Esempio n. 1
0
def test_multi_accumulate(H, N, F, T, n_cycles):
    reset = 1
    # Create complex data
    xcorr = np.zeros((H, F, N, N * 2), dtype='float32')
    xcorr_bf = bf.ndarray(xcorr, dtype='f32', space='cuda')

    d = np.random.randint(64, size=(H, F, N, T, 2), dtype='int8')

    print "Computing Xcorr on CPU..."
    xcorr_cpu = compute_xcorr_cpu(d)

    print "Running xcorr_lite..."
    d_gpu = bf.ndarray(d, dtype='i8', space='cuda')
    _bf.XcorrLite(d_gpu.as_BFarray(), xcorr_bf.as_BFarray(), np.int32(reset))
    xcorr_gpu = np.array(xcorr_bf.copy('system'))

    print "Testing first integration cycle..."
    assert np.allclose(xcorr_gpu.squeeze(), xcorr_cpu.squeeze())

    print "Running loop ..."
    for ii in range(1, n_cycles):
        print "Run xcorr_lite..."
        reset = 0
        _bf.XcorrLite(d_gpu.as_BFarray(), xcorr_bf.as_BFarray(),
                      np.int32(reset))

        print "Copy result from GPU..."
        xcorr_gpu = np.array(xcorr_bf.copy('system'))
        xcorr_cpu += compute_xcorr_cpu(d)

        print "Testing integration cycle %i /%i..." % (ii + 1, n_cycles)
        assert np.allclose(xcorr_gpu.squeeze(), xcorr_cpu.squeeze())
Esempio n. 2
0
    def _create_data(self,
                     data_size,
                     ntime,
                     nchan,
                     npol,
                     dtype=numpy.complex64):
        ishape = (ntime, nchan, npol, data_size)
        data = numpy.zeros(shape=ishape, dtype=numpy.complex64)
        data_i = numpy.zeros(shape=(ntime, nchan, npol, data_size, 2),
                             dtype=numpy.complex64)
        data_i[:, :, :, :,
               0] = numpy.random.normal(0,
                                        1.0,
                                        size=(ntime, nchan, npol, data_size))
        data_i[:, :, :, :,
               1] = numpy.random.normal(0,
                                        1.0,
                                        size=(ntime, nchan, npol, data_size))
        data = 7 * numpy.copy(data, order='C')
        data = bifrost.ndarray(data_i[..., 0] + 1j * data_i[..., 1])
        if dtype not in (numpy.complex64, 'cf32'):
            data_quantized = bifrost.ndarray(shape=data.shape, dtype=dtype)
            quantize(data, data_quantized)
            data = data_quantized

        return data
Esempio n. 3
0
def test_xcorr(H, N, F, T):
    # Create complex data
    reset = 1

    # Create complex data
    xcorr = np.zeros((H, F, N, N * 2), dtype='float32')
    xcorr_bf = bf.ndarray(xcorr, dtype='f32', space='cuda')

    for ii in range(8):
        print "---- Iteration %i ----" % ii
        print "Generate test vectors..."
        d = np.random.randint(64, size=(H, F, N, T, 2), dtype='int8')
        print "Data shape: ", d.shape
        print "Xcorr shape:", xcorr.shape

        print "Computing Xcorr on CPU..."
        xcorr_cpu = compute_xcorr_cpu(d)

        print "Copying data to GPU..."
        d_gpu = bf.ndarray(d, dtype='i8', space='cuda')

        print "Run xcorr_lite..."
        _bf.XcorrLite(d_gpu.as_BFarray(), xcorr_bf.as_BFarray(),
                      np.int32(reset))

        print "Copy result from GPU..."
        xcorr_gpu = np.array(xcorr_bf.copy('system'))

        print "Comparing CPU to GPU..."
        assert np.allclose(xcorr_gpu.squeeze(), xcorr_cpu.squeeze())
Esempio n. 4
0
    def test_2d_decimate_active(self):
        shape = self.shape2D
        known_data = np.random.normal(size=shape).astype(np.float32).view(
            np.complex64)
        idata = bf.ndarray(known_data, space='cuda')
        odata = bf.empty((idata.shape[0] // 2, idata.shape[1]),
                         dtype=idata.dtype,
                         space='cuda')
        coeffs = self.coeffs * 1.0
        coeffs.shape += (1, )
        coeffs = np.repeat(coeffs, idata.shape[1], axis=1)
        coeffs.shape = (coeffs.shape[0], idata.shape[1])
        coeffs = bf.ndarray(coeffs, space='cuda')

        fir = Fir()
        fir.init(coeffs, 2)
        fir.execute(idata, odata)
        fir.execute(idata, odata)
        odata = odata.copy('system')

        for i in range(known_data.shape[1]):
            zf = lfiltic(self.coeffs, 1.0, 0.0)
            known_result, zf = lfilter(self.coeffs,
                                       1.0,
                                       known_data[:, i],
                                       zi=zf)
            known_result, zf = lfilter(self.coeffs,
                                       1.0,
                                       known_data[:, i],
                                       zi=zf)
            known_result = known_result[0::2]
            compare(odata[:, i], known_result)
def test_array(testvec):
    # Create test vectors
    a = bf.ndarray(np.array(testvec), dtype='i32', space='cuda')
    b = bf.ndarray(np.zeros_like(testvec, dtype='float32'),
                   dtype='f32',
                   space='cuda')

    # Run kernel
    _bf.XcorrLiteAccumulate(a.as_BFarray(), b.as_BFarray(), 0)

    # Copy back from GPU
    b_out = b.copy('system')
    b_out = np.array(b_out)
    a_sys = a.copy('system')
    a_sys = np.array(a_sys)

    assert np.allclose(a_sys.astype('float32'), b_out)

    # Run kernel in a loop
    for ii in range(0, 100):
        _bf.XcorrLiteAccumulate(a.as_BFarray(), b.as_BFarray(), 0)
        b_out = np.array(b.copy('system'))
        assert np.allclose(a_sys.astype('float32') * (ii + 2), b_out)

    # Test reset
    reset = 1
    _bf.XcorrLiteAccumulate(a.as_BFarray(), b.as_BFarray(), np.int32(reset))
    b_out = np.array(b.copy('system'))

    assert np.allclose(a_sys.astype('float32'), b_out)
Esempio n. 6
0
    def test_2d_active(self):
        shape = self.shape2D
        known_data = np.random.normal(size=shape).astype(np.float32).view(
            np.complex64)
        idata = bf.ndarray(known_data, space='cuda_managed')
        odata = bf.empty_like(idata)
        coeffs = self.coeffs * 1.0
        coeffs.shape += (1, )
        coeffs = np.repeat(coeffs, idata.shape[1], axis=1)
        coeffs.shape = (coeffs.shape[0], idata.shape[1])
        coeffs = bf.ndarray(coeffs, space='cuda_managed')

        fir = Fir()
        fir.init(coeffs, 1)
        fir.execute(idata, odata)
        fir.execute(idata, odata)
        stream_synchronize()

        for i in range(known_data.shape[1]):
            zf = lfiltic(self.coeffs, 1.0, 0.0)
            known_result, zf = lfilter(self.coeffs,
                                       1.0,
                                       known_data[:, i],
                                       zi=zf)
            known_result, zf = lfilter(self.coeffs,
                                       1.0,
                                       known_data[:, i],
                                       zi=zf)
            compare(odata[:, i], known_result)
Esempio n. 7
0
    def run_test_r2c_dtype(self,
                           shape,
                           axes,
                           dtype=np.float32,
                           scale=1.,
                           misalign=0):
        known_data = np.random.normal(size=shape).astype(np.float32)
        known_data = (known_data * scale).astype(dtype)

        # Force misaligned data
        padded_shape = shape[:-1] + (shape[-1] + misalign, )
        known_data = np.resize(known_data, padded_shape)
        idata = bf.ndarray(known_data, space='cuda_managed')
        known_data = known_data[..., misalign:]
        idata = idata[..., misalign:]

        oshape = list(shape)
        oshape[axes[-1]] = shape[axes[-1]] // 2 + 1
        odata = bf.ndarray(shape=oshape, dtype='cf32', space='cuda_managed')
        fft = Fft()
        fft.init(idata, odata, axes=axes)
        fft.execute(idata, odata)
        stream_synchronize()
        known_result = gold_rfftn(known_data.astype(np.float32) / scale,
                                  axes=axes)
        compare(odata, known_result)
Esempio n. 8
0
    def test_3d_initial(self):
        shape = self.shape3D
        known_data = np.random.normal(size=shape).astype(np.float32).view(
            np.complex64)
        idata = bf.ndarray(known_data, space='cuda')
        odata = bf.empty_like(idata)
        coeffs = self.coeffs * 1.0
        coeffs.shape += (1, )
        coeffs = np.repeat(coeffs, idata.shape[1] * idata.shape[2], axis=1)
        coeffs.shape = (coeffs.shape[0], idata.shape[1], idata.shape[2])
        coeffs = bf.ndarray(coeffs, space='cuda')

        fir = Fir()
        fir.init(coeffs, 1)
        fir.execute(idata, odata)
        odata = odata.copy('system')

        for i in range(known_data.shape[1]):
            for j in range(known_data.shape[2]):
                zf = lfiltic(self.coeffs, 1.0, 0.0)
                known_result, zf = lfilter(self.coeffs,
                                           1.0,
                                           known_data[:, i, j],
                                           zi=zf)
                compare(odata[:, i, j], known_result)
Esempio n. 9
0
    def run_test_r2c_dtype(self,
                           shape,
                           axes,
                           dtype=np.float32,
                           scale=1.,
                           misalign=0):
        known_data = np.random.uniform(size=shape).astype(np.float32) * 2 - 1
        known_data = (known_data * scale).astype(dtype)

        # Force misaligned data
        padded_shape = shape[:-1] + (shape[-1] + misalign, )
        known_data = np.resize(known_data, padded_shape)
        idata = bf.ndarray(known_data, space='cuda')
        known_data = known_data[..., misalign:]
        idata = idata[..., misalign:]

        oshape = list(shape)
        oshape[axes[-1]] = shape[axes[-1]] // 2 + 1
        odata = bf.ndarray(shape=oshape, dtype='cf32', space='cuda')
        fft = Fft()
        fft.init(idata, odata, axes=axes)
        fft.execute(idata, odata)
        known_result = gold_rfftn(known_data.astype(np.float32) / scale,
                                  axes=axes)
        np.testing.assert_allclose(odata.copy('system'), known_result, RTOL,
                                   ATOL)
Esempio n. 10
0
 def run_unpack_to_cf32_test(self, iarray):
     oarray = bf.ndarray(shape=iarray.shape, dtype='cf32')
     oarray_known = bf.ndarray(
         [[0 + 1j, 2 + 3j], [4 + 5j, 6 + 7j], [-8 - 7j, -6 - 5j]],
         dtype='cf32')
     bf.unpack.unpack(iarray, oarray)
     np.testing.assert_equal(oarray, oarray_known)
Esempio n. 11
0
 def run_unpack_to_ci8_test(self, iarray):
     oarray = bf.ndarray(shape=iarray.shape, dtype='ci8')
     oarray_known = bf.ndarray([[(0, 1),
                                 (2, 3)], [(4, 5),
                                           (6, 7)], [(-8, -7), (-6, -5)]],
                               dtype='ci8')
     bf.unpack.unpack(iarray, oarray)
     np.testing.assert_equal(oarray, oarray_known)
Esempio n. 12
0
 def run_unpack_to_ci8_test(self, iarray):
     oarray = bf.ndarray(shape=iarray.shape,
                         dtype='ci8',
                         space='cuda_managed')
     oarray_known = bf.ndarray([[(0, 1),
                                 (2, 3)], [(4, 5),
                                           (6, 7)], [(-8, -7), (-6, -5)]],
                               dtype='ci8')
     bf.unpack(iarray.copy(space='cuda_managed'), oarray)
     stream_synchronize()
     np.testing.assert_equal(oarray, oarray_known)
Esempio n. 13
0
 def run_test_r2c(self, shape, axes):
     known_data = np.random.uniform(size=shape).astype(np.float32)
     idata = bf.ndarray(known_data, space='cuda')
     oshape = list(shape)
     oshape[axes[-1]] = shape[axes[-1]] // 2 + 1
     odata = bf.ndarray(shape=oshape, dtype='cf32', space='cuda')
     fft = Fft()
     fft.init(idata, odata, axes=axes)
     fft.execute(idata, odata)
     known_result = gold_rfftn(known_data, axes=axes)
     np.testing.assert_allclose(odata.copy('system'), known_result, RTOL,
                                ATOL)
Esempio n. 14
0
 def run_quantize_from_cf32_test(self, out_dtype):
     iarray = bf.ndarray(
         [[0.4 + 0.5j, 1.4 + 1.5j], [2.4 + 2.5j, 3.4 + 3.5j],
          [4.4 + 4.5j, 5.4 + 5.5j]],
         dtype='cf32')
     oarray = bf.ndarray(shape=iarray.shape, dtype=out_dtype)
     oarray_known = bf.ndarray([[(0, 0), (1, 2)], [(2, 2),
                                                   (3, 4)], [(4, 4),
                                                             (5, 6)]],
                               dtype=out_dtype)
     bf.quantize(iarray, oarray)
     np.testing.assert_equal(oarray, oarray_known)
Esempio n. 15
0
    def run_quantize_from_f32_test(self, out_dtype):
        if 'i' in out_dtype:
            # Signed
            iarray = bf.ndarray(np.arange(255) - 128, dtype='f32')
            oarray_known = bf.ndarray(np.arange(255) - 128, dtype=out_dtype)
        else:
            # Unsigned
            iarray = bf.ndarray(np.arange(255), dtype='f32')
            oarray_known = bf.ndarray(np.arange(255), dtype=out_dtype)

        oarray = bf.ndarray(shape=iarray.shape, dtype=out_dtype, space='cuda')
        bf.quantize.quantize(iarray.copy(space='cuda'), oarray)
        oarray = oarray.copy(space='system')
        np.testing.assert_equal(oarray, oarray_known)
Esempio n. 16
0
 def run_test_c2c_impl(self, shape, axes, inverse=False, fftshift=False):
     shape = list(shape)
     shape[-1] *= 2  # For complex
     known_data = np.random.uniform(size=shape).astype(np.float32).view(
         np.complex64)
     idata = bf.ndarray(known_data, space='cuda')
     odata = bf.empty_like(idata)
     fft = Fft()
     fft.init(idata, odata, axes=axes, apply_fftshift=fftshift)
     fft.execute(idata, odata, inverse)
     if inverse:
         if fftshift:
             known_data = np.fft.ifftshift(known_data, axes=axes)
         # Note: Numpy applies normalization while CUFFT does not
         norm = reduce(lambda a, b: a * b,
                       [known_data.shape[d] for d in axes])
         known_result = gold_ifftn(known_data, axes=axes) * norm
     else:
         known_result = gold_fftn(known_data, axes=axes)
         if fftshift:
             known_result = np.fft.fftshift(known_result, axes=axes)
     x = (np.abs(odata.copy('system') - known_result) / known_result >
          RTOL).astype(np.int32)
     a = odata.copy('system')
     b = known_result
     np.testing.assert_allclose(odata.copy('system'), known_result, RTOL,
                                ATOL)
Esempio n. 17
0
    def _create_locs(self, data_size, ntime, nchan, npol, loc_min, loc_max):
        ishape = (ntime, nchan, npol, data_size)
        locs = numpy.random.uniform(loc_min, loc_max, size=(3, ) + ishape)
        locs = numpy.copy(locs.astype(numpy.int32), order='C')
        locs = bifrost.ndarray(locs)

        return locs
Esempio n. 18
0
 def run_test_c2r(self, shape, axes):
     ishape = list(shape)
     ishape[axes[-1]] = shape[axes[-1]] // 2 + 1
     ishape[-1] *= 2  # For complex
     known_data = np.random.uniform(size=ishape).astype(np.float32).view(
         np.complex64)
     idata = bf.ndarray(known_data, space='cuda')
     odata = bf.ndarray(shape=shape, dtype='f32', space='cuda')
     fft = Fft()
     fft.init(idata, odata, axes=axes)
     fft.execute(idata, odata)
     # Note: Numpy applies normalization while CUFFT does not
     norm = reduce(lambda a, b: a * b, [shape[d] for d in axes])
     known_result = gold_irfftn(known_data, axes=axes) * norm
     np.testing.assert_allclose(odata.copy('system'), known_result, RTOL,
                                ATOL)
Esempio n. 19
0
	def run_simple_test(self, axes, dtype):
		idata = np.arange(43401).reshape((23,37,51)) % 251
		iarray = bf.ndarray(idata, dtype=dtype, space='cuda')
		oarray = bf.empty_like(iarray.transpose(axes))
		bf.transpose.transpose(oarray, iarray, axes)
		np.testing.assert_equal(oarray.copy('system'),
		                        idata.transpose(axes))
Esempio n. 20
0
    def _create_locs(self, data_size, ntime, nchan, npol, loc_min, loc_max):
        ishape = (ntime, nchan, npol, data_size)
        xlocs = numpy.random.uniform(loc_min, loc_max, size=ishape)
        ylocs = numpy.random.uniform(loc_min, loc_max, size=ishape)
        zlocs = numpy.random.uniform(loc_min, loc_max, size=ishape)
        xlocs = numpy.copy(xlocs.astype(numpy.int32), order='C')
        ylocs = numpy.copy(ylocs.astype(numpy.int32), order='C')
        zlocs = numpy.copy(zlocs.astype(numpy.int32), order='C')
        xlocs = bifrost.ndarray(xlocs)
        ylocs = bifrost.ndarray(ylocs)
        zlocs = bifrost.ndarray(zlocs)
        locs = numpy.stack((xlocs, ylocs, zlocs))
        #locs = numpy.transpose(locs,(1,2,3,4,0))
        locs = numpy.copy(locs.astype(numpy.int32), order='C')
        locs = bifrost.ndarray(locs)

        return locs
Esempio n. 21
0
 def test_getitem(self):
     g = bf.ndarray(self.known_vals, space='cuda')
     np.testing.assert_equal(g[0].copy('system'), self.known_array[0])
     np.testing.assert_equal(g[(0, )].copy('system'),
                             self.known_array[(0, )])
     np.testing.assert_equal(int(g[0, 0]), self.known_array[0, 0])
     np.testing.assert_equal(g[:1, 1:].copy('system'), self.known_array[:1,
                                                                        1:])
Esempio n. 22
0
	def test_repr(self):
		f = bf.ndarray(self.known_vals, dtype='f32', space='cuda')
		repr_f = repr(f)
		# Note: This chops off the class name
		repr_f = repr_f[repr_f.find('('):]
		repr_k = repr(self.known_array)
		repr_k = repr_k[repr_k.find('('):]
		self.assertEqual(repr_f, repr_k)
Esempio n. 23
0
    def run_positions_test(self,
                           grid_size,
                           illum_size,
                           data_size,
                           ntime,
                           npol,
                           nchan,
                           polmajor,
                           dtype=numpy.complex64):
        TEST_OFFSET = 1

        gridshape = (ntime, nchan, npol, grid_size, grid_size)
        ishape = (ntime, nchan, npol, data_size)
        illum_shape = (ntime, nchan, npol, data_size, illum_size, illum_size)

        # Create grid and illumination pattern
        grid = numpy.zeros(shape=gridshape, dtype=numpy.complex64)
        grid = numpy.copy(grid, order='C')
        grid = bifrost.ndarray(grid)
        illum = self._create_illum(illum_size, data_size, ntime, npol, nchan)

        # Create data
        data = self._create_data(data_size, ntime, nchan, npol, dtype=dtype)

        # Create the locations
        locs = self._create_locs(data_size, ntime, nchan, npol, illum_size,
                                 grid_size - illum_size)

        # Grid using a naive method
        gridnaive = self.naive_romein(gridshape, illum, data,
                                      locs[0, :] + TEST_OFFSET,
                                      locs[1, :] + TEST_OFFSET,
                                      locs[2, :] + TEST_OFFSET, ntime, npol,
                                      nchan, data_size)

        # Transpose for non pol-major kernels
        if not polmajor:
            data = data.transpose((0, 1, 3, 2)).copy()
            locs = locs.transpose((0, 1, 2, 4, 3)).copy()
            illum = illum.transpose((0, 1, 3, 2, 4, 5)).copy()

        grid = grid.copy(space='cuda')
        data = data.copy(space='cuda')
        illum = illum.copy(space='cuda')
        locs = locs.copy(space='cuda')
        self.romein.init(locs, illum, grid_size, polmajor=polmajor)

        # Offset
        locs = locs.copy(space='system')
        locs += TEST_OFFSET
        locs = locs.copy(space='cuda')

        self.romein.set_positions(locs)
        self.romein.execute(data, grid)
        grid = grid.copy(space="system")

        # Compare the two methods
        numpy.testing.assert_allclose(grid, gridnaive, 1e-4, 1e-5)
Esempio n. 24
0
 def run_test_c2r_impl(self, shape, axes, fftshift=False):
     ishape = list(shape)
     oshape = list(shape)
     ishape[axes[-1]] = shape[axes[-1]] // 2 + 1
     oshape[axes[-1]] = (ishape[axes[-1]] - 1) * 2
     ishape[-1] *= 2 # For complex
     known_data = np.random.normal(size=ishape).astype(np.float32).view(np.complex64)
     idata = bf.ndarray(known_data, space='cuda')
     odata = bf.ndarray(shape=oshape, dtype='f32', space='cuda')
     fft = Fft()
     fft.init(idata, odata, axes=axes, apply_fftshift=fftshift)
     fft.execute(idata, odata)
     # Note: Numpy applies normalization while CUFFT does not
     norm = reduce(lambda a, b: a * b, [shape[d] for d in axes])
     if fftshift:
         known_data = np.fft.ifftshift(known_data, axes=axes)
     known_result = gold_irfftn(known_data, axes=axes) * norm
     compare(odata.copy('system'), known_result)
Esempio n. 25
0
 def run_simple_test(self, axes, dtype, shape):
     n = reduce(lambda a,b:a*b, shape)
     idata = (np.arange(n).reshape(shape) % 251).astype(dtype)
     odata_gold = idata.transpose(axes)
     iarray = bf.ndarray(idata, space='cuda')
     oarray = bf.empty_like(iarray.transpose(axes))
     bf.transpose.transpose(oarray, iarray, axes)
     oarray = oarray.copy('system')
     np.testing.assert_array_equal(oarray, odata_gold)
Esempio n. 26
0
 def test_repr(self):
     f = bf.ndarray(self.known_vals, dtype='f32', space='cuda')
     repr_f = repr(f)
     # Note: This chops off the class name
     repr_f = repr_f[repr_f.find('('):]
     repr_k = repr(self.known_array)
     repr_k = repr_k[repr_k.find('('):]
     # Remove whitespace (for some reason the indentation differs)
     repr_f = repr_f.replace(' ', '')
     repr_k = repr_k.replace(' ', '')
     self.assertEqual(repr_f, repr_k)
Esempio n. 27
0
    def on_sequence(self, iseq):
        self.frame_count = 0
        ihdr = iseq.header
        itensor = ihdr['_tensor']

        to_raise = False
        
        if self.weights_file in ('', None):
            to_raise = True
            print('ERR: need to specify weights hickle file')
        else:
            w = hkl.load(self.weights_file)

        try:
            assert w.shape == (self.n_chan, self.n_beam, self.n_pol, self.n_ant)
            assert w.dtype.names[0] == 're'
            assert w.dtype.names[1] == 'im'
            assert str(w.dtype[0]) == 'int8'
        except AssertionError:
            print('ERR: beam weight shape/dtype is incorrect')
            print('ERR: beam weights shape is: %s' % str(w.shape))
            print('ERR: shape should be %s' % str((self.n_chan, self.n_beam, self.n_pol, self.n_ant, 2)))
            print('ERR: dtype should be int8, dtype: %s' % w.dtype.str)
            to_raise = True
        #w = np.ones((self.n_chan, self.n_beam, self.n_pol, self.n_ant), dtype='int8')
        self.weights = bf.ndarray(w, dtype='ci8', space='cuda')

        try:
            assert(itensor['labels'] == ['time', 'freq', 'fine_time', 'pol', 'station'])
            assert(itensor['dtype'] == 'ci8')
            assert(ihdr['gulp_nframe'] == 1)
        except AssertionError:
            print('ERR: gulp_nframe %s (must be 1!)' % str(ihdr['gulp_nframe']))
            print('ERR: Frame shape %s' % str(itensor['shape']))
            print('ERR: Frame labels %s' % str(itensor['labels']))
            print('ERR: Frame dtype %s' % itensor['dtype'])
            to_raise = True
        
        if to_raise:
            raise RuntimeError('Correlator block misconfiguration. Check tensor labels, dtype, shape, gulp size).')

        ohdr = deepcopy(ihdr)
        otensor = ohdr['_tensor']
        otensor['dtype'] = 'cf32'

        # output is (time, channel, beam, fine_time)
        ft0, fts = itensor['scales'][2]
        otensor['shape']  = [itensor['shape'][0], itensor['shape'][1], self.n_beam, itensor['shape'][2] // self.n_avg]
        otensor['labels'] = ['time', 'freq', 'beam', 'fine_time']
        otensor['scales'] = [itensor['scales'][0], itensor['scales'][1], [0, 0], [ft0, fts / self.n_avg]]
        otensor['units']  = [itensor['units'][0], itensor['units'][1], None, itensor['units'][2]]
        otensor['dtype'] = 'f32'

        return ohdr
Esempio n. 28
0
 def test_complex_integer(self):
     n = 7919
     for in_dtype in ('ci4', 'ci8', 'ci16', 'ci32'):
         a_orig = bf.ndarray(shape=(n, ), dtype=in_dtype, space='system')
         try:
             a_orig['re'] = np.random.randint(256, size=n)
             a_orig['im'] = np.random.randint(256, size=n)
         except ValueError:
             # ci4 is different
             a_orig['re_im'] = np.random.randint(256, size=n)
         for out_dtype in (in_dtype, 'cf32'):
             a = a_orig.copy(space='cuda')
             b = bf.ndarray(shape=(n, ), dtype=out_dtype, space='cuda')
             bf.map('b(i) = a(i)', {
                 'a': a,
                 'b': b
             },
                    shape=a.shape,
                    axis_names=('i', ))
             a = a.copy(space='system')
             try:
                 a = a['re'] + 1j * a['im']
             except ValueError:
                 # ci4 is different
                 a = np.int8(a['re_im'] & 0xF0) + 1j * np.int8(
                     (a['re_im'] & 0x0F) << 4)
                 a /= 16
             b = b.copy(space='system')
             try:
                 b = b['re'] + 1j * b['im']
             except ValueError:
                 # ci4 is different
                 b = np.int8(b['re_im'] & 0xF0) + 1j * np.int8(
                     (b['re_im'] & 0x0F) << 4)
                 b /= 16
             except IndexError:
                 # pass through cf32
                 pass
             np.testing.assert_equal(a, b)
Esempio n. 29
0
    def _create_illum(self,
                      illum_size,
                      data_size,
                      ntime,
                      npol,
                      nchan,
                      dtype=numpy.complex64):
        illum_shape = (ntime, nchan, npol, data_size, illum_size, illum_size)
        illum = numpy.ones(shape=illum_shape, dtype=dtype)
        illum = numpy.copy(illum, order='C')
        illum = bifrost.ndarray(illum)

        return illum
Esempio n. 30
0
    def naive_romein(self,
                     grid_shape,
                     illum,
                     data,
                     xlocs,
                     ylocs,
                     zlocs,
                     ntime,
                     npol,
                     nchan,
                     ndata,
                     dtype=numpy.complex64):

        # Unpack the ci4 data to ci8, if needed
        if data.dtype == ci4:
            data_unpacked = bifrost.ndarray(shape=data.shape, dtype='ci8')
            unpack(data, data_unpacked)
            data = data_unpacked

        # Create the output grid
        grid = bifrost.zeros(shape=grid_shape, dtype=dtype)

        # Combine axes
        xlocs_flat = xlocs.reshape(-1, ndata)
        ylocs_flat = ylocs.reshape(-1, ndata)
        data_flat = data.reshape(-1, ndata)
        grid_flat = grid.reshape(-1, grid.shape[-2], grid.shape[-1])
        illum_flat = illum.reshape(-1, ndata, illum.shape[-2], illum.shape[-1])

        # Excruciatingly slow, but it's just for testing purposes...
        # Could probably use a blas based function for simplicity.
        for tcp in range(data_flat.shape[0]):
            for d in range(ndata):
                datapoint = data_flat[tcp, d]
                if data.dtype != dtype:
                    try:
                        datapoint = dtype(datapoint[0] + 1j * datapoint[1])
                    except IndexError:
                        datapoint = dtype(datapoint)

                #if(d==128):
                #    print(datapoint)
                x_s = xlocs_flat[tcp, d]
                y_s = ylocs_flat[tcp, d]
                for y in range(y_s, y_s + illum_flat.shape[-2]):
                    for x in range(x_s, x_s + illum_flat.shape[-1]):
                        illump = illum_flat[tcp, d, y - y_s, x - x_s]
                        grid_flat[tcp, y, x] += datapoint * illump

        return grid