Esempio n. 1
0
def bigFloat_nCr(n, r):
    '''
    Outputs:
    - ret_val: bigFloat, n choose r
    '''
    ret_val = bf.factorial(n) / (bf.factorial(r) * bf.factorial(n - r))
    return ret_val
Esempio n. 2
0
 def factorial(n, approx_threshold=100):
     # start_time = time.time()
     if approx_threshold < 0 or n < approx_threshold:
         result = bf.factorial(n)
     else:
         result = math.sqrt(2 * math.pi * n) * bf.pow(n / math.e, n)
     # end_time = time.time()
     # print(end_time - start_time)
     return result
Esempio n. 3
0
    def degdist_bigfloat(self, maxdeg, n, mindeg=0):
        """Returns the degree distribution from 0 to maxdeg degree.

        It should be use with the (iterated) link probability measure.

        Parameters:
          maxdeg: the maximal degree for we calculate the degree distribution
          n: the size of the network (the number of vertices)

        Returns:
            rho: the degree distribution as a list with length of maxdeg+1.
                The index k gives the probability of having degree k.
        """

        assert isinstance(n, int) and isinstance(maxdeg, int) and n > maxdeg
        import bigfloat
        context = bigfloat.Context(precision=10)
        divs = self.divs
        n_intervals = len(divs)
        lengths = [divs[i] - divs[i - 1] for i in xrange(1, n_intervals)]
        lengths.insert(0, divs[0])
        log_lengths = numpy.log(lengths)
        # Eq. 5, where ...
        avgdeg = [
            bigfloat.BigFloat(n * sum(
                [self.probs[i][j] * lengths[j] for j in xrange(n_intervals)]),
                              context=context) for i in xrange(n_intervals)
        ]
        #log_factorial = [ 0.5*bigfloat.log(2*math.pi, context=context) + (d+.5)*bigfloat.log(d, context=context) - d
        #                 for d in xrange(1,maxdeg+1) ]
        log_factorial = [
            bigfloat.log(bigfloat.factorial(k), context=context)
            for k in xrange(1, maxdeg + 1)
        ]
        log_factorial.insert(0, 0)

        rho = [bigfloat.BigFloat(0, context=context)] * (maxdeg + 1)
        # Eq. 4
        for i in xrange(n_intervals):
            # Eq. 5
            log_rho_i = [
                (bigfloat.mul(k, bigfloat.log(avgdeg[i]), context=context) -
                 log_factorial[k] - avgdeg[i])
                for k in xrange(mindeg, maxdeg + 1)
            ]
            log_rho_i_length = [
                log_rho_i[k] + log_lengths[i]
                for k in xrange(mindeg, maxdeg + 1)
            ]
            for k in xrange(mindeg, maxdeg + 1):
                rho[k] += bigfloat.exp(log_rho_i_length[k], context=context)
        return rho
Esempio n. 4
0
    def degdist_bigfloat(self, maxdeg, n, mindeg=0):
        """Returns the degree distribution from 0 to maxdeg degree.

        It should be use with the (iterated) link probability measure.

        Parameters:
          maxdeg: the maximal degree for we calculate the degree distribution
          n: the size of the network (the number of vertices)

        Returns:
            rho: the degree distribution as a list with length of maxdeg+1.
                The index k gives the probability of having degree k.
        """

        assert isinstance(n, int) and isinstance(maxdeg, int) and n > maxdeg
        import bigfloat
        context = bigfloat.Context(precision=10)
        divs = self.divs
        n_intervals = len(divs)
        lengths = [divs[i] - divs[i-1] for i in xrange(1, n_intervals)]
        lengths.insert(0, divs[0])
        log_lengths = numpy.log(lengths)
        # Eq. 5, where ...
        avgdeg = [bigfloat.BigFloat(n*sum([self.probs[i][j]*lengths[j]
                  for j in xrange(n_intervals)]), context=context) for i in xrange(n_intervals)]
        #log_factorial = [ 0.5*bigfloat.log(2*math.pi, context=context) + (d+.5)*bigfloat.log(d, context=context) - d
        #                 for d in xrange(1,maxdeg+1) ]
        log_factorial = [bigfloat.log(bigfloat.factorial(k), context=context)
                         for k in xrange(1, maxdeg+1)]
        log_factorial.insert(0, 0)

        rho = [bigfloat.BigFloat(0, context=context)] * (maxdeg+1)
        # Eq. 4
        for i in xrange(n_intervals):
            # Eq. 5
            log_rho_i = [(bigfloat.mul(k, bigfloat.log(avgdeg[i]), context=context) - log_factorial[k] - avgdeg[i])
                         for k in xrange(mindeg, maxdeg+1)]
            log_rho_i_length = [log_rho_i[k] + log_lengths[i]
                         for k in xrange(mindeg, maxdeg+1)]
            for k in xrange(mindeg, maxdeg+1):
                rho[k] += bigfloat.exp(log_rho_i_length[k], context=context)
        return rho
Esempio n. 5
0
def c(n, k):
    with precision(bigFloatPrecision):
        return factorial(n) / factorial(n - k) / factorial(k)
Esempio n. 6
0
 def lasum(self, x):
     return 1 + sum(bigfloat.pow(x, f) / bigfloat.factorial(f) for f in range(1, self.f))