol({(vl, vw): k_vl * vl, (vw, vl): k_vw * vw}),
             TimeSymbol("t"),
             StateVariableTuple((vl, vw))
         ]
     )
     self.mvs=MVarSet(self.provided_values)
Esempio n. 4
0
 def setUp(self):
     self.mn = "Williams2005GCB"
     self.mvs = MVarSet.from_model_name(self.mn)
     self.ref_provided_mvars = frozenset([
         CompartmentalMatrix,
         TimeSymbol,
         StateVariableTuple,
         VegetationCarbonInputPartitioningTuple,
         VegetationCarbonInputScalar,
         InputTuple,
         NumericStartValueDict,
         NumericSimulationTimes,
         NumericParameterization,
         QuantityStartValueDict,
         QuantitySimulationTimes,
         QuantityParameterization,
         BibInfo,
         # QuantityModelRun,
         # QuantityParameterizedModel
     ])
Esempio n. 5
0
 def setUp(self):
     self.mn = "Castanho2013Biogeosciences"
     self.mvs = MVarSet.from_model_name(self.mn)
     self.ref_provided_mvars = frozenset([
         CompartmentalMatrix,
         TimeSymbol,
         StateVariableTuple,
         VegetationCarbonInputPartitioningTuple,
         VegetationCarbonInputScalar,
         VegetationCarbonStateVariableTuple,
         InputTuple,
         #                # NumericStartValueDict,
         #                # NumericSimulationTimes,
         #                 NumericParameterization,
         #                # QuantityStartValueDict,
         #                # QuantitySimulationTimes,
         #                # QuantityParameterization,
         #                BibInfo,
         #                # QuantityModelRun,
         #                # QuantityParameterizedModel
     ])
Esempio n. 6
0
    def setUp(self):
#        self.mn = ""
        self.mn = "ElMasri2013AgricForMeteorol"
#        self.mn = "Pavlick2013Biogeosciences"
#        self.mn = "Hilbert1991AnnBot"
#        self.mn = "Foley1996GBC"
#        self.mn = "Gu2010EcologicalComplexity"
#        self.mn = "Arora2005GCB-1"
#        self.mn = "King1993TreePhysiol"
#        self.mn = "Murty2000EcolModell"
#        self.mn = "Wang2010Biogeosciences"
#        self.mn = "DeAngelis2012TheorEcol"
#        self.mn = "Comins1993EA"
#        self.mn = "Running1988EcolModel"
#        self.mn = "Luo2012TE"
        self.mvs = MVarSet.from_model_name(self.mn)
        self.ref_provided_mvars = frozenset(
            [
                CompartmentalMatrix,
                TimeSymbol,
                StateVariableTuple,
                VegetationCarbonInputPartitioningTuple,
                VegetationCarbonInputScalar,
                VegetationCarbonStateVariableTuple,
                InputTuple,
#                # NumericStartValueDict,
#                # NumericSimulationTimes,
#                 NumericParameterization,
#                # QuantityStartValueDict,
#                # QuantitySimulationTimes,
#                # QuantityParameterization,
#                BibInfo,
#                # QuantityModelRun,
#                # QuantityParameterizedModel
            ]
        )
Esempio n. 7
0
    # "ElMasri2013AgricForMeteorol", #Paper shows results for soil carbon, and fig. 1 has litter and C pools, but the equations on table A2 (although very detailed) don't include them. There are also equations for Phenology, but they were not included in the source.py
    # "Scheiter2009GlobalChangeBiol", #No soil compartments
    # "Turgman2018EcologyLetters", #No soil compartments
    # "Haverd2016Biogeosciences", #No soil compartments
    # "Foley1996GBC", #No equations for litter and soil, but the figure has those compartments. See Markus’ Ibis.yaml?
    # "Gu2010EcologicalComplexity", #No equations for litter and soil, but the model description (CEVSA) mentions them
    # "King1993TreePhysiol", #No soil compartments
    # "DeAngelis2012TheorEcol", #No soil compartments (model based on G’Day, but removed litter and soil compartments)
    # "Potter1993GlobalBiogeochemicalCycles", #No equations for litter and soil, but the model description mentions them
    # "testVectorFree",
    # "Williams2005GCB",
    "CARDAMOM",
]
######################################################################
####### MODELS NOT TRANSLATED FROM .YAML TO SOURCE.PY
# Sitch2003GlobChangBiol: Not included because allocation (see pg 8) has no ODEs; biomass increment is allocated to the tissue pools while satisfying the functional balance difference equations...
# VanDerWerf1993PlantSoil: this model has no compartment for wood. It is used to simulate effect of nitrogen on growth of a grass (Dactylis glomerata L.).
# ICBM: same as Andren1997EA but less parameter sets
# Schimel2003SoilBiologyandBiochemistry.yaml, Schimel2003SoilBiologyandBiochemistry_rMM.yaml, Schimel2003SoilBiologyandBiochemistry_rMM_improved.yaml: Original model has no outputs, corrected by Holger 
# Ibis: includes soil, no metadata -added by Markus. Vero’s version: Foley
######################################################################
for mn in model_names:
    mvs = MVarSet.from_model_name(mn)
    mvars = mvs.computable_mvar_types()
    list_str = "\n".join(["<li> " + str(var.__name__) + " </li>" for var in mvars])
    print(list_str)
    for var in mvars:
        print("########################################")
        print(str(var.__name__))
        print(mvs._get_single_mvar_value(var))
Esempio n. 8
0
mvs = MVarSet({
    BibInfo(# Bibliographical Information
        name="DALEC",
        longName="Data Assimilation Linked Ecosystem model", 
        version="1",
        entryAuthor="Verónika Ceballos-Núñez",
        entryAuthorOrcid="0000-0002-0046-1160",
        entryCreationDate="16/9/2016",
        doi="10.1111/j.1365-2486.2004.00891.x",
        further_references=BibInfo(doi="10.1016/j.agrformet.2009.05.002"),
        #  Also from PDF in Reflex experiment
        sym_dict=sym_dict
        
    ),
    #
    # the following variables constitute the compartmental system:
    #
    A,  # the overall compartmental matrix
    Input,  # the overall imput
    t,  # time for the complete system
    x,  # state vector of the the complete system
    #
    # the following variables constitute a numerical model run :
    #
    np1,
    nsv1,
    ntimes,
    # Again the model run could be created explicitly (in several ways)
    #
    # the following variables constitute a quantiy model run :
    #
    qp1,
    qsv1,
    qtimes,
    # Again the model run could be created explicitly (in several ways)
    #
    # the following variables give a more detailed view with respect to
    # carbon and vegetation variables
    # This imformation can be used to extract the part
    # of a model that is concerned with carbon and vegetation
    # in the case of this model all of the state variables
    # are vegetation and carbon related but for an ecosystem model
    # for different elements there could be different subsystems
    # e.g. consisting of  Nitrogen Soil state variables
    #
    # vegetation carbon
    VegetationCarbonInputScalar(u),
    # vegetation carbon partitioning.
    VegetationCarbonInputPartitioningTuple(b),
    VegetationCarbonStateVariableTuple((C_f, C_lab, C_w, C_r))
})
Esempio n. 9
0
vl, vw = symbols("vl vw")
k_vl, k_vw = symbols("k_vl k_vw")

# the keys of the internal flux dictionary are tuples (source_pool,target_pool)

# srm:SmoothReservoirModel
# srm=SmoothReservoirModel.from_state_variable_indexed_fluxes(
#     in_fluxes
#    ,out_fluxes
#    ,internal_fluxes
# )

#specialVars = {
mvs = MVarSet({
    InFluxesBySymbol({
        vl: I_vl,
        vw: I_vw
    }),
    OutFluxesBySymbol({
        vl: k_vl * vl,
        vw: k_vw * vw
    }),
    InternalFluxesBySymbol({
        (vl, vw): k_vl * vl,
        (vw, vl): k_vw * vw
    }),
    TimeSymbol("t"),
    StateVariableTuple((vl, vw))
    # ,'SmoothReservoirModel':srm
})
Esempio n. 10
0
    def test_numeric_input_tuple(self):
        # setup the paths to the testdata
        cable_out_path = Path(
            '/home/data/cable-data/example_runs/parallel_1901_2004_with_spinup/output/new4'
        )
        # cable_data_set = cH.cable_ds(cable_out_path)
        time_slice = slice(0, None)
        landpoint_slice = slice(1590, 1637)  # cheated
        # landpoint_slice = slice(None,None)
        # time_slice=slice(None,None,None)

        zarr_cache_path = cP.slice_dir_path(
            cable_out_path,
            sub_dir_trunk="zarr_mm11",
            time_slice=time_slice,
            landpoint_slice=landpoint_slice,
        )
        if "cable_data_set" not in dir():
            cable_data_set = cH.cable_ds(cable_out_path)
        args = {
            "cable_data_set": cable_data_set,
            "zarr_cache_path": zarr_cache_path,
            "landpoint_slice": landpoint_slice,
            "time_slice": time_slice,
            #'batch_size': 128,
            "batch_size": 12,
            #'rm': True
        }

        x_org_iveg = cH.cacheWrapper(cC.x_org_iveg, **args)
        time = cH.cacheWrapper(cC.time, **args)

        patches, landpoints = cC.all_pools_vary_cond_nz(**args)
        pcs = patches.compute()
        lpcs = landpoints.compute()
        pcs, lpcs
        p = Path('plots')
        p.mkdir(exist_ok=True)
        ind = 0  # first pair that has a nonconstant solution for
        lp = lpcs[ind]
        patch = lpcs[ind]

        # get the symbolic represantation from the database
        mvs = self.mvs

        # define some stuff to extend it with

        def default(t):
            return 1

        leaf = Symbol('leaf')
        fine_root = Symbol('fine_root')
        Npp = Function("Npp")
        bvec_leaf = Function("bvec_leaf")
        bvec_fine_root = Function("bvec_fine_root")
        xk_leaf_cold = Function("xk_leaf_cold")
        xk_leaf_dry = Function("xk_leaf_dry")
        kleaf = Function("kleaf")
        kfroot = Function("kfroot")
        # bvec_wood = Function("bvec_wood")

        np1 = NumericParameterization(
            par_dict={},
            func_dict=frozendict({
                Npp: default,
                bvec_fine_root: default,
                bvec_leaf: default,
                xk_leaf_cold: default,
                kleaf: default,
                kfroot: default,
                xk_leaf_dry: default,
            }),
        )
        nsv1 = NumericStartValueDict({leaf: 0.3, fine_root: 3.96})
        ntimes1 = NumericSimulationTimes(np.linspace(0, 1, 11))

        # extend the symbolice version with the new stuff
        pvs = mvs.provided_mvar_values
        #from IPython import embed; embed()
        pvs1 = pvs.union(frozenset({np1, nsv1, ntimes1}))
        mvs1 = MVarSet(pvs1)

        x = mvs1.get_StateVariableTuple()
        Input = mvs1.get_InputTuple()
        #B = mvs1.get_CompartmentalMatrix()
        sym_times = mvs1.get_NumericSimulationTimes()
        sol_smooth = mvs1.get_NumericSolutionArray()

        comp_slice = slice(0, 100)
        n = sol_smooth.shape[1]
        fig = plt.figure()
        for pool in range(n):
            ax = fig.add_subplot(n + 1, 1, 2 + pool)
            title = "\$" + latex(x[pool]) + "\$"
            #ax.plot(
            #    sym_times[comp_slice],
            #    sol_smooth[comp_slice, pool],
            #    color='r'
            #)
            ax.plot(time[comp_slice],
                    x_org_iveg[comp_slice, pool, patch, lp],
                    color='b')
            fontsize = 10
            ax.set_title(title, fontsize=fontsize)

        fig.savefig('solution.pdf')
Esempio n. 11
0
 def setUp(self):
     self.mn = "cable_all"
     self.mvs = MVarSet.from_model_name(self.mn)
Esempio n. 12
0
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.10.2
#   kernelspec:
#     display_name: Python 3
#     language: python
#     name: python3
# ---

from IPython.display import HTML
from bgc_md2.resolve.mvars import CompartmentalMatrix, StateVariableTuple, VegetationCarbonInputPartitioningTuple,VegetationCarbonInputTuple
from bgc_md2.resolve.MVarSet import MVarSet
display(HTML("<style>.container { width:100% !important; }</style>"))
mvs_mm =  MVarSet.from_model_name('TECOmm')

import igraph
g=igraph.Graph(directed=True)

in_fluxes, internal_fluxes, out_fluxes = mvs_mm.get_InFluxesBySymbol(),mvs_mm.get_InternalFluxesBySymbol(),mvs_mm.get_OutFluxesBySymbol()

in_flux_targets, out_flux_sources = [[str(k) for k in d.keys()] for d in (in_fluxes, out_fluxes)]

internal_connections = [(str(s),str(t)) for s,t in internal_fluxes.keys()]


# +
G=igraph.Graph(directed=True)
for i,s in enumerate(mvs_mm.get_StateVariableTuple()):
    G.add_vertex(str(s))# the name attribute is set automatically
Esempio n. 13
0
        {
            VegetationCarbonInputPartitioningTuple,
            NumericSolutionArray
        }
    ),
    # explicit_exclude_models=frozenset({'CARDAMOM'})
)
li    


# From these we chose two models to investigate more thoroughly.
# We load the first one with a helper function and the second by using standard python tools.
#
#

mvs_Luo =  MVarSet.from_model_name('Luo2012TE')
# or using a moduel import
from bgc_md2.models.TECO.source import mvs as mvs_TECO

# # ComputabilityGraphs
# Now that we actually have two records (MVarSets) we can exlore what we can comptute from them.
# Just add a dot "." behind the variable in the next cell and press the tab key!
#

mvs_TECO

# The options provided by the python interpreter are actually the result of a graph computation.
# To see all computable mvars of the TECO MVarSet execute the next cell!
#

mvs_TECO.computable_mvar_names