Esempio n. 1
0
    def test_predict(self):
        np.random.seed(100)
        total_length = 6
        features = np.random.uniform(0, 1, (total_length, 2))
        label = (features).sum() + 0.4
        predict_data = self.sc.parallelize(range(0, total_length)).map(
            lambda i: Sample.from_ndarray(features[i], label))
        model = Linear(2, 1).set_init_method(Xavier(), Zeros()) \
            .set_name("linear1").set_seed(1234).reset()
        predict_result = model.predict(predict_data)
        p = predict_result.take(6)
        ground_label = np.array([[-0.47596836], [-0.37598032], [-0.00492062],
                                 [-0.5906958], [-0.12307882], [-0.77907401]], dtype="float32")
        for i in range(0, total_length):
            assert_allclose(p[i], ground_label[i], atol=1e-6, rtol=0)

        predict_result_with_batch = model.predict(features=predict_data,
                                                  batch_size=4)
        p_with_batch = predict_result_with_batch.take(6)
        for i in range(0, total_length):
            assert_allclose(p_with_batch[i], ground_label[i], atol=1e-6, rtol=0)

        predict_class = model.predict_class(predict_data)
        predict_labels = predict_class.take(6)
        for i in range(0, total_length):
            assert predict_labels[i] == 1
Esempio n. 2
0
    def test_predict(self):
        np.random.seed(100)
        total_length = 6
        features = np.random.uniform(0, 1, (total_length, 2))
        label = (features).sum() + 0.4
        predict_data = self.sc.parallelize(range(0, total_length)).map(
            lambda i: Sample.from_ndarray(features[i], label))
        model = Linear(2, 1).set_init_method(Xavier(), Zeros()) \
            .set_name("linear1").set_seed(1234).reset()
        predict_result = model.predict(predict_data)
        p = predict_result.take(6)
        ground_label = np.array([[-0.47596836], [-0.37598032], [-0.00492062],
                                 [-0.5906958], [-0.12307882], [-0.77907401]],
                                dtype="float32")
        for i in range(0, total_length):
            assert_allclose(p[i], ground_label[i], atol=1e-6, rtol=0)

        predict_result_with_batch = model.predict(features=predict_data,
                                                  batch_size=4)
        p_with_batch = predict_result_with_batch.take(6)
        for i in range(0, total_length):
            assert_allclose(p_with_batch[i],
                            ground_label[i],
                            atol=1e-6,
                            rtol=0)

        predict_class = model.predict_class(predict_data)
        predict_labels = predict_class.take(6)
        for i in range(0, total_length):
            assert predict_labels[i] == 1
Esempio n. 3
0
 def test_predict(self):
     np.random.seed(100)
     total_length = 6
     features = np.random.uniform(0, 1, (total_length, 2))
     label = (features).sum() + 0.4
     predict_data = self.sc.parallelize(range(0, total_length)).map(
         lambda i: Sample.from_ndarray(features[i], label))
     model = Linear(2, 1,
                    "Xavier").set_name("linear1").set_seed(1234).reset()
     predict_result = model.predict(predict_data)
     p = predict_result.take(6)
     ground_label = np.array([[-0.47596836], [-0.37598032], [-0.00492062],
                              [-0.5906958], [-0.12307882], [-0.77907401]],
                             dtype="float32")
     for i in range(0, total_length):
         self.assertTrue(
             np.allclose(p[i], ground_label[i], atol=1e-6, rtol=0))