Esempio n. 1
0
    def test_tsdataset_split(self):
        df = get_ts_df()
        # only train and test
        tsdata_train, tsdata_valid, tsdata_test =\
            TSDataset.from_pandas(df, dt_col="datetime", target_col="value",
                                  extra_feature_col=["extra feature"], id_col="id",
                                  with_split=True, val_ratio=0, test_ratio=0.1)
        # standard split with all three sets
        tsdata_train, tsdata_valid, tsdata_test =\
            TSDataset.from_pandas(df, dt_col="datetime", target_col="value",
                                  extra_feature_col=["extra feature"], id_col="id",
                                  with_split=True, val_ratio=0.1, test_ratio=0.1,
                                  largest_look_back=5, largest_horizon=2)

        assert set(np.unique(tsdata_train.to_pandas()["id"])) == {"00"}
        assert set(np.unique(tsdata_valid.to_pandas()["id"])) == {"00"}
        assert set(np.unique(tsdata_test.to_pandas()["id"])) == {"00"}

        assert len(tsdata_train.to_pandas()) == df[:-(int(df.shape[0] * 0.1) *
                                                      2)].shape[0]
        assert len(tsdata_valid.to_pandas()) == int(df.shape[0] * 0.1 + 5 + 2 -
                                                    1)
        assert len(tsdata_test.to_pandas()) == int(df.shape[0] * 0.1 + 5 + 2 -
                                                   1)
        tsdata_train.feature_col.append("new extra feature")
        assert len(tsdata_train.feature_col) == 2
        assert len(tsdata_valid.feature_col) == 1
        assert len(tsdata_test.feature_col) == 1

        tsdata_train.target_col[0] = "new value"
        assert tsdata_train.target_col[0] == "new value"
        assert tsdata_valid.target_col[0] != "new value"
        assert tsdata_test.target_col[0] != "new value"
Esempio n. 2
0
    def test_tsdataset_resample_multiple(self):
        df = get_multi_id_ts_df()
        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col="value",
                                       extra_feature_col=["extra feature"],
                                       id_col="id")
        tsdata.resample('2D', df["datetime"][0],
                        df["datetime"][df.shape[0] - 1])
        assert len(tsdata.to_pandas()) == df.shape[0] // 2
        tsdata._check_basic_invariants()
        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col="value",
                                       extra_feature_col=["extra feature"],
                                       id_col="id")
        tsdata.resample('2D')
        assert len(tsdata.to_pandas()) == 50
        tsdata._check_basic_invariants()

        # target_col\extra_feature_col dtype is object(str).
        df = pd.DataFrame({
            "value":
            np.array(['test_value'] * 100),
            "id":
            np.array(['00'] * 50 + ['01'] * 50),
            "extra feature":
            np.array(['test_extra_feature'] * 100)
        })
        df["datetime"] = pd.date_range('1/1/2019', periods=100)
        df.loc[50:100, "datetime"] = pd.date_range('1/1/2019', periods=50)
        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col="value",
                                       extra_feature_col=["extra feature"],
                                       id_col="id")
        with pytest.raises(RuntimeError):
            tsdata.resample('2S', df.datetime[0], df.datetime[df.shape[0] - 1])
        tsdata._check_basic_invariants()

        # target_col/extra_feature_col dtype is object(numeric).
        df = get_multi_id_ts_df()
        df.value = df.value.astype(np.object)
        df['extra feature'] = df['extra feature'].astype(np.object)
        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col="value",
                                       extra_feature_col=["extra feature"],
                                       id_col="id")
        before_sampling = tsdata.df.columns
        tsdata.resample('2S', df.datetime[0], df.datetime[df.shape[0] - 1])
        assert set(before_sampling) == set(tsdata.df.columns)
        tsdata._check_basic_invariants()
Esempio n. 3
0
    def test_tsdataset_unscale_numpy(self):
        df = get_multi_id_ts_df()
        df_test = get_multi_id_ts_df()

        from sklearn.preprocessing import StandardScaler, MaxAbsScaler, MinMaxScaler, RobustScaler
        scalers = [
            StandardScaler(),
            StandardScaler(with_mean=False),
            StandardScaler(with_std=False),
            MaxAbsScaler(),
            MinMaxScaler(),
            MinMaxScaler(feature_range=(1, 3)),
            RobustScaler(),
            RobustScaler(with_centering=False),
            RobustScaler(with_scaling=False),
            RobustScaler(quantile_range=(20, 80))
        ]

        for scaler in scalers:
            tsdata = TSDataset.from_pandas(df,
                                           dt_col="datetime",
                                           target_col="value",
                                           extra_feature_col=["extra feature"],
                                           id_col="id")
            tsdata_test = TSDataset.from_pandas(
                df_test,
                dt_col="datetime",
                target_col="value",
                extra_feature_col=["extra feature"],
                id_col="id")
            tsdata.gen_dt_feature()\
                  .scale(scaler)\
                  .roll(lookback=5, horizon=4, id_sensitive=True)
            tsdata_test.gen_dt_feature()\
                       .scale(scaler, fit=False)\
                       .roll(lookback=5, horizon=4, id_sensitive=True)

            _, _ = tsdata.to_numpy()
            _, y_test = tsdata_test.to_numpy()

            pred = np.copy(y_test)  # sanity check

            unscaled_pred = tsdata.unscale_numpy(pred)
            unscaled_y_test = tsdata.unscale_numpy(y_test)
            tsdata_test.unscale()\
                       .roll(lookback=5, horizon=4, id_sensitive=True)
            _, unscaled_y_test_reproduce = tsdata_test.to_numpy()

            assert_array_almost_equal(unscaled_pred, unscaled_y_test_reproduce)
            assert_array_almost_equal(unscaled_y_test,
                                      unscaled_y_test_reproduce)

            tsdata._check_basic_invariants()
Esempio n. 4
0
    def test_tsdataset_roll_multi_id(self):
        df = get_multi_id_ts_df()
        horizon = random.randint(1, 10)
        lookback = random.randint(1, 20)

        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col="value",
                                       extra_feature_col=["extra feature"],
                                       id_col="id")

        # test train
        tsdata.roll(lookback=lookback, horizon=horizon, id_sensitive=True)
        x, y = tsdata.to_numpy()
        assert x.shape == ((50 - lookback - horizon + 1), lookback, 4)
        assert y.shape == ((50 - lookback - horizon + 1), horizon, 2)

        tsdata.roll(lookback=lookback, horizon=horizon)
        x, y = tsdata.to_numpy()
        assert x.shape == ((50 - lookback - horizon + 1) * 2, lookback, 2)
        assert y.shape == ((50 - lookback - horizon + 1) * 2, horizon, 1)

        # horizon list.
        horizon_list = [1, 3, 5]
        tsdata.roll(lookback=lookback, horizon=horizon_list)
        x, y = tsdata.to_numpy()
        assert x.shape == ((50 - lookback - max(horizon_list) + 1) * 2,
                           lookback, 2)
        assert y.shape == ((50 - lookback - max(horizon_list) + 1) * 2,
                           len(horizon_list), 1)

        horizon_list = [1, 5, 9]
        tsdata.roll(lookback=lookback, horizon=horizon_list, id_sensitive=True)
        x, y = tsdata.to_numpy()
        assert x.shape == ((50 - lookback - max(horizon_list) + 1), lookback,
                           4)
        assert y.shape == ((50 - lookback - max(horizon_list) + 1),
                           len(horizon_list), 2)

        # target multi.
        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col=["value", "extra feature"],
                                       id_col="id")
        tsdata.roll(lookback=lookback, horizon=horizon, id_sensitive=False)
        x, y = tsdata.to_numpy()
        assert x.shape == ((50 - lookback - horizon + 1) * 2, lookback, 2)
        assert y.shape == ((50 - lookback - horizon + 1) * 2, horizon, 2)

        tsdata._check_basic_invariants()
Esempio n. 5
0
    def test_tsdata_multi_unscale_numpy_torch_load(self):
        lookback = random.randint(1, 10)
        horizon = random.randint(1, 20)
        batch_size = random.randint(16, 32)
        df = get_multi_id_ts_df()
        df_test = get_multi_id_ts_df()
        tsdata_train = TSDataset.from_pandas(df,
                                             target_col='value',
                                             dt_col='datetime',
                                             extra_feature_col='extra feature',
                                             id_col='id')
        tsdata_test = TSDataset.from_pandas(df_test,
                                            target_col='value',
                                            dt_col='datetime',
                                            extra_feature_col='extra feature',
                                            id_col='id')
        # roll is True.
        from sklearn.preprocessing import StandardScaler
        stand = StandardScaler()
        for tsdata in [tsdata_train, tsdata_test]:
            tsdata.scale(stand, fit=tsdata is tsdata_train)

        test_loader = tsdata_test.to_torch_data_loader(batch_size=batch_size,
                                                       roll=True,
                                                       lookback=lookback,
                                                       horizon=horizon)
        import torch
        from torch.utils.data.dataloader import DataLoader
        test_loader = DataLoader(test_loader.dataset,
                                 batch_size=batch_size,
                                 shuffle=False)

        batch_load_list = []
        for _, y_batch in test_loader:
            batch_load_list.append(y_batch)
        y_test = torch.cat(batch_load_list, dim=0)
        pred = np.copy(y_test.numpy())  # sanity check

        unscaled_pred = tsdata_train.unscale_numpy(pred)
        unscaled_y_test = tsdata_train.unscale_numpy(y_test.numpy())

        _, unscaled_y_test_reproduce = tsdata_test.unscale()\
                                                  .roll(lookback=lookback, horizon=horizon)\
                                                  .to_numpy()

        assert_array_almost_equal(unscaled_pred, unscaled_y_test_reproduce)
        assert_array_almost_equal(unscaled_y_test, unscaled_y_test_reproduce)

        tsdata._check_basic_invariants()
Esempio n. 6
0
    def assert_equal_with_tsdataset(df,
                                    horizon,
                                    lookback,
                                    feature_num=1,
                                    ):
        # get results rolled by tsdata.roll
        extra_feature_col = None if feature_num == 0 else ["extra feature"]
        tsdata = TSDataset.from_pandas(df, dt_col="datetime", target_col="value",
                                       extra_feature_col=extra_feature_col, id_col="id")
        tsdata.roll(lookback=lookback, horizon=horizon)
        x, y = tsdata.to_numpy()

        # get results rolled by RollDataset
        roll_dataset = RollDataset(df=df,
                                   lookback=lookback,
                                   horizon=horizon,
                                   feature_col=tsdata.feature_col,
                                   target_col=tsdata.target_col,
                                   id_col=tsdata.id_col)

        assert len(roll_dataset) == len(x)
        for i in range(len(x)):
            if horizon != 0:
                # for train and y is not None.
                xi, yi = x[i], y[i]
                roll_dataset_xi, roll_dataset_yi = roll_dataset[i]
                np.testing.assert_array_almost_equal(xi, roll_dataset_xi.detach().numpy())
                np.testing.assert_array_almost_equal(yi, roll_dataset_yi.detach().numpy())
            else:
                # for test, y is None.
                xi = x[i]
                roll_dataset_xi = roll_dataset[i]
                np.testing.assert_array_almost_equal(xi, roll_dataset_xi.detach().numpy())
Esempio n. 7
0
 def test_tsdataset_global_feature_multiple(self):
     df = get_multi_id_ts_df()
     tsdata = TSDataset.from_pandas(df,
                                    dt_col="datetime",
                                    target_col="value",
                                    extra_feature_col=["extra feature"],
                                    id_col="id")
     tsdata.gen_global_feature(settings="minimal")
     tsdata._check_basic_invariants()
     tsdata = TSDataset.from_pandas(df,
                                    dt_col="datetime",
                                    target_col="value",
                                    extra_feature_col=["extra feature"],
                                    id_col="id")
     tsdata.gen_global_feature(settings="minimal", n_jobs=2)
     tsdata._check_basic_invariants()
Esempio n. 8
0
    def test_tsdataset_roll_order(self):
        df = pd.DataFrame({
            "datetime":
            np.array(['1/1/2019', '1/1/2019', '1/2/2019', '1/2/2019']),
            "value":
            np.array([1.9, 2.3, 2.4, 2.6]),
            "id":
            np.array(['00', '01', '00', '01']),
            "extra feature1":
            np.array([1, 0, 3, 0]),
            "extra feature2":
            np.array([2, 9, 4, 2])
        })
        tsdata = TSDataset.from_pandas(
            df,
            dt_col="datetime",
            target_col="value",
            extra_feature_col=["extra feature1", "extra feature2"],
            id_col="id")
        x, y = tsdata.roll(lookback=1, horizon=1,
                           id_sensitive=False).to_numpy()
        assert x.shape == (2, 1, 3) and y.shape == (2, 1, 1)
        assert np.array_equal(
            x, np.array([[[1.9, 1, 2]], [[2.3, 0, 9]]], dtype=np.float32))
        assert np.array_equal(y, np.array([[[2.4]], [[2.6]]],
                                          dtype=np.float32))

        x, y = tsdata.roll(lookback=1, horizon=1, id_sensitive=True).to_numpy()
        assert x.shape == (1, 1, 6) and y.shape == (1, 1, 2)
        assert np.array_equal(
            x, np.array([[[1.9, 2.3, 1, 2, 0, 9]]], dtype=np.float32))
        assert np.array_equal(y, np.array([[[2.4, 2.6]]], dtype=np.float32))
Esempio n. 9
0
    def test_tsdataset_split_multiple(self):
        df = get_multi_id_ts_df()
        tsdata_train, tsdata_valid, tsdata_test =\
            TSDataset.from_pandas(df, dt_col="datetime", target_col="value",
                                  extra_feature_col=["extra feature"], id_col="id",
                                  with_split=True, val_ratio=0.1, test_ratio=0.1,
                                  largest_look_back=5, largest_horizon=2)

        assert set(np.unique(tsdata_train.to_pandas()["id"])) == {"00", "01"}
        assert set(np.unique(tsdata_valid.to_pandas()["id"])) == {"00", "01"}
        assert set(np.unique(tsdata_test.to_pandas()["id"])) == {"00", "01"}

        assert len(tsdata_train.to_pandas()) == (50 * 0.8) * 2
        assert len(tsdata_valid.to_pandas()) == (50 * 0.1 + 5 + 2 - 1) * 2
        assert len(tsdata_test.to_pandas()) == (50 * 0.1 + 5 + 2 - 1) * 2

        assert tsdata_train.feature_col is not tsdata_valid.feature_col
        assert tsdata_train.feature_col is not tsdata_test.feature_col
        assert tsdata_train.target_col is not tsdata_valid.target_col
        assert tsdata_train.target_col is not tsdata_test.target_col

        tsdata_train.feature_col.append("new extra feature")
        assert len(tsdata_train.feature_col) == 2
        assert len(tsdata_valid.feature_col) == 1
        assert len(tsdata_test.feature_col) == 1

        tsdata_train.target_col[0] = "new value"
        assert tsdata_train.target_col[0] == "new value"
        assert tsdata_valid.target_col[0] != "new value"
        assert tsdata_test.target_col[0] != "new value"
def get_tsdataset():
    df = get_ts_df()
    return TSDataset.from_pandas(
        df,
        dt_col="datetime",
        target_col=["value 1", "value 2"],
        extra_feature_col=["extra feature 1", "extra feature 2"],
        id_col="id")
Esempio n. 11
0
 def test_not_aligned(self):
     df = get_not_aligned_df()
     tsdata = TSDataset.from_pandas(df,
                                    target_col="value",
                                    dt_col="datetime",
                                    extra_feature_col="extra feature",
                                    id_col="id")
     with pytest.raises(AssertionError):
         tsdata.roll(lookback=5, horizon=2, id_sensitive=True)
     tsdata._check_basic_invariants()
Esempio n. 12
0
 def test_tsdataset_global_feature(self):
     for val in ["minimal"]:
         df = get_ts_df()
         tsdata = TSDataset.from_pandas(df,
                                        dt_col="datetime",
                                        target_col="value",
                                        extra_feature_col=["extra feature"],
                                        id_col="id")
         tsdata.gen_global_feature(settings=val)
         tsdata._check_basic_invariants()
Esempio n. 13
0
    def test_tsdataset_from_parquet(self):
        df = get_ts_df()

        configs = dict(dt_col="datetime",
                       target_col="value",
                       extra_feature_col=["extra feature"],
                       id_col="id")
        tsdata_pd = TSDataset.from_pandas(df, **configs)

        temp = tempfile.mkdtemp()
        try:
            path = os.path.join(temp, "test.parquet")
            df.to_parquet(path)

            tsdata_pq = TSDataset.from_parquet(path, **configs)

            pd.testing.assert_frame_equal(tsdata_pd.to_pandas(),
                                          tsdata_pq.to_pandas(),
                                          check_like=True)
        finally:
            shutil.rmtree(temp)
Esempio n. 14
0
 def test_tsdataset_imputation(self):
     for val in ["last", "const", "linear"]:
         df = get_ugly_ts_df()
         tsdata = TSDataset.from_pandas(
             df,
             dt_col="datetime",
             target_col="e",
             extra_feature_col=["a", "b", "c", "d"],
             id_col="id")
         tsdata.impute(mode=val)
         assert tsdata.to_pandas().isna().sum().sum() == 0
         assert len(tsdata.to_pandas()) == 100
         tsdata._check_basic_invariants()
Esempio n. 15
0
 def test_tsdataset_deduplicate(self):
     df = get_ugly_ts_df()
     for _ in range(20):
         df.loc[len(df)] = df.loc[np.random.randint(0, 99)]
     assert len(df) == 120
     tsdata = TSDataset.from_pandas(df,
                                    dt_col="datetime",
                                    target_col="e",
                                    extra_feature_col=["a", "b", "c", "d"],
                                    id_col="id")
     tsdata.deduplicate()
     assert len(tsdata.to_pandas()) == 100
     tsdata._check_basic_invariants()
Esempio n. 16
0
 def test_tsdata_roll_int_target(self):
     horizon = random.randint(1, 10)
     lookback = random.randint(1, 20)
     df = get_int_target_df()
     tsdata = TSDataset.from_pandas(df,
                                    dt_col='datetime',
                                    target_col='value',
                                    extra_feature_col=['extra feature'],
                                    id_col="id")
     x, y = tsdata.roll(lookback=lookback, horizon=horizon).to_numpy()
     assert x.dtype == np.float32
     assert y.dtype == np.float32
     tsdata._check_basic_invariants()
Esempio n. 17
0
    def test_tsdataset_scale_unscale(self):
        df = get_ts_df()
        df_test = get_ts_df()
        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col="value",
                                       extra_feature_col=["extra feature"],
                                       id_col="id")
        tsdata_test = TSDataset.from_pandas(
            df_test,
            dt_col="datetime",
            target_col="value",
            extra_feature_col=["extra feature"],
            id_col="id")

        from sklearn.preprocessing import StandardScaler, MaxAbsScaler, MinMaxScaler, RobustScaler
        scalers = [
            StandardScaler(),
            MaxAbsScaler(),
            MinMaxScaler(),
            RobustScaler()
        ]
        for scaler in scalers:
            tsdata.scale(scaler)
            tsdata_test.scale(scaler, fit=False)

            with pytest.raises(AssertionError):
                assert_frame_equal(tsdata.to_pandas(), df)
            with pytest.raises(AssertionError):
                assert_frame_equal(tsdata_test.to_pandas(), df_test)

            tsdata.unscale()
            tsdata_test.unscale()

            assert_frame_equal(tsdata.to_pandas(), df)
            assert_frame_equal(tsdata_test.to_pandas(), df_test)

        tsdata._check_basic_invariants()
Esempio n. 18
0
    def test_tsdataset_datetime_feature_multiple(self):
        df = get_multi_id_ts_df()
        # interval = day
        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col="value",
                                       extra_feature_col=["extra feature"],
                                       id_col="id")
        tsdata.gen_dt_feature()
        assert set(tsdata.to_pandas().columns) == {
            'DAY', 'IS_WEEKEND', 'WEEKDAY', 'MONTH', 'YEAR', 'DAYOFYEAR',
            'WEEKOFYEAR', 'extra feature', 'value', 'datetime', 'id'
        }
        assert set(tsdata.feature_col) == {
            'DAY', 'IS_WEEKEND', 'WEEKDAY', 'MONTH', 'YEAR', 'DAYOFYEAR',
            'WEEKOFYEAR', 'extra feature'
        }
        tsdata._check_basic_invariants()

        # interval = day, one_hot = ["WEEKDAY"]
        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col="value",
                                       extra_feature_col=["extra feature"],
                                       id_col="id")
        tsdata.gen_dt_feature(one_hot_features=["WEEKDAY"])
        assert set(tsdata.to_pandas().columns) == {
            'DAY', 'IS_WEEKEND', 'WEEKDAY_0', 'WEEKDAY_1', 'WEEKDAY_2',
            'WEEKDAY_3', 'WEEKDAY_4', 'WEEKDAY_5', 'WEEKDAY_6', 'MONTH',
            'YEAR', 'DAYOFYEAR', 'WEEKOFYEAR', 'extra feature', 'value',
            'datetime', 'id'
        }
        assert set(tsdata.feature_col) == {
            'DAY', 'IS_WEEKEND', 'WEEKDAY_0', 'WEEKDAY_1', 'WEEKDAY_2',
            'WEEKDAY_3', 'WEEKDAY_4', 'WEEKDAY_5', 'WEEKDAY_6', 'MONTH',
            'YEAR', 'DAYOFYEAR', 'WEEKOFYEAR', 'extra feature'
        }
        tsdata._check_basic_invariants()
Esempio n. 19
0
    def test_dt_sorted(self):
        df = pd.DataFrame({
            "datetime":
            np.array(['20000101', '20000102', '20000102', '20000101']),
            "value":
            np.array([1.9, 2.3, 2.4, 2.6]),
            "id":
            np.array(['00', '01', '00', '01'])
        })

        tsdata = TSDataset.from_pandas(df,
                                       target_col='value',
                                       dt_col='datetime')
        with pytest.raises(RuntimeError):
            tsdata._check_basic_invariants(strict_check=True)
Esempio n. 20
0
    def test_tsdataset_rolling_feature_multiple(self):
        df = get_multi_id_ts_df()
        horizon = random.randint(2, 10)
        lookback = random.randint(2, 20)
        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col="value",
                                       extra_feature_col=["extra feature"],
                                       id_col="id")
        tsdata.gen_rolling_feature(settings="minimal", window_size=lookback)
        tsdata._check_basic_invariants()
        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col="value",
                                       extra_feature_col=["extra feature"],
                                       id_col="id")
        tsdata.gen_rolling_feature(settings="minimal",
                                   window_size=lookback,
                                   n_jobs=2)
        tsdata._check_basic_invariants()

        # roll train
        tsdata.roll(lookback=lookback, horizon=horizon)
        x, y = tsdata.to_numpy()
        feature_num = len(tsdata.feature_col) + len(tsdata.target_col)
        assert x.shape == ((50 - lookback - horizon + 1) * 2, lookback,
                           feature_num)
        assert y.shape == ((50 - lookback - horizon + 1) * 2, horizon, 1)

        tsdata.roll(lookback=lookback, horizon=horizon, id_sensitive=True)
        x, y = tsdata.to_numpy()
        assert x.shape == ((50 - lookback - horizon + 1), lookback,
                           feature_num * 2)
        assert y.shape == ((50 - lookback - horizon + 1), horizon, 2)

        tsdata._check_basic_invariants()
Esempio n. 21
0
    def test_non_pd_datetime(self):
        df = get_non_dt()
        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col="value",
                                       extra_feature_col="extra feature",
                                       id_col="id")

        with pytest.raises(AssertionError):
            tsdata.resample('2D')
        with pytest.raises(AssertionError):
            tsdata.gen_dt_feature()
        with pytest.raises(AssertionError):
            tsdata.gen_rolling_feature(settings="minimal", window_size=1000)

        tsdata._check_basic_invariants()
Esempio n. 22
0
 def test_check_scale_sequence(self):
     df = get_multi_id_ts_df()
     # with split is True.
     td_train, td_valid, td_test = TSDataset.from_pandas(
         df,
         dt_col="datetime",
         target_col="value",
         extra_feature_col=["extra feature"],
         id_col="id",
         with_split=True,
         val_ratio=0.1,
         test_ratio=0.1)
     from sklearn.preprocessing import StandardScaler
     stand = StandardScaler()
     with pytest.raises(AssertionError):
         for tsdata in [td_train, td_valid, td_test]:
             tsdata.scale(stand, fit=False)
         tsdata._check_basic_invariants()
    def test_select_feature(self):
        sample_num = np.random.randint(100, 200)
        df = pd.DataFrame({
            "datetime":
            pd.date_range('1/1/2019', periods=sample_num),
            "value":
            np.random.randn(sample_num),
            "id":
            np.array(['00'] * sample_num)
        })
        train_ts, val_ts, _ = TSDataset.from_pandas(df,
                                                    target_col=['value'],
                                                    dt_col='datetime',
                                                    id_col='id',
                                                    with_split=True,
                                                    val_ratio=0.1)

        search_space = {
            'hidden_dim': hp.grid_search([32, 64]),
            'layer_num': hp.randint(1, 3),
            'lr': hp.choice([0.001, 0.003, 0.01]),
            'dropout': hp.uniform(0.1, 0.2)
        }

        input_feature_dim, output_feature_dim = 1, 1
        auto_estimator = AutoTSEstimator(model='lstm',
                                         search_space=search_space,
                                         past_seq_len=6,
                                         future_seq_len=1,
                                         input_feature_num=input_feature_dim,
                                         output_target_num=output_feature_dim,
                                         selected_features="auto",
                                         metric="mse",
                                         loss=torch.nn.MSELoss(),
                                         cpus_per_trial=2,
                                         name="auto_trainer")

        auto_estimator.fit(data=train_ts,
                           epochs=1,
                           batch_size=hp.choice([32, 64]),
                           validation_data=val_ts,
                           n_sampling=1)
        config = auto_estimator.get_best_config()
        assert config['past_seq_len'] == 6
    def test_future_list_input(self):
        sample_num = np.random.randint(100, 200)
        df = pd.DataFrame({
            "datetime":
            pd.date_range('1/1/2019', periods=sample_num),
            "value":
            np.random.randn(sample_num),
            "id":
            np.array(['00'] * sample_num)
        })
        train_ts, val_ts, _ = TSDataset.from_pandas(df,
                                                    target_col=['value'],
                                                    dt_col='datetime',
                                                    id_col='id',
                                                    with_split=True,
                                                    val_ratio=0.1)

        input_feature_dim, output_feature_dim = 1, 1
        auto_estimator = AutoTSEstimator(model='seq2seq',
                                         search_space="minimal",
                                         past_seq_len=6,
                                         future_seq_len=[1, 3],
                                         input_feature_num=input_feature_dim,
                                         output_target_num=output_feature_dim,
                                         selected_features="auto",
                                         metric="mse",
                                         loss=torch.nn.MSELoss(),
                                         cpus_per_trial=2,
                                         name="auto_trainer")

        auto_estimator.fit(data=train_ts,
                           epochs=1,
                           batch_size=hp.choice([32, 64]),
                           validation_data=val_ts,
                           n_sampling=1)
        config = auto_estimator.get_best_config()
        assert config['future_seq_len'] == 2
        assert auto_estimator._future_seq_len == [1, 3]
Esempio n. 25
0
    def test_tsdataset_to_torch_loader(self):
        df = get_ts_df()
        horizon = random.randint(1, 10)
        lookback = random.randint(1, 20)
        batch_size = random.randint(16, 32)

        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col="value",
                                       extra_feature_col=["extra feature"],
                                       id_col="id")

        with pytest.raises(RuntimeError):
            tsdata.to_torch_data_loader()

        tsdata.roll(lookback=lookback, horizon=horizon)
        loader = tsdata.to_torch_data_loader(batch_size=batch_size,
                                             lookback=lookback,
                                             horizon=horizon)
        for x_batch, y_batch in loader:
            assert tuple(x_batch.size()) == (batch_size, lookback, 2)
            assert tuple(y_batch.size()) == (batch_size, horizon, 1)
            break
Esempio n. 26
0
    def test_tsdataset_initialization_multiple(self):
        df = get_multi_id_ts_df()
        # legal input
        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col="value",
                                       extra_feature_col=["extra feature"],
                                       id_col="id")
        assert tsdata._id_list == ['00', '01']
        assert tsdata.feature_col == ["extra feature"]
        assert tsdata.target_col == ["value"]
        assert tsdata.dt_col == "datetime"
        assert tsdata._is_pd_datetime

        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col=["value"],
                                       extra_feature_col="extra feature",
                                       id_col="id")
        assert tsdata._id_list == ['00', '01']
        assert tsdata.feature_col == ["extra feature"]
        assert tsdata.target_col == ["value"]
        assert tsdata.dt_col == "datetime"
        assert tsdata._is_pd_datetime

        tsdata = TSDataset.from_pandas(df.drop(columns=["id"]),
                                       dt_col="datetime",
                                       target_col=["value"],
                                       extra_feature_col="extra feature")
        assert tsdata._id_list == ['0']
        assert tsdata.feature_col == ["extra feature"]
        assert tsdata.target_col == ["value"]
        assert tsdata.dt_col == "datetime"
        assert tsdata._is_pd_datetime

        # illegael input
        with pytest.raises(AssertionError):
            tsdata = TSDataset.from_pandas(df,
                                           dt_col="datetime",
                                           target_col=["value"],
                                           extra_feature_col="extra feature",
                                           id_col=0)
        with pytest.raises(AssertionError):
            tsdata = TSDataset.from_pandas(df,
                                           dt_col=0,
                                           target_col=["value"],
                                           extra_feature_col="extra feature",
                                           id_col="id")
        with pytest.raises(AssertionError):
            tsdata = TSDataset.from_pandas(df,
                                           dt_col="datetime",
                                           target_col=0,
                                           extra_feature_col="extra feature",
                                           id_col="id")
        with pytest.raises(AssertionError):
            tsdata = TSDataset.from_pandas(0,
                                           dt_col="datetime",
                                           target_col=["value"],
                                           extra_feature_col="extra feature",
                                           id_col="id")
        with pytest.raises(AssertionError):
            tsdata = TSDataset.from_pandas(df,
                                           dt_col="datetime",
                                           target_col=["value1"],
                                           extra_feature_col="extra feature",
                                           id_col="id")
Esempio n. 27
0
    def test_tsdataset_roll_single_id(self):
        df = get_ts_df()
        horizon = random.randint(1, 10)
        lookback = random.randint(1, 20)

        tsdata = TSDataset.from_pandas(df,
                                       dt_col="datetime",
                                       target_col="value",
                                       extra_feature_col=["extra feature"],
                                       id_col="id")

        with pytest.raises(RuntimeError):
            tsdata.to_numpy()

        # roll train, diff input.
        tsdata.roll(lookback=lookback, horizon=horizon)
        x, y = tsdata.to_numpy()
        assert x.shape == (len(df) - lookback - horizon + 1, lookback, 2)
        assert y.shape == (len(df) - lookback - horizon + 1, horizon, 1)

        tsdata.roll(lookback=lookback, horizon=horizon, id_sensitive=True)
        x, y = tsdata.to_numpy()
        assert x.shape == (len(df) - lookback - horizon + 1, lookback, 2)
        assert y.shape == (len(df) - lookback - horizon + 1, horizon, 1)

        # add extra_feature_col.
        tsdata.roll(lookback=lookback,
                    horizon=horizon,
                    feature_col=["extra feature"],
                    target_col="value")
        x, y = tsdata.to_numpy()
        assert x.shape == (len(df) - lookback - horizon + 1, lookback, 2)
        assert y.shape == (len(df) - lookback - horizon + 1, horizon, 1)

        tsdata.roll(lookback=lookback,
                    horizon=horizon,
                    feature_col=["extra feature"],
                    target_col="value",
                    id_sensitive=True)
        x, y = tsdata.to_numpy()
        assert x.shape == (len(df) - lookback - horizon + 1, lookback, 2)
        assert y.shape == (len(df) - lookback - horizon + 1, horizon, 1)

        tsdata.roll(lookback=lookback,
                    horizon=horizon,
                    feature_col=[],
                    target_col="value")
        x, y = tsdata.to_numpy()
        assert x.shape == (len(df) - lookback - horizon + 1, lookback, 1)
        assert y.shape == (len(df) - lookback - horizon + 1, horizon, 1)

        tsdata.roll(lookback=lookback,
                    horizon=horizon,
                    feature_col=[],
                    target_col="value",
                    id_sensitive=True)
        x, y = tsdata.to_numpy()
        assert x.shape == (len(df) - lookback - horizon + 1, lookback, 1)
        assert y.shape == (len(df) - lookback - horizon + 1, horizon, 1)

        # roll test.
        horizon = 0
        lookback = random.randint(1, 20)

        tsdata.roll(lookback=lookback, horizon=horizon)
        x, y = tsdata.to_numpy()
        assert x.shape == (len(df) - lookback - horizon + 1, lookback, 2)
        assert y is None

        tsdata.roll(lookback=lookback, horizon=horizon, id_sensitive=True)
        x, y = tsdata.to_numpy()
        assert x.shape == (len(df) - lookback - horizon + 1, lookback, 2)
        assert y is None
        tsdata._check_basic_invariants()
Esempio n. 28
0
    def test_tsdataset_to_torch_loader_roll(self):
        df_single_id = get_ts_df()
        df_multi_id = get_multi_id_ts_df()
        for df in [df_single_id, df_multi_id]:
            horizon = random.randint(1, 10)
            lookback = random.randint(1, 20)
            batch_size = random.randint(16, 32)

            tsdata = TSDataset.from_pandas(df,
                                           dt_col="datetime",
                                           target_col="value",
                                           extra_feature_col=["extra feature"],
                                           id_col="id")

            # train
            torch_loader = tsdata.to_torch_data_loader(batch_size=batch_size,
                                                       roll=True,
                                                       lookback=lookback,
                                                       horizon=horizon)
            for x_batch, y_batch in torch_loader:
                assert tuple(x_batch.size()) == (batch_size, lookback, 2)
                assert tuple(y_batch.size()) == (batch_size, horizon, 1)
                break

            # test
            torch_loader = tsdata.to_torch_data_loader(batch_size=batch_size,
                                                       roll=True,
                                                       lookback=lookback,
                                                       horizon=0)
            for x_batch in torch_loader:
                assert tuple(x_batch.size()) == (batch_size, lookback, 2)
                break

            # specify feature_col
            torch_loader = tsdata.to_torch_data_loader(batch_size=batch_size,
                                                       roll=True,
                                                       lookback=lookback,
                                                       horizon=horizon,
                                                       feature_col=[])
            for x_batch, y_batch in torch_loader:
                assert tuple(x_batch.size()) == (batch_size, lookback, 1)
                assert tuple(y_batch.size()) == (batch_size, horizon, 1)
                break

            # Non-subset relationship
            with pytest.raises(ValueError):
                tsdata.to_torch_data_loader(
                    batch_size=batch_size,
                    roll=True,
                    lookback=lookback,
                    horizon=horizon,
                    target_col=['value', 'extra feature'])

            # specify horizon_list
            horizon_list = [1, 3, 5]
            torch_loader = tsdata.to_torch_data_loader(batch_size=batch_size,
                                                       roll=True,
                                                       lookback=lookback,
                                                       horizon=horizon_list)
            for x_batch, y_batch in torch_loader:
                assert tuple(x_batch.size()) == (batch_size, lookback, 2)
                assert tuple(y_batch.size()) == (batch_size, len(horizon_list),
                                                 1)
                break

            # multi target_col
            tsdata = TSDataset.from_pandas(
                df,
                dt_col="datetime",
                target_col=["value", "extra feature"],
                id_col="id")
            torch_loader = tsdata.to_torch_data_loader(batch_size=batch_size,
                                                       roll=True,
                                                       lookback=lookback,
                                                       horizon=horizon)
            for x_batch, y_batch in torch_loader:
                assert tuple(x_batch.size()) == (batch_size, lookback, 2)
                assert tuple(y_batch.size()) == (batch_size, horizon, 2)
                break