Esempio n. 1
0
def build_distance_layers(cyt_coord, nuc_coord, rna_coord, normalized=True):
    """Compute distance layers as input for the model.

    Parameters
    ----------
    cyt_coord : np.ndarray, np.int64
        Array of cytoplasm boundaries coordinates with shape (nb_points, 2).
    nuc_coord : np.ndarray, np.int64
        Array of nucleus boundaries coordinates with shape (nb_points, 2).
    rna_coord : np.ndarray, np.int64
        Array of mRNAs coordinates with shape (nb_points, 2) or
        (nb_points, 3).
    normalized : bool
        Normalized the layers between 0 and 1.
    Returns
    -------
    distance_cyt : np.ndarray, np.float32
        A 2-d tensor with shape (y, x) showing distance to the cytoplasm
        border. Normalize between 0 and 1 if 'normalized' True.
    distance_nuc : np.ndarray, np.float32
        A 2-d tensor with shape (y, x) showing distance to the nucleus border.
        Normalize between 0 and 1 if 'normalized' True.

    """
    # check parameters
    stack.check_array(cyt_coord,
                      ndim=2,
                      dtype=[np.int64])
    if nuc_coord is not None:
        stack.check_array(nuc_coord,
                          ndim=2,
                          dtype=[np.int64])
    if rna_coord is not None:
        stack.check_array(rna_coord,
                          ndim=2,
                          dtype=[np.int64])
    stack.check_parameter(normalized=bool)

    # build surface binary matrices from coordinates
    cyt_surface, nuc_surface, rna_layer, _ = stack.from_coord_to_surface(
        cyt_coord=cyt_coord,
        nuc_coord=nuc_coord,
        rna_coord=rna_coord)

    # compute distances map for cytoplasm and nucleus
    cyt_distance = ndi.distance_transform_edt(cyt_surface)
    nuc_distance_ = ndi.distance_transform_edt(~nuc_surface)
    nuc_distance = cyt_surface * nuc_distance_

    if normalized:
        # cast to np.float32 and normalize it between 0 and 1
        cyt_distance = cyt_distance / cyt_distance.max()
        nuc_distance = nuc_distance / nuc_distance.max()

    # cast layer in float32
    cyt_distance = stack.cast_img_float32(cyt_distance)
    nuc_distance = stack.cast_img_float32(nuc_distance)
    rna_layer = stack.cast_img_float32(rna_layer)

    return cyt_distance, nuc_distance, rna_layer
Esempio n. 2
0
def test_log_filter():
    # float64
    y_float64 = stack.cast_img_float64(y)
    filtered_y_float64 = stack.log_filter(y_float64, 2)
    expected_y_float64 = np.array(
        [[0., 0., 0.02995949, 0.06212277, 0.07584532],
         [0., 0., 0.02581818, 0.05134284, 0.06123539],
         [0., 0., 0.01196859, 0.0253716, 0.02853162], [0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0.]],
        dtype=np.float64)
    assert_allclose(filtered_y_float64, expected_y_float64, rtol=1e-6)
    assert filtered_y_float64.dtype == np.float64

    # float32
    y_float32 = stack.cast_img_float32(y)
    filtered_y = stack.log_filter(y_float32, 2)
    expected_y = stack.cast_img_float32(expected_y_float64)
    assert_allclose(filtered_y, expected_y, rtol=1e-6)
    assert filtered_y.dtype == np.float32

    # uint8
    filtered_y = stack.log_filter(y, 2)
    expected_y = stack.cast_img_uint8(expected_y_float64)
    assert_array_equal(filtered_y, expected_y)
    assert filtered_y.dtype == np.uint8

    # uint16
    y_uint16 = stack.cast_img_uint16(y)
    filtered_y = stack.log_filter(y_uint16, 2)
    expected_y = stack.cast_img_uint16(expected_y_float64)
    assert_array_equal(filtered_y, expected_y)
    assert filtered_y.dtype == np.uint16
Esempio n. 3
0
def build_boundaries_layers(cyt_coord, nuc_coord, rna_coord):
    """

    Parameters
    ----------
    cyt_coord : np.ndarray, np.int64
        Array of cytoplasm boundaries coordinates with shape (nb_points, 2).
    nuc_coord : np.ndarray, np.int64
        Array of nucleus boundaries coordinates with shape (nb_points, 2).
    rna_coord : np.ndarray, np.int64
        Array of mRNAs coordinates with shape (nb_points, 2) or
        (nb_points, 3).

    Returns
    -------
    cyt_boundaries : np.ndarray, np.float32
        A 2-d binary tensor with shape (y, x) showing cytoplasm boundaries.
        border.
    nuc_boundaries : np.ndarray, np.float32
        A 2-d binary tensor with shape (y, x) showing nucleus boundaries.
    rna_layer : np.ndarray, np.float32
        Binary image of mRNAs localizations with shape (y, x).

    """
    # check parameters
    stack.check_array(cyt_coord,
                      ndim=2,
                      dtype=[np.int64])
    if nuc_coord is not None:
        stack.check_array(nuc_coord,
                          ndim=2,
                          dtype=[np.int64])
    if rna_coord is not None:
        stack.check_array(rna_coord,
                          ndim=2,
                          dtype=[np.int64])

    # build surface binary matrices from coordinates
    cyt_surface, nuc_surface, rna_layer, _ = stack.from_coord_to_surface(
        cyt_coord=cyt_coord,
        nuc_coord=nuc_coord,
        rna_coord=rna_coord)

    # from surface binary matrices to boundaries binary matrices
    cyt_boundaries = stack.from_surface_to_boundaries(cyt_surface)
    nuc_boundaries = stack.from_surface_to_boundaries(nuc_surface)

    # cast layer in float32
    cyt_boundaries = stack.cast_img_float32(cyt_boundaries)
    nuc_boundaries = stack.cast_img_float32(nuc_boundaries)
    rna_layer = stack.cast_img_float32(rna_layer)

    return cyt_boundaries, nuc_boundaries, rna_layer
def prepare_coordinate_data(cyt_coord, nuc_coord, rna_coord):
    # get a binary representation of the coordinates
    cyt, nuc = from_coord_to_matrix(cyt_coord, nuc_coord)
    rna_coord[:, 1:3] += stack.get_offset_value()

    # fill in masks
    mask_cyt, mask_nuc = stack.get_surface_layers(cyt, nuc, cast_float=False)

    # get mask cytoplasm outside nucleus
    mask_cyt_out = mask_cyt.copy()
    mask_cyt_out[mask_nuc] = False

    # compute distance maps for the cytoplasm and the nucleus
    distance_cyt, distance_nuc = stack.get_distance_layers(cyt,
                                                           nuc,
                                                           normalized=False)

    # normalize distance maps between 0 and 1
    distance_cyt_normalized = distance_cyt / distance_cyt.max()
    distance_cyt_normalized = stack.cast_img_float32(distance_cyt_normalized)
    distance_nuc_normalized = distance_nuc / distance_nuc.max()
    distance_nuc_normalized = stack.cast_img_float32(distance_nuc_normalized)

    # get rna outside nucleus
    mask_rna_in = mask_nuc[rna_coord[:, 1], rna_coord[:, 2]]
    rna_coord_out = rna_coord[~mask_rna_in]

    # get centroids
    centroid_cyt = get_centroid_surface(mask_cyt)
    centroid_nuc = get_centroid_surface(mask_nuc)
    centroid_rna = get_centroid_rna(rna_coord)
    if len(rna_coord_out) == 0:
        centroid_rna_out = centroid_cyt.copy()
    else:
        centroid_rna_out = get_centroid_rna(rna_coord_out)

    # get centroid distance maps
    distance_cyt_centroid = get_centroid_distance_map(centroid_cyt, mask_cyt)
    distance_nuc_centroid = get_centroid_distance_map(centroid_nuc, mask_cyt)
    distance_rna_out_centroid = get_centroid_distance_map(
        centroid_rna_out, mask_cyt)

    prepared_inputs = (mask_cyt, mask_nuc, mask_cyt_out, distance_cyt,
                       distance_nuc, distance_cyt_normalized,
                       distance_nuc_normalized, rna_coord_out, centroid_cyt,
                       centroid_nuc, centroid_rna, centroid_rna_out,
                       distance_cyt_centroid, distance_nuc_centroid,
                       distance_rna_out_centroid)

    return prepared_inputs
Esempio n. 5
0
def test_cast_float32(dtype):
    # from integer to np.float32
    if np.issubdtype(dtype, np.integer):
        x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
        tensor = np.array(x).reshape((3, 3)).astype(dtype)
        tensor[0, 0] = np.iinfo(dtype).min
        tensor[2, 2] = np.iinfo(dtype).max

    # from float to np.float32
    else:
        x = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 1.0]]
        tensor = np.array(x).reshape((3, 3)).astype(dtype)

    # cast in float32
    tensor_float32 = stack.cast_img_float32(tensor)
    assert tensor_float32.dtype == np.float32

    # check value
    if dtype in [np.uint8, np.uint16, np.uint32, np.uint64]:
        assert tensor_float32.min() == 0
        assert tensor_float32.max() == 1
    elif dtype in [np.int8, np.int16, np.int32, np.int64]:
        assert tensor_float32.min() == -1
        assert tensor_float32.max() == 1
    else:
        assert_array_almost_equal(tensor_float32, tensor)
Esempio n. 6
0
def test_cast_float32(dtype):
    # from integer to np.float32
    if np.issubdtype(dtype, np.integer):
        x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
        tensor = np.array(x).reshape((3, 3)).astype(dtype)
        tensor[2, 2] = np.iinfo(dtype).max

    # from float to np.float32
    else:
        x = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 1.0]]
        tensor = np.array(x).reshape((3, 3)).astype(dtype)

    # cast in float32
    if dtype == np.float64:
        with pytest.warns(UserWarning):
            tensor_float32 = stack.cast_img_float32(tensor)
    else:
        tensor_float32 = stack.cast_img_float32(tensor)
    assert tensor_float32.dtype == np.float32
Esempio n. 7
0
def test_gaussian_filter():
    # float64
    y_float64 = stack.cast_img_float64(y)
    filtered_y_float64 = stack.gaussian_filter(y_float64, 2)
    expected_y_float64 = np.array(
        [[0.08928096, 0.1573019, 0.22897881, 0.28086597, 0.3001061],
         [0.08668051, 0.14896399, 0.21282558, 0.25752308, 0.27253406],
         [0.07634613, 0.12664142, 0.17574502, 0.20765944, 0.2155001],
         [0.05890843, 0.09356377, 0.12493327, 0.1427122, 0.14374558],
         [0.03878372, 0.05873308, 0.07492625, 0.08201409, 0.07939603]],
        dtype=np.float64)
    assert_allclose(filtered_y_float64, expected_y_float64, rtol=1e-6)
    assert filtered_y_float64.dtype == np.float64

    # float32
    y_float32 = stack.cast_img_float32(y)
    filtered_y = stack.gaussian_filter(y_float32, 2)
    expected_y = stack.cast_img_float32(expected_y_float64)
    assert_allclose(filtered_y, expected_y, rtol=1e-6)
    assert filtered_y.dtype == np.float32

    # uint8
    with pytest.raises(ValueError):
        stack.gaussian_filter(y, 2, allow_negative=True)
    filtered_y = stack.gaussian_filter(y, 2)
    expected_y = stack.cast_img_uint8(expected_y_float64)
    assert_array_equal(filtered_y, expected_y)
    assert filtered_y.dtype == np.uint8

    # uint16
    y_uint16 = stack.cast_img_uint16(y)
    with pytest.raises(ValueError):
        stack.gaussian_filter(y_uint16, 2, allow_negative=True)
    filtered_y = stack.gaussian_filter(y_uint16, 2)
    expected_y = stack.cast_img_uint16(expected_y_float64)
    assert_array_equal(filtered_y, expected_y)
    assert filtered_y.dtype == np.uint16
Esempio n. 8
0
def test_background_removal_gaussian():
    # float64
    y_float64 = stack.cast_img_float64(y)
    filtered_y_float64 = stack.remove_background_gaussian(y_float64, 2)
    expected_y_float64 = np.array(
        [[0., 0., 0.01415845, 0.36227129, 0.],
         [0., 0., 0.25776265, 0.66404555, 0.43726986],
         [0., 0., 0.11052949, 0.59626213, 0.], [0., 0.42016172, 0., 0., 0.],
         [0., 0., 0., 0., 0.]],
        dtype=np.float64)
    assert_allclose(filtered_y_float64, expected_y_float64, rtol=1e-6)
    assert filtered_y_float64.dtype == np.float64

    # float32
    y_float32 = stack.cast_img_float32(y)
    filtered_y = stack.remove_background_gaussian(y_float32, 2)
    expected_y = stack.cast_img_float32(expected_y_float64)
    assert_allclose(filtered_y, expected_y, rtol=1e-6)
    assert filtered_y.dtype == np.float32

    # uint8
    with pytest.raises(ValueError):
        stack.gaussian_filter(y, 2, allow_negative=True)
    filtered_y = stack.remove_background_gaussian(y, 2)
    expected_y = stack.cast_img_uint8(expected_y_float64)
    assert_array_equal(filtered_y, expected_y)
    assert filtered_y.dtype == np.uint8

    # uint16
    y_uint16 = stack.cast_img_uint16(y)
    with pytest.raises(ValueError):
        stack.gaussian_filter(y_uint16, 2, allow_negative=True)
    filtered_y = stack.remove_background_gaussian(y_uint16, 2)
    expected_y = stack.cast_img_uint16(expected_y_float64)
    assert_array_equal(filtered_y, expected_y)
    assert filtered_y.dtype == np.uint16
def build_cyt_relief(image_projected, nuc_labelled, mask_cyt, alpha=0.8):
    """Compute a 2-d representation of the cytoplasm to be used by watershed
    algorithm.

    Cells are represented as watershed, with a low values to the center and
    maximum values at their borders.

    The equation used is:
        relief = alpha * relief_pixel + (1 - alpha) * relief_distance

    - 'relief_pixel' exploit the differences in pixel intensity values.
    - 'relief_distance' use the distance from the nuclei.

    Parameters
    ----------
    image_projected : np.ndarray, np.uint
        Projected image of the cytoplasm with shape (y, x).
    nuc_labelled : np.ndarray,
        Result of the nuclei segmentation with shape (y, x).
    mask_cyt : np.ndarray, bool
        Binary mask of the cytoplasm with shape (y, x).
    alpha : float or int
        Weight of the pixel intensity values to compute the relief. A value of
        0 and 1 respectively return 'relief_distance' and 'relief_pixel'.

    Returns
    -------
    relief : np.ndarray, np.uint
        Relief image of the cytoplasm with shape (y, x).

    """
    # check parameters
    stack.check_array(image_projected,
                      ndim=2,
                      dtype=[np.uint8, np.uint16])
    stack.check_array(nuc_labelled,
                      ndim=2,
                      dtype=[np.uint8, np.uint16, np.int64, bool])
    stack.check_array(mask_cyt,
                      ndim=2,
                      dtype=[bool])
    stack.check_parameter(alpha=(float, int))

    # use pixel intensity of the cytoplasm channel to compute the seed.
    if alpha == 1:
        relief = image_projected.copy()
        max_intensity = np.iinfo(image_projected.dtype).max
        relief = max_intensity - relief
        relief[nuc_labelled > 0] = 0
        relief[mask_cyt == 0] = max_intensity
        relief = stack.rescale(relief)

    # use distance from the nuclei
    elif alpha == 0:
        binary_mask_nuc = nuc_labelled > 0
        relief = ndi.distance_transform_edt(~binary_mask_nuc)
        relief[mask_cyt == 0] = relief.max()
        relief = np.true_divide(relief, relief.max(), dtype=np.float32)
        if image_projected.dtype == np.uint8:
            relief = stack.cast_img_uint8(relief)
        else:
            relief = stack.cast_img_uint16(relief)

    # use both previous methods
    elif 0 < alpha < 1:
        relief_pixel = image_projected.copy()
        max_intensity = np.iinfo(image_projected.dtype).max
        relief_pixel = max_intensity - relief_pixel
        relief_pixel[nuc_labelled > 0] = 0
        relief_pixel[mask_cyt == 0] = max_intensity
        relief_pixel = stack.rescale(relief_pixel)
        relief_pixel = stack.cast_img_float32(relief_pixel)
        binary_mask_nuc = nuc_labelled > 0
        relief_distance = ndi.distance_transform_edt(~binary_mask_nuc)
        relief_distance[mask_cyt == 0] = relief_distance.max()
        relief_distance = np.true_divide(relief_distance,
                                         relief_distance.max(),
                                         dtype=np.float32)
        relief = alpha * relief_pixel + (1 - alpha) * relief_distance
        if image_projected.dtype == np.uint8:
            relief = stack.cast_img_uint8(relief)
        else:
            relief = stack.cast_img_uint16(relief)

    else:
        raise ValueError("Parameter 'alpha' is wrong. Must be comprised "
                         "between 0 and 1. Currently 'alpha' is {0}"
                         .format(alpha))

    return relief
Esempio n. 10
0
def prepare_coordinate_data(cyt_coord, nuc_coord, rna_coord):
    """

    Parameters
    ----------
    cyt_coord
    nuc_coord
    rna_coord

    Returns
    -------

    """
    # convert coordinates in binary mask surfaces
    mask_cyt, mask_nuc, _, rna_coord = stack.from_coord_to_surface(
        cyt_coord=cyt_coord,
        nuc_coord=nuc_coord,
        rna_coord=rna_coord,
        external_coord=True)

    # get mask cytoplasm outside nucleus
    mask_cyt_out = mask_cyt.copy()
    mask_cyt_out[mask_nuc] = False

    # compute distance maps for the cytoplasm and the nucleus
    distance_cyt = ndi.distance_transform_edt(mask_cyt)
    distance_nuc_ = ndi.distance_transform_edt(~mask_nuc)
    distance_nuc = mask_cyt * distance_nuc_

    # cast distance map in float32
    distance_cyt = distance_cyt.astype(np.float32)
    distance_nuc = distance_nuc.astype(np.float32)

    # normalize distance maps between 0 and 1
    distance_cyt_normalized = distance_cyt / distance_cyt.max()
    distance_cyt_normalized = stack.cast_img_float32(distance_cyt_normalized)
    distance_nuc_normalized = distance_nuc / distance_nuc.max()
    distance_nuc_normalized = stack.cast_img_float32(distance_nuc_normalized)

    # get rna outside nucleus
    mask_rna_in = mask_nuc[rna_coord[:, 1], rna_coord[:, 2]]
    rna_coord_out = rna_coord[~mask_rna_in]

    # get centroids
    centroid_cyt = _get_centroid_surface(mask_cyt)
    centroid_nuc = _get_centroid_surface(mask_nuc)
    if len(rna_coord) == 0:
        centroid_rna = centroid_cyt.copy()
    else:
        centroid_rna = _get_centroid_rna(rna_coord)
    if len(rna_coord_out) == 0:
        centroid_rna_out = centroid_cyt.copy()
    else:
        centroid_rna_out = _get_centroid_rna(rna_coord_out)

    # get centroid distance maps
    distance_cyt_centroid = _get_centroid_distance_map(centroid_cyt, mask_cyt)
    distance_nuc_centroid = _get_centroid_distance_map(centroid_nuc, mask_cyt)
    distance_rna_out_centroid = _get_centroid_distance_map(
        centroid_rna_out, mask_cyt)

    prepared_inputs = (mask_cyt, mask_nuc, mask_cyt_out, distance_cyt,
                       distance_nuc, distance_cyt_normalized,
                       distance_nuc_normalized, rna_coord_out, centroid_cyt,
                       centroid_nuc, centroid_rna, centroid_rna_out,
                       distance_cyt_centroid, distance_nuc_centroid,
                       distance_rna_out_centroid)

    return prepared_inputs