Esempio n. 1
0
def _get_cells_kernel(ij, lev, cc, bounds):
    i, j = ij
    cells = defaultdict(dict)
    for bounds_xy, bounds_t in bounds:
        cc._get_cells_recursive(cells, bounds_xy, bounds_t, i, j, lev,
                                bhpix.pix_size(lev))
    yield cells
Esempio n. 2
0
	def _get_cells_recursive(self, outcells, data_path, bounds_xy, bounds_t, pattern, x = 0., y = 0.):
		""" Helper for get_cells(). See documentation of
		    get_cells() for usage
		"""
		lev  = bhpix.get_pixel_level(x, y)
		dx   = bhpix.pix_size(lev)

		# Check for nonzero overlap
		box  = self._cell_bounds_xy(x, y, dx)
		bounds_xy = bounds_xy & box
		if not bounds_xy:
			return

		# Check if the cell directory exists (give up if it doesn't)
		path = data_path + '/' + self._path_to_cell_base_xy(x, y, lev)
		if not os.path.isdir(path):
			return

		# If re reached the bottom of the hierarchy
		if self._is_valid_cell_xy(x, y):
			# Get the cell_ids for leaf cells matching pattern
			xybounds = None if(bounds_xy.area() == box.area()) else bounds_xy
			sibling_cells = list(self._get_temporal_siblings(x, y, path, pattern))
			for cell_id in sibling_cells:
				# Filter on time, add bounds
				x, y, t = self._xyt_from_cell_id(cell_id)

				if t != self.t0:
					# Cut on the time component
					tival = intervalset((t, t+self.dt))
					tolap = bounds_t & tival
					if len(tolap):
						(l, r) = tolap[-1]				# Get the right-most interval component
						if l == r == t+self.dt:				# Is it a single point?
							tolap = intervalset(*tolap[:-1])	# Since objects in this cell have time in [t, t+dt), remove the t+dt point
	
					if len(tolap) == 0:					# No overlap between the intervals -- skip this cell
						continue;
	
					# Return None if the cell is fully contained in the requested interval
					tbounds = None if tival == tolap else tolap
				else:
					# Static cell
					tbounds = bounds_t
					assert len(sibling_cells) == 1, "There can be only one static cell (cell_id=%s)" % cell_id

				# Add to output
				if tbounds is None:
					outcells[cell_id][xybounds] = None
				elif xybounds not in outcells[cell_id]:
					outcells[cell_id][xybounds] = tbounds
				elif outcells[cell_id][xybounds] is not None:
					outcells[cell_id][xybounds] |= tbounds
		else:
			# Recursively subdivide the four subpixels
			dx = dx / 2
			for d in np.array([(0.5, 0.5), (-0.5, 0.5), (-0.5, -0.5), (0.5, -0.5)]):
				(x2, y2) = (x, y) + dx*d
				self._get_cells_recursive(outcells, data_path, bounds_xy & box, bounds_t, pattern, x2, y2)
Esempio n. 3
0
    def _scan_recursive(self, bmap, lev=0, x=0., y=0.):
        # Check if the cell directory exists in any allowable snapshot
        # Snapshots are ordered newest-to-oldest, so we can avoid touching the
        # siblings of older snapshots if they exists in newer ones
        dx = bhpix.pix_size(lev)

        # .../snapshots/XXXXXX/tablets/-0.5+0.5/..../
        paths = [(snapid, '%s/tablets/%s' %
                  (snapshot_path, self._pix._path_to_cell_base_xy(x, y, lev)))
                 for (snapid, snapshot_path) in self.__snapshots]
        paths = [(snapid, path) for (snapid, path) in paths
                 if os.path.isdir(path)]  # Keep only those that exist

        if not len(paths):  # Dead end
            return

        if lev != self._pix.level:
            # Recursively subdivide the four subpixels
            dx = dx / 2
            for d in np.array([(0.5, 0.5), (-0.5, 0.5), (-0.5, -0.5),
                               (0.5, -0.5)]):
                (x2, y2) = (x, y) + dx * d
                self._scan_recursive(bmap, lev + 1, x2, y2)
        else:
            # Leaf
            w2 = bhpix.width(lev) // 2
            i, j = (x // dx + w2, y // dx + w2)

            # Collect the data we have, and add them to the set of cells that exist
            siblings = dict()
            for snapid, path in paths:
                for tcell, fn in self._get_temporal_siblings(
                        path, self.__pattern):
                    if tcell not in siblings:  # Add only if there's no newer version
                        # check if there are any non-cached data in here
                        try:
                            with tables.open_file(fn) as fp:
                                has_data = len(fp.root.main.table) > 0
                        except tables.exceptions.NoSuchNodeError:
                            has_data = False

                        siblings[tcell] = snapid, has_data

            # Add any relevant pre-existing data
            i = int(i)
            j = int(j)
            offs = self._bmaps[self._pix.level][i, j]
            if offs != 0:
                for mjd, snapid, _, next in iter_siblings(self._leaves, offs):
                    if mjd not in siblings:
                        siblings[mjd] = snapid, next > 0

            # Add this list to bitmap
            assert bmap[i, j] == 0
            bmap[i,
                 j] = [(tcell, snapid, self._pix._cell_id_for_xyt(x, y, tcell),
                        has_data)
                       for (tcell, (snapid, has_data)) in siblings.iteritems()]
Esempio n. 4
0
	def _scan_recursive(self, bmap, lev=0, x=0., y=0.):
		# Check if the cell directory exists in any allowable snapshot
		# Snapshots are ordered newest-to-oldest, so we can avoid touching the
		# siblings of older snapshots if they exists in newer ones
		dx = bhpix.pix_size(lev)

		# .../snapshots/XXXXXX/tablets/-0.5+0.5/..../
		paths = [ (snapid, '%s/tablets/%s' % (snapshot_path,  self._pix._path_to_cell_base_xy(x, y, lev))) for (snapid, snapshot_path) in self.__snapshots ]
		paths = [ (snapid, path) for (snapid, path) in paths if os.path.isdir(path) ]	# Keep only those that exist

		if not len(paths): # Dead end
			return

		if lev != self._pix.level:
			# Recursively subdivide the four subpixels
			dx = dx / 2
			for d in np.array([(0.5, 0.5), (-0.5, 0.5), (-0.5, -0.5), (0.5, -0.5)]):
				(x2, y2) = (x, y) + dx*d
				self._scan_recursive(bmap, lev+1, x2, y2)
		else:
			# Leaf
			w2 = bhpix.width(lev) // 2
			i, j = (x // dx + w2, y // dx + w2)

			# Collect the data we have, and add them to the set of cells that exist
			siblings = dict()
			for snapid, path in paths:
				for tcell, fn in self._get_temporal_siblings(path, self.__pattern):
					if tcell not in siblings: # Add only if there's no newer version
						# check if there are any non-cached data in here
						try:
							with tables.openFile(fn) as fp:
								has_data = len(fp.root.main.table) > 0
						except tables.exceptions.NoSuchNodeError:
							has_data = False
						
						siblings[tcell] = snapid, has_data

			# Add any relevant pre-existing data
			offs = self._bmaps[self._pix.level][i, j]
			if offs != 0:
				for mjd, snapid, _, next in iter_siblings(self._leaves, offs):
					if mjd not in siblings:
						siblings[mjd] = snapid, next > 0

			# Add this list to bitmap
			assert bmap[i, j] == 0
			bmap[i, j] = [ (tcell, snapid, self._pix._cell_id_for_xyt(x, y, tcell), has_data) for (tcell, (snapid, has_data)) in siblings.iteritems() ]
Esempio n. 5
0
	def _cell_bounds_xy(self, x, y, dx = None):
		""" Return a bounding polygon for a given
		    cell center x,y
		"""
		if dx is None:
			lev  = bhpix.get_pixel_level(x, y)
			dx   = bhpix.pix_size(lev)
			##dx = bhpix.pix_size(self.level)

		bounds = Polygon.Shapes.Rectangle(dx)
		bounds.shift(x - 0.5*dx, y - 0.5*dx);

		if fabs(fabs(x) - fabs(y)) == 0.5:
			# If it's a "halfpixel", return a triangle
			# by clipping agains the sky
			bounds &= bn.ALLSKY

		return bounds
Esempio n. 6
0
    def _cell_bounds_xy(self, x, y, dx=None):
        """ Return a bounding polygon for a given
		    cell center x,y
		"""
        if dx is None:
            lev = bhpix.get_pixel_level(x, y)
            dx = bhpix.pix_size(lev)
            ##dx = bhpix.pix_size(self.level)

        bounds = Polygon.Shapes.Rectangle(dx)
        bounds.shift(x - 0.5 * dx, y - 0.5 * dx)

        if fabs(fabs(x) - fabs(y)) == 0.5:
            # If it's a "halfpixel", return a triangle
            # by clipping agains the sky
            bounds &= bn.ALLSKY

        return bounds
Esempio n. 7
0
    def _update(self, table_path, snapid):
        # Find what we already have loaded
        prevsnap = np.max(
            self._leaves['snapid']) if len(self._leaves) > 2 else None
        assert prevsnap <= snapid, "Cannot update a catalog to an older snapshot"

        ## Enumerate all existing snapshots older or equal to snapid, and newer than prevsnap, and sort them, newest first
        self.__snapshots = sorted(isnapshots(table_path,
                                             first=prevsnap,
                                             last=snapid,
                                             no_first=True,
                                             return_path=True),
                                  reverse=True)

        # Add the snapid snapshot by hand, if not in the list of committed snapshots
        # (because it is permissible to update to a yet-uncommitted snapshot)
        if len(self.__snapshots) == 0 or self.__snapshots[0][0] != snapid:
            self.__snapshots.insert(
                0, (snapid, get_snapshot_path(table_path, snapid)))

        # Recursively scan, in parallel
        w = bhpix.width(self._pix.level)
        bmap = np.zeros((w, w), dtype=object)

        lev = min(4, self._pix.level)
        dx = bhpix.pix_size(lev)
        i, j = np.indices(
            (2**lev, 2**lev)).reshape(2, -1)  # List of i,j coordinates
        w2 = 1 << (lev - 1)
        x, y = (i - w2 + 0.5) * dx, (j - w2 + 0.5) * dx

        pool = pool2.Pool()
        for bmap2 in pool.imap_unordered(zip(x, y), _scan_recursive_kernel,
                                         (lev, self)):
            assert not np.any((bmap != 0) & (bmap2 != 0))
            mask = bmap2 != 0
            bmap[mask] = bmap2[mask]
        del pool

        # Add data about cells that were not touched by this update
        bmap_cur = self._bmaps[self._pix.level]
        mask_cur = (bmap_cur != 0) & (bmap == 0)
        lists_cur = [[(mjd, snapid, cell_id, next > 0)
                      for (mjd, snapid, cell_id,
                           next) in iter_siblings(self._leaves, offs)]
                     for offs in bmap_cur[mask_cur]]
        try:
            bmap[mask_cur] = lists_cur
        except ValueError:
            # Workaround for a numpy 1.6.0 bug (http://projects.scipy.org/numpy/ticket/1870)
            coords = np.mgrid[
                0:w, 0:
                w][:,
                   mask_cur].T  # List of coordinates corresponding to True entries in mask_cur
            for (ii, jj), vv in izip(coords, lists_cur):
                bmap[ii, jj] = vv

        # Repack the temporal siblings to a single numpy array, emulating a linked list
        lists = bmap[bmap != 0]
        llens = np.fromiter((len(l) for l in lists), dtype=np.int32)
        leaves = np.empty(np.sum(llens) + 2,
                          dtype=[('mjd', 'f4'), ('snapid', object),
                                 ('cell_id', 'u8'), ('next', 'i4')])
        leaves[:2] = [
            (np.inf, 0, 0, END_MARKER)
        ] * 2  # We start with two dummy entries, so that offs=0 and 1 are invalid and can take other meanings.
        seen = dict()
        at = 2
        for l in lists:
            last_i = len(l) - 1
            for (i, (mjd, snapid, cell_id, has_data)) in enumerate(l):
                # Make equal strings refer to the same string object
                try:
                    snapid = seen[snapid]
                except KeyError:
                    seen[snapid] = snapid

                next = 1 if has_data else -1
                if i == last_i:
                    next *= END_MARKER

                leaves[at] = (mjd, snapid, cell_id, next)
                at += 1

        # Construct bmap that has offsets to head of the linked list of siblings
        offs = np.zeros(len(llens), dtype=np.int64)
        offs[1:] = np.cumsum(llens)[:-1]
        offs += 2  # Pointers to beginnings of individual lists
        assert np.all(abs(leaves['next'][offs - 1]) == END_MARKER)
        obmap = np.zeros(bmap.shape, dtype=np.int32)
        obmap[bmap != 0] = offs

        # Recompute mipmaps
        bmaps = self._compute_mipmaps(obmap)

        return bmaps, leaves
Esempio n. 8
0
def _get_cells_kernel(ij, lev, cc, bounds):
	i, j = ij
       	cells = defaultdict(dict)
	for bounds_xy, bounds_t in bounds:
		cc._get_cells_recursive(cells, bounds_xy, bounds_t, i, j, lev, bhpix.pix_size(lev))
	yield cells
Esempio n. 9
0
	def _update(self, table_path, snapid):
		# Find what we already have loaded
		prevsnap = np.max(self._leaves['snapid']) if len(self._leaves) > 2 else None
		assert prevsnap <= snapid, "Cannot update a catalog to an older snapshot"

		## Enumerate all existing snapshots older or equal to snapid, and newer than prevsnap, and sort them, newest first
		self.__snapshots = sorted(isnapshots(table_path, first=prevsnap, last=snapid, no_first=True, return_path=True), reverse=True)

		# Add the snapid snapshot by hand, if not in the list of committed snapshots
		# (because it is permissible to update to a yet-uncommitted snapshot)
		if len(self.__snapshots) == 0 or self.__snapshots[0][0] != snapid:
			self.__snapshots.insert(0, (snapid, get_snapshot_path(table_path, snapid)))

		# Recursively scan, in parallel
		w = bhpix.width(self._pix.level)
		bmap = np.zeros((w, w), dtype=object)

		lev = min(4, self._pix.level)
		dx = bhpix.pix_size(lev)
		i, j = np.indices((2**lev,2**lev)).reshape(2, -1) # List of i,j coordinates
		w2 = 1 << (lev-1)
		x, y =  (i - w2 + 0.5)*dx, (j - w2 + 0.5)*dx

		pool = pool2.Pool()
		for bmap2 in pool.imap_unordered(zip(x, y), _scan_recursive_kernel, (lev, self)):
			assert not np.any((bmap != 0) & (bmap2 != 0))
			mask = bmap2 != 0
			bmap[mask] = bmap2[mask]
		del pool

		# Add data about cells that were not touched by this update
		bmap_cur = self._bmaps[self._pix.level]
		mask_cur = (bmap_cur != 0) & (bmap == 0)
		lists_cur = [ [ (mjd, snapid, cell_id, next > 0) for (mjd, snapid, cell_id, next) in iter_siblings(self._leaves, offs) ] for offs in bmap_cur[mask_cur] ]
		try:
			bmap[mask_cur] = lists_cur
		except ValueError:
			# Workaround for a numpy 1.6.0 bug (http://projects.scipy.org/numpy/ticket/1870)
			coords = np.mgrid[0:w,0:w][:,mask_cur].T	# List of coordinates corresponding to True entries in mask_cur
			for (ii, jj), vv in izip(coords, lists_cur):
				bmap[ii, jj] = vv

		# Repack the temporal siblings to a single numpy array, emulating a linked list
		lists = bmap[bmap != 0]
		llens = np.fromiter( (len(l) for l in lists), dtype=np.int32 )
		leaves = np.empty(np.sum(llens)+2, dtype=[('mjd', 'f4'), ('snapid', object), ('cell_id', 'u8'), ('next', 'i4')])
		leaves[:2] = [(np.inf, 0, 0, END_MARKER)]*2	# We start with two dummy entries, so that offs=0 and 1 are invalid and can take other meanings.
		seen = dict()
		at = 2
		for l in lists:
			last_i = len(l) - 1
			for (i, (mjd, snapid, cell_id, has_data)) in enumerate(l):
				# Make equal strings refer to the same string object
				try:
					snapid = seen[snapid]
				except KeyError:
					seen[snapid] = snapid

				next = 1 if has_data else -1
				if i == last_i:
					next *= END_MARKER

				leaves[at] = (mjd, snapid, cell_id, next)
				at += 1

		# Construct bmap that has offsets to head of the linked list of siblings
		offs     = np.zeros(len(llens), dtype=np.int64)
		offs[1:] = np.cumsum(llens)[:-1]
		offs     += 2				# Pointers to beginnings of individual lists
		assert np.all(abs(leaves['next'][offs-1]) == END_MARKER)
		obmap = np.zeros(bmap.shape, dtype=np.int32)
		obmap[bmap != 0] = offs

		# Recompute mipmaps
		bmaps = self._compute_mipmaps(obmap)

		return bmaps, leaves
Esempio n. 10
0
    def _get_cells_recursive(self,
                             outcells,
                             data_path,
                             bounds_xy,
                             bounds_t,
                             pattern,
                             x=0.,
                             y=0.):
        """ Helper for get_cells(). See documentation of
		    get_cells() for usage
		"""
        lev = bhpix.get_pixel_level(x, y)
        dx = bhpix.pix_size(lev)

        # Check for nonzero overlap
        box = self._cell_bounds_xy(x, y, dx)
        bounds_xy = bounds_xy & box
        if not bounds_xy:
            return

        # Check if the cell directory exists (give up if it doesn't)
        path = data_path + '/' + self._path_to_cell_base_xy(x, y, lev)
        if not os.path.isdir(path):
            return

        # If re reached the bottom of the hierarchy
        if self._is_valid_cell_xy(x, y):
            # Get the cell_ids for leaf cells matching pattern
            xybounds = None if (bounds_xy.area() == box.area()) else bounds_xy
            sibling_cells = list(
                self._get_temporal_siblings(x, y, path, pattern))
            for cell_id in sibling_cells:
                # Filter on time, add bounds
                x, y, t = self._xyt_from_cell_id(cell_id)

                if t != self.t0:
                    # Cut on the time component
                    tival = intervalset((t, t + self.dt))
                    tolap = bounds_t & tival
                    if len(tolap):
                        (l, r
                         ) = tolap[-1]  # Get the right-most interval component
                        if l == r == t + self.dt:  # Is it a single point?
                            tolap = intervalset(
                                *tolap[:-1]
                            )  # Since objects in this cell have time in [t, t+dt), remove the t+dt point

                    if len(
                            tolap
                    ) == 0:  # No overlap between the intervals -- skip this cell
                        continue

                    # Return None if the cell is fully contained in the requested interval
                    tbounds = None if tival == tolap else tolap
                else:
                    # Static cell
                    tbounds = bounds_t
                    assert len(
                        sibling_cells
                    ) == 1, "There can be only one static cell (cell_id=%s)" % cell_id

                # Add to output
                if tbounds is None:
                    outcells[cell_id][xybounds] = None
                elif xybounds not in outcells[cell_id]:
                    outcells[cell_id][xybounds] = tbounds
                elif outcells[cell_id][xybounds] is not None:
                    outcells[cell_id][xybounds] |= tbounds
        else:
            # Recursively subdivide the four subpixels
            dx = dx / 2
            for d in np.array([(0.5, 0.5), (-0.5, 0.5), (-0.5, -0.5),
                               (0.5, -0.5)]):
                (x2, y2) = (x, y) + dx * d
                self._get_cells_recursive(outcells, data_path, bounds_xy & box,
                                          bounds_t, pattern, x2, y2)