Esempio n. 1
0
def f75(n):
    s = BigFloat(0)
    for i in range(1, n + 1):
        expr = 1 / (1 - 2**BigFloat(-i)) - 1
        s += bigchoose(n, i) * 2**i * (-1)**(i + 1) * expr

    return 1.0 / 2 * s
Esempio n. 2
0
    def calc_ratio(n):
        l = BigFloat(0)
        h = BigFloat(1)
        m = (l + h) * 0.5

        def calc_y1(x):
            return x / n

        def diff(x):
            return (calc_y1(x) - (1 - sqrt(1 - (1 - x)**2)))

        m_d = diff(m)
        DIFF = BigFloat('1e-20')
        while abs(m_d) > DIFF:
            if m_d < 0:
                l = m
            else:
                h = m
            m = (l + h) * 0.5
            m_d = diff(m)
        x = x1 = m
        y1 = calc_y1(x)
        left_area = x1 * y1 * 0.5
        right_area = ((y1 + 1) * (1 - x1) * 0.5 - asin(1 - x1) * 0.5)
        return ((left_area + right_area) / L_sect_area)
Esempio n. 3
0
def f66(n):
    s1 = BigFloat(0)
    for mu in range(1, MAX_MU):
        s2 = BigFloat(0)
        for i in range(0, n + 1):
            s2 += bigchoose(n, i) * (-(2**(1 - mu)))**i
        s1 += 1 - s2
    return 1.0 / 2 * s1
Esempio n. 4
0
 def test_get_f(self):
     alpha = math.pi / 4
     beta = math.pi / 4
     a = BigFloat.exact(0.2)
     b = BigFloat.exact(0.6)
     wavelength = BigFloat.exact(0.1)
     f = processor.get_f(alpha, beta, a, b, wavelength)
     self.assertAlmostEqual(f, 1.002 * 10 ** (-5))
Esempio n. 5
0
    def generate_random_gaussian(cls, n_dimensions, one_vector):
        mean = np.array([BigFloat.exact("0", precision=110)] * n_dimensions)
        sigma = np.array([BigFloat.exact("0", precision=110)] * n_dimensions)

        for i in range(n_dimensions):
            # TODO: Multivariate normal should accept 0 values, not require just a small value.
            mean[i] = one_vector.component(i) + random.randint(-100, 100) / 50
            # sigma[i][i] = random.randint(100, 1000) / 0.5
            sigma[i] = 3e1

        return Gaussian(mean, sigma)
Esempio n. 6
0
    def mk_bfc(self, x, y):

        from bigfloat import BigFloat, precision
        from mbrat.util import Arguments

        with precision(self.prec):
            bf_x = BigFloat.exact(x)
            bf_y = BigFloat.exact(y)

        return Arguments(
            {'real': bf_x, 'imag': bf_y},
            string="bfc(real='{0}', imag='{1}')".format(bf_x, bf_y) )
Esempio n. 7
0
def f69(n):
    odd_bound = int(math.floor((n - 1) / 2))
    even_bound = int(math.floor(n / 2))

    s1 = BigFloat(0)
    for mu in range(1, MAX_MU):
        s2 = BigFloat(0)
        for k in range(0, odd_bound + 1):
            s2 += bigchoose(n, 2 * k + 1) * 2**((1 - mu) * (2 * k + 1))
        s3 = BigFloat(0)
        for k in range(1, even_bound + 1):
            s3 += bigchoose(n, 2 * k) * 2**((1 - mu) * 2 * k)
        s1 += s2 - s3
    return 1.0 / 2 * s1
Esempio n. 8
0
def f74(n):
    odd_bound = int(math.floor((n - 1) / 2))
    even_bound = int(math.floor(n / 2))

    s10 = BigFloat(0)
    for k in range(0, odd_bound + 1):
        s1 = 1 / (1 - 2**(-(2 * BigFloat(k) + 1)))
        s10 += bigchoose(n, 2 * k + 1) * 2**(2 * k + 1) * (s1 - 1)

    s20 = BigFloat(0)
    for k in range(1, even_bound + 1):
        s2 = 1 / (1 - 2**(-2 * BigFloat(k)))
        s20 += bigchoose(n, 2 * k) * 2**(2 * k) * (s2 - 1)

    return 1.0 / 2 * (s10 - s20)
Esempio n. 9
0
 def __json_list_to_numpy_list(self, jsonList):
     newList = []
     for v in iter(jsonList):
         newList.append(
             BigFloat.exact(v[Gaussian.__VALUE],
                            precision=v[Gaussian.__PRECISION]))
     return np.array(newList)
Esempio n. 10
0
def f76(n):
    s = BigFloat(0)
    for i in range(1, n + 1):
        expr = 2**i / (2**i - 1)
        s += bigchoose(n, i) * (-1)**(i + 1) * expr

    return 1.0 / 2 * s
def compute_boltzmann(energies, debug):
    # create Boltzmann distribution
    # https://en.wikipedia.org/wiki/Boltzmann_distribution
    # p_i = exp( -E_i / kT ) / ∑ exp( -E_j / kT )
    # where:
    #    p_i is the probability of state i occuring
    #    E_i is the energy of state i
    #    E_j is the energy of state j, where the ∑ in the denominator
    #    iterates over all states j
    # first we calculate exp( -E_i / kT ) for all states
    if len(energies) == 0:
        return []
    if debug:
        print("Boltzmann Distribution")
    divisor = BigFloat.exact(0.0)
    for energy in energies:
        ep = bigfloat.exp(-energy)
        if debug:
            print("energy, ep = %g, %g" % (energy, ep))
        # divisor = ∑ exp( -E_j / kT )
        divisor += ep
    probabilities = []
    for energy in energies:
        # p_i = exp( -E_i / kT ) / divisor
        numerator = bigfloat.exp(-energy)
        probability = numerator / divisor
        # save probability to dictionary
        probabilities.append(float(probability))
        if debug:
            print("%s / %s = %s" % (numerator, divisor, probability))

    return probabilities
Esempio n. 12
0
def __super_vectors_mean(svectors, weights):
    dimensions = svectors[0].dimensions()
    mean = np.array([BigFloat.exact("0", precision=110)] * dimensions)
    for i in range(dimensions):
        for svec_id in range(len(svectors)):
            mean[i] += svectors[svec_id].component(i) * weights[svec_id]
        mean[i] /= sum(weights)
    return mean
Esempio n. 13
0
 def __init__(self, size, cellSize, distance):
     self.size = np.array(size)
     self.cellSize = np.array(cellSize).astype(BigFloat)
     self.distance = BigFloat(distance)
     # Angle binning of detector
     self.anglePerCell = [
         bf.atan(cellSize / self.distance) for cellSize in self.cellSize
     ]
Esempio n. 14
0
 def test_empty_format_matches_str(self):
     test_values = [
         BigFloat("0.0"),
         BigFloat("-0.0"),
         BigFloat("1.0"),
         BigFloat("-2.3"),
         BigFloat("1e100"),
         BigFloat("1e-100"),
         BigFloat("nan"),
         BigFloat("inf"),
         BigFloat("-inf"),
     ]
     for value in test_values:
         self.assertEqual(str(value), format(value, ""))
Esempio n. 15
0
 def test_empty_format_matches_str(self):
     test_values = [
         BigFloat('0.0'),
         BigFloat('-0.0'),
         BigFloat('1.0'),
         BigFloat('-2.3'),
         BigFloat('1e100'),
         BigFloat('1e-100'),
         BigFloat('nan'),
         BigFloat('inf'),
         BigFloat('-inf'),
     ]
     for value in test_values:
         self.assertEqual(str(value), format(value, ''))
Esempio n. 16
0
 def __init__(self, pos, directionAngles):
     self.pos = np.array(pos)
     self.directionAngles = np.array(directionAngles).astype(BigFloat)
     assert (len(directionAngles) == 2)
     self.dir = np.array([
         BigFloat(1),
         bf.atan(directionAngles[0]),
         bf.atan(directionAngles[1])
     ])
Esempio n. 17
0
def f73(n):
    odd_bound = int(math.floor((n - 1) / 2))
    even_bound = int(math.floor(n / 2))

    s10 = BigFloat(0)
    for k in range(0, odd_bound + 1):
        s1 = BigFloat(0)
        for mu in range(0, MAX_MU):
            s1 += (2**(2 * k + 1))**(-mu)
        s10 += bigchoose(n, 2 * k + 1) * 2**(2 * k + 1) * (s1 - 1)

    s20 = BigFloat(0)
    for k in range(1, even_bound + 1):
        s2 = BigFloat(0)
        for mu in range(0, MAX_MU):
            s2 += (2**(2 * k))**(-mu)
        s20 += bigchoose(n, 2 * k) * 2**(2 * k) * (s2 - 1)

    return 1.0 / 2 * (s10 - s20)
Esempio n. 18
0
def transform(s, l):
    with precision(100):
        ret = [BigFloat(0) for x in xrange(1 + s * (len(l)-1))]
        prev = [1]
        for i, v in enumerate(l):
            if i > 0:
                f = BigFloat(1) / (BigFloat(s) ** i)
                new = [BigFloat(0) for x in xrange(1 + s * i)]
                for faceval in xrange(1, s+1):
                    for idx, val in enumerate(prev):
                        new[idx+faceval] += val
                if v > 0:
                    for idx, val in enumerate(new):
                        ret[idx] += val * v * f
                prev = new
        # while ret[-1] == 0:
        #     ret.pop()
        print("s = ", s, " ; ret = ", ["%f" % x for x in ret])
        sys.stdout.flush()
        return [x/sum(ret) for x in ret]
Esempio n. 19
0
def calcPhase(particle, detector, sim, waveLen):
    """Calculate the phase the particle has at the detector (current phase assumed to be 0)"""
    detCellIdx = getBinnedDetCellIdx(particle, detector, sim)
    #print("Target angles:", (detCellIdx - detector.size / 2) * detector.anglePerCell)
    dx = detector.distance + (sim.size[0] - particle.pos[0]) * sim.cellSize[0]
    dzdy = (detCellIdx - detector.size / 2) * detector.cellSize
    dydz = np.flipud(dzdy) + (sim.size[1:] / 2 -
                              particle.pos[1:]) * sim.cellSize[1:]
    distance = bf.sqrt(dx**2 + dydz[0]**2 + dydz[1]**2)
    phase = 2 * bf.const_pi() / BigFloat(waveLen) * distance
    phase = bf.mod(phase, 2 * bf.const_pi())
    return phase
Esempio n. 20
0
def __probabilities_to_weights(probabilities):
    weights = []
    sums = np.array([BigFloat.exact("0", precision=110)] *
                    len(probabilities[0]))
    for p in iter(probabilities):
        weights.append(np.array(p))
        sums += weights[len(weights) - 1]

    for i in range(len(weights)):
        weights[i] /= sums

    return weights
Esempio n. 21
0
def __super_vectors_sigma(svectors, mean, weights):
    dimensions = svectors[0].dimensions()
    values_from_dimensions = __supervectors_to_array_of_values_for_each_dimension(
        svectors)
    sigma = np.array([BigFloat.exact("0", precision=110)] * dimensions)
    for i in range(dimensions):
        sigma[i] = __weighted_variance(mean[i], values_from_dimensions[i],
                                       weights)
        # if math.isclose(sigma[i], 0, abs_tol=3.0e-20):
        # print(sigma[i][i])
        # raise NoVarianceException
        # sigma[i] = 3.0e-20
    return sigma
Esempio n. 22
0
def calcPhaseFarField(particle, sim, waveLen):
    """Calculate the phase the particle has at the detector in the far field"""
    # Only scatter in 1 direction
    assert (particle.directionAngles[0] == 0
            or particle.directionAngles[1] == 0)
    # One of the sin is 0 -> Ok to use addition instead of a full projection
    pathDiff = particle.pos[1] * sim.cellSize[1] * bf.sin(particle.directionAngles[0]) + \
               particle.pos[2] * sim.cellSize[2] * bf.sin(particle.directionAngles[1])
    # Negate as increasing position decreases phase
    pathDiff = -pathDiff
    phase = 2 * bf.const_pi() / BigFloat(waveLen) * pathDiff
    phase = bf.mod(phase, 2 * bf.const_pi())
    return phase
Esempio n. 23
0
    def invert(lower: BigFloat, upper: BigFloat, precision_of_result: int) -> ExactRealProgram:
        context_down = bf.precision(precision_of_result) + bf.RoundTowardNegative
        context_up = bf.precision(precision_of_result) + bf.RoundTowardPositive

        # interval doesn't contain zero then invert and flip [1 / y2, 1 / y1]
        if (lower > 0 and upper > 0) or (lower < 0 and upper < 0):
            inv_lower = bf.div(1, upper, context_down)
            inv_upper = bf.div(1, lower, context_up)
            lw = [0, -float(inv_upper)**2]
            uw = [-float(inv_lower)**2, 0]

        # [lower, 0] -> [-infty, 1 / y1]
        elif lower < 0 and upper == 0:
            inv_lower = BigFloat('-inf')
            inv_upper = bf.div(1, lower, context_up)
            lw = [0, float('nan')]
            uw = [-float(inv_lower)**2, 0]

        # [0, upper] -> [1 / y2, infty]
        elif lower == 0 and upper > 0:
            inv_lower = bf.div(1, upper, context_down)
            inv_upper = BigFloat('inf')
            lw = [0, -float(inv_upper)**2]
            uw = [float('nan'), 0]

        # If the interval includes 0 just give up and return [-infty, infty]
        # Note: an alternative is to split up intervals, but that's too tricky for now
        elif lower < 0 < upper:
            inv_lower = BigFloat('-inf')
            inv_upper = BigFloat('inf')
            lw = [0, float('nan')]
            uw = [float('nan'), 0]

        # Interval is probably such that lower is greater than upper
        else:
            raise ValueError("Input interval is invalid for division")

        return inv_lower, inv_upper, lw, uw
Esempio n. 24
0
def transform_brute(s, l):
    with precision(100):
        ret = [BigFloat(0) for x in xrange(1 + s * (len(l)-1))]
        for i, v in enumerate(l):
            if i == 0:
                continue

            def rec(sum_, c):
                if i == c:
                    ret[sum_] += BigFloat(v)/(BigFloat(s)**i)
                else:
                    for x in xrange(1, s+1):
                        rec(sum_+x, c+1)
            rec(0, 0)
        return [x/sum(ret) for x in ret]
Esempio n. 25
0
 def test_invalid_formats(self):
     invalid_formats = [
         # Can't specify fill/align *and* zero padding at once ...
         "X<010.2f",
         ">010.2f",
         " ^010.2f",
         "=010.2f",
         # ... even if the fill/align matches the zero padding!
         "0=010.2f",
         # a . must be followed by a precision.
         ".f",
         "10.g",
     ]
     for fmt in invalid_formats:
         with self.assertRaises(ValueError):
             format(BigFloat(2), fmt)
Esempio n. 26
0
def calc_variance_brute(x12):
    s = 20
    with precision(100):
        s_sq = [0, 0, 0]
        for i, v in enumerate(x12):
            if i > 0:
                f = BigFloat(1) / (BigFloat(s) ** i)
                print("i = ", i)

                def rec(s_sq, sum_, c):
                    if (c == i):
                        s_sq[0] += f * v * sum_ * sum_
                        s_sq[1] += f * v * sum_
                        s_sq[2] += f * v
                    else:
                        for x in xrange(1, 21):
                            rec(s_sq, sum_+x, c+1)
                rec(s_sq, 0, 0)
        print("s_sq = ", s_sq)
        return (BigFloat(s_sq[0])/BigFloat(s_sq[2]) -
                ((BigFloat(s_sq[1])/BigFloat(s_sq[2]))**2))
Esempio n. 27
0
    def test_format(self):
        # Fixed precision formatting.
        test_triples = [
            (BigFloat(2), ".6f", "2.000000"),
            # 'F' behaves the same as 'f' except for infinities and nans.
            (BigFloat(2), ".6F", "2.000000"),
            # Extra zeros in the precision should be fine.
            (BigFloat(2), ".06f", "2.000000"),
            (BigFloat(2), ".5f", "2.00000"),
            # . only retained with 'alternate' formatting
            (BigFloat(2), ".0f", "2"),
            # Default precision is 6.
            (BigFloat(2), "f", "2.000000"),
            (BigFloat('nan'), "f", "nan"),
            (BigFloat('-nan'), "f", "nan"),
            (BigFloat('inf'), "f", "inf"),
            (BigFloat('-inf'), "f", "-inf"),
            (BigFloat('nan'), "F", "NAN"),
            (BigFloat('-nan'), "F", "NAN"),
            (BigFloat('inf'), "F", "INF"),
            (BigFloat('-inf'), "F", "-INF"),
            # Rounding behaviour.
            (BigFloat('3.1415926535'), ".6f", "3.141593"),
            (BigFloat('3.1415926535'), ".5f", "3.14159"),
            (BigFloat('3.1415926535'), ".4f", "3.1416"),
            (BigFloat('3.1415926535'), ".3f", "3.142"),
            (BigFloat('3.1415926535'), ".2f", "3.14"),
            (BigFloat('3.1415926535'), ".1f", "3.1"),
            (BigFloat('3.1415926535'), ".0f", "3"),
            # Sign specification.
            (BigFloat(+2), "+.3f", "+2.000"),
            (BigFloat(-2), "+.3f", "-2.000"),
            (BigFloat(+2), " .3f", " 2.000"),
            (BigFloat(-2), " .3f", "-2.000"),
            (BigFloat(+2), "-.3f", "2.000"),
            (BigFloat(-2), "-.3f", "-2.000"),
            (BigFloat(+2), ".3f", "2.000"),
            (BigFloat(-2), ".3f", "-2.000"),
            # With infinities and nans; note that MPFR doesn't include
            # these signs.
            (BigFloat('+inf'), "+.3f", "+inf"),
            (BigFloat('-inf'), "+.3f", "-inf"),
            (BigFloat('+nan'), "+.3f", "+nan"),
            (BigFloat('+inf'), "-.3f", "inf"),
            (BigFloat('-inf'), "-.3f", "-inf"),
            (BigFloat('+nan'), "-.3f", "nan"),
            (BigFloat('+inf'), " .3f", " inf"),
            (BigFloat('-inf'), " .3f", "-inf"),
            (BigFloat('+nan'), " .3f", " nan"),
            # Alternate formatting.
            (BigFloat(2), "#.0f", "2."),
            (BigFloat(2), "+#.0f", "+2."),
            # Minimum field width.
            (BigFloat(2), "10.3f", "     2.000"),
            (BigFloat(2), "6.3f", " 2.000"),
            (BigFloat(2), "5.3f", "2.000"),
            (BigFloat(2), "4.3f", "2.000"),
            (BigFloat(2), "1.3f", "2.000"),
            # Minimum field width in combination with sign.
            (BigFloat(2), "+10.3f", "    +2.000"),
            (BigFloat(-23), "+10.3f", "   -23.000"),
            # Zero padding.
            (BigFloat(2), "010.3f", "000002.000"),
            (BigFloat(2), "+010.3f", "+00002.000"),
            (BigFloat(2), " 010.3f", " 00002.000"),
            (BigFloat(2), "0010.3f", "000002.000"),
            # Alignment and filling.
            (BigFloat(2), "<10.3f", "2.000     "),
            (BigFloat(2), ">10.3f", "     2.000"),
            (BigFloat(2), "^10.3f", "  2.000   "),
            (BigFloat(2), "<10.2f", "2.00      "),
            (BigFloat(2), ">10.2f", "      2.00"),
            (BigFloat(2), "^10.2f", "   2.00   "),
            (BigFloat(2), "<4.2f", "2.00"),
            (BigFloat(2), ">4.2f", "2.00"),
            (BigFloat(2), "^4.2f", "2.00"),
            (BigFloat(2), "<3.2f", "2.00"),
            (BigFloat(2), ">3.2f", "2.00"),
            (BigFloat(2), "^3.2f", "2.00"),
            (BigFloat(2), "X<10.3f", "2.000XXXXX"),
            (BigFloat(2), "X>10.3f", "XXXXX2.000"),
            (BigFloat(2), "X^10.3f", "XX2.000XXX"),
            (BigFloat(2), "X<10.2f", "2.00XXXXXX"),
            (BigFloat(2), "X>10.2f", "XXXXXX2.00"),
            (BigFloat(2), "X^10.2f", "XXX2.00XXX"),
            (BigFloat(2), "X<4.2f", "2.00"),
            (BigFloat(2), "X>4.2f", "2.00"),
            (BigFloat(2), "X^4.2f", "2.00"),
            (BigFloat(2), "X<3.2f", "2.00"),
            (BigFloat(2), "X>3.2f", "2.00"),
            (BigFloat(2), "X^3.2f", "2.00"),
            (BigFloat(2), "X=+10.3f", "+XXXX2.000"),
            (BigFloat(2), " =+10.3f", "+    2.000"),
            (BigFloat(2), "0=+10.3f", "+00002.000"),
            (BigFloat(2), "\x00=+10.3f", "+\x00\x00\x00\x002.000"),
            (BigFloat(2), "\n=+10.3f", "+\n\n\n\n2.000"),

            # e-style formatting
            (BigFloat(2), ".6e", "2.000000e+00"),
            (BigFloat(3.141592653589793), ".6e", "3.141593e+00"),
            (BigFloat(3.141592653589793), ".6E", "3.141593E+00"),
            (BigFloat(314.1592653589793), ".6e", "3.141593e+02"),
            (BigFloat(314.1592653589793), ".6E", "3.141593E+02"),
            (BigFloat('nan'), "e", "nan"),
            (BigFloat('-nan'), "e", "nan"),
            (BigFloat('inf'), "e", "inf"),
            (BigFloat('-inf'), "e", "-inf"),
            (BigFloat('nan'), "E", "NAN"),
            (BigFloat('-nan'), "E", "NAN"),
            (BigFloat('inf'), "E", "INF"),
            (BigFloat('-inf'), "E", "-INF"),
            (BigFloat(314.1592653589793), ".0e", "3e+02"),
            (BigFloat(314.1592653589793), "#.0e", "3.e+02"),
            (BigFloat(314.1592653589793), "e", "3.1415926535897933e+02"),
            (BigFloat(314.1592653589793), "6e", "3.1415926535897933e+02"),

            # g-style formatting
            (BigFloat(3.141592653589793), ".7g", "3.141593"),
            (BigFloat(3.141592653589793), ".7G", "3.141593"),
            (BigFloat(314.1592653589793), ".7g", "314.1593"),
            (BigFloat(31415.92653589793), ".7g", "31415.93"),
            (BigFloat(3141592.653589793), ".7g", "3141593"),
            (BigFloat(3141592.653589793), ".7G", "3141593"),
            (BigFloat(31415926.53589793), ".7g", "3.141593e+07"),
            (BigFloat(31415926.53589793), ".7G", "3.141593E+07"),
            (BigFloat('nan'), "g", "nan"),
            (BigFloat('-nan'), "g", "nan"),
            (BigFloat('inf'), "g", "inf"),
            (BigFloat('-inf'), "g", "-inf"),
            (BigFloat('nan'), "G", "NAN"),
            (BigFloat('-nan'), "G", "NAN"),
            (BigFloat('inf'), "G", "INF"),
            (BigFloat('-inf'), "G", "-INF"),
            (BigFloat(314.1592653589793), ".0g", "3e+02"),
            (BigFloat(314.1592653589793), ".1g", "3e+02"),
            (BigFloat(314.1592653589793), "#.0g", "3.e+02"),
            (BigFloat(314.1592653589793), "#.1g", "3.e+02"),
            (BigFloat(314.1592653589793), "g", "314.159"),
            (BigFloat(314.1592653589793), "6g", "314.159"),
            # Trailing zeros are stripped, except in alternate style.
            (BigFloat(2), ".6g", "2"),
            (BigFloat(0.000023), ".6g", "2.3e-05"),
            (BigFloat(0.00023), ".6g", "0.00023"),
            (BigFloat(2.3), ".6g", "2.3"),
            (BigFloat(230), ".6g", "230"),
            (BigFloat(230000), ".6g", "230000"),
            (BigFloat(2300000), ".6g", "2.3e+06"),
            (BigFloat(2), "#.6g", "2.00000"),

            # %-formatting
            (BigFloat(3.141592653589793), ".2%", "314.16%"),
            (BigFloat(3.141592653589793), ".1%", "314.2%"),
            (BigFloat(3.141592653589793), ".0%", "314%"),
            (BigFloat(3.141592653589793), "%", "314.159265%"),
            (BigFloat(0.0234), ".3%", "2.340%"),
            (BigFloat(0.00234), ".3%", "0.234%"),
            (BigFloat(0.000234), ".3%", "0.023%"),
            (BigFloat(0.000234), ".3U%", "0.024%"),
            (BigFloat(0.0000234), ".3%", "0.002%"),
            (BigFloat(0.00000234), ".3%", "0.000%"),
            (BigFloat(0.00000234), ".3Y%", "0.001%"),
            (BigFloat(-3.141592653589793), ".2%", "-314.16%"),
            (BigFloat(-3.141592653589793), ".1%", "-314.2%"),
            (BigFloat(-3.141592653589793), ".0%", "-314%"),
            (BigFloat(-3.141592653589793), "%", "-314.159265%"),
            (BigFloat(-0.0234), ".3%", "-2.340%"),
            (BigFloat(-0.00234), ".3%", "-0.234%"),
            (BigFloat(-0.000234), ".3%", "-0.023%"),
            (BigFloat(-0.000234), ".3U%", "-0.023%"),
            (BigFloat(-0.0000234), ".3%", "-0.002%"),
            (BigFloat(-0.00000234), ".3%", "-0.000%"),
            (BigFloat(-0.00000234), ".3Y%", "-0.001%"),
            (BigFloat('0'), ".3%", "0.000%"),
            (BigFloat('-0'), ".3%", "-0.000%"),
            # We should see the '%' even on infinities and nans.
            (BigFloat('inf'), ".3%", "inf%"),
            (BigFloat('-inf'), ".3%", "-inf%"),
            (BigFloat('nan'), ".3%", "nan%"),
            (BigFloat('inf'), "+.3%", "+inf%"),
            (BigFloat('-inf'), "+.3%", "-inf%"),
            (BigFloat('nan'), "+.3%", "+nan%"),

            # Hexadecimal formatting.  It's not 100% clear how MPFR
            # chooses the exponent here.
            (BigFloat(1.5), ".6a", "0x1.800000p+0"),
            (BigFloat(1.5), ".5a", "0x1.80000p+0"),
            (BigFloat(1.5), ".1a", "0x1.8p+0"),
            (BigFloat(1.5), ".0a", "0xcp-3"),
            (BigFloat(1.5), ".6A", "0X1.800000P+0"),
            (BigFloat(3.0), ".6a", "0x3.000000p+0"),
            (BigFloat(3.141592653589793), ".6a", "0x3.243f6bp+0"),
            (BigFloat(3.141592653589793), ".5a", "0x3.243f7p+0"),
            (BigFloat(3.141592653589793), ".4a", "0x3.243fp+0"),
            (BigFloat(3.141592653589793), ".3a", "0x3.244p+0"),
            (BigFloat(3.141592653589793), ".2a", "0x3.24p+0"),
            (BigFloat(3.141592653589793), ".1a", "0x3.2p+0"),
            (BigFloat(3.141592653589793), ".0a", "0xdp-2"),
            # With no precision, outputs enough digits to give an
            # exact representation.
            (BigFloat(3.141592653589793), "a", "0x3.243f6a8885a3p+0"),
            (BigFloat(10.0), ".6a", "0xa.000000p+0"),
            (BigFloat(16.0), ".6a", "0x1.000000p+4"),
            (BigFloat('nan'), "a", "nan"),
            (BigFloat('-nan'), "a", "nan"),
            (BigFloat('inf'), "a", "inf"),
            (BigFloat('-inf'), "a", "-inf"),
            (BigFloat('nan'), "A", "NAN"),
            (BigFloat('-nan'), "A", "NAN"),
            (BigFloat('inf'), "A", "INF"),
            (BigFloat('-inf'), "A", "-INF"),

            # Binary formatting.
            (BigFloat('2.25'), "b", '1.001p+1'),
            (BigFloat('-2.25'), "b", '-1.001p+1'),
            (BigFloat('nan'), "b", 'nan'),
            (BigFloat('inf'), "b", "inf"),
            (BigFloat('-inf'), "b", "-inf"),

            # Rounding mode.

            # Round up.
            (BigFloat('-56.127'), ".2Uf", "-56.12"),
            (BigFloat('-56.125'), ".2Uf", "-56.12"),
            (BigFloat('-56.123'), ".2Uf", "-56.12"),
            (BigFloat('56.123'), ".2Uf", "56.13"),
            (BigFloat('56.125'), ".2Uf", "56.13"),
            (BigFloat('56.127'), ".2Uf", "56.13"),

            # Round down.
            (BigFloat('-56.127'), ".2Df", "-56.13"),
            (BigFloat('-56.125'), ".2Df", "-56.13"),
            (BigFloat('-56.123'), ".2Df", "-56.13"),
            (BigFloat('56.123'), ".2Df", "56.12"),
            (BigFloat('56.125'), ".2Df", "56.12"),
            (BigFloat('56.127'), ".2Df", "56.12"),

            # Round away from zero.
            (BigFloat('-56.127'), ".2Yf", "-56.13"),
            (BigFloat('-56.125'), ".2Yf", "-56.13"),
            (BigFloat('-56.123'), ".2Yf", "-56.13"),
            (BigFloat('56.123'), ".2Yf", "56.13"),
            (BigFloat('56.125'), ".2Yf", "56.13"),
            (BigFloat('56.127'), ".2Yf", "56.13"),

            # Round toward zero.
            (BigFloat('-56.127'), ".2Zf", "-56.12"),
            (BigFloat('-56.125'), ".2Zf", "-56.12"),
            (BigFloat('-56.123'), ".2Zf", "-56.12"),
            (BigFloat('56.123'), ".2Zf", "56.12"),
            (BigFloat('56.125'), ".2Zf", "56.12"),
            (BigFloat('56.127'), ".2Zf", "56.12"),

            # Round to nearest (ties to even).
            (BigFloat('-56.127'), ".2Nf", "-56.13"),
            (BigFloat('-56.125'), ".2Nf", "-56.12"),
            (BigFloat('-56.123'), ".2Nf", "-56.12"),
            (BigFloat('56.123'), ".2Nf", "56.12"),
            (BigFloat('56.125'), ".2Nf", "56.12"),
            (BigFloat('56.127'), ".2Nf", "56.13"),

            # Missing rounding mode implies round to nearest.
            (BigFloat('-56.127'), ".2f", "-56.13"),
            (BigFloat('-56.125'), ".2f", "-56.12"),
            (BigFloat('-56.123'), ".2f", "-56.12"),
            (BigFloat('56.123'), ".2f", "56.12"),
            (BigFloat('56.125'), ".2f", "56.12"),
            (BigFloat('56.127'), ".2f", "56.13"),

            # Missing type behaves like str formatting.
            (BigFloat('123'), ".0", "1e+02"),
            (BigFloat('123'), ".1", "1e+02"),
            (BigFloat('123'), ".2", "1.2e+02"),
            (BigFloat('123'), ".2U", "1.3e+02"),
            (BigFloat('123'), ".2D", "1.2e+02"),
            (BigFloat('123'), ".3", "123"),
            # 'alternate' flag is currently ignored.
            (BigFloat('123'), "#.3", "123"),
            (BigFloat('123'), ".4", "123.0"),
            (BigFloat('123'), "#.4", "123.0"),
            (BigFloat('123'), ".0", "1e+02"),
            (BigFloat('123'), "", "123.00000000000000"),
            (BigFloat('nan'), "", "nan"),
            (BigFloat('inf'), "", "inf"),
            (BigFloat('-inf'), "", "-inf"),
        ]
        for bf, fmt, expected_output in test_triples:
            result = format(bf, fmt)
            self.assertEqual(result,
                             expected_output,
                             msg=(bf, fmt, expected_output))
Esempio n. 28
0
#!/usr/bin/env python

import sys
import math
from bigfloat import BigFloat, precision

if sys.version_info > (3, ):
    long = int
    xrange = range

with precision(20000):
    N_tosses = 1000
    h_probs = [
        math.factorial(N_tosses) /
        (math.factorial(x) * math.factorial(N_tosses - x)) *
        (BigFloat('0.5')**N_tosses) for x in xrange(N_tosses + 1)
    ]
    s = 0
    h_sums = [0]
    for x in h_probs:
        s += x
        h_sums.append(s + 0)

    def calc_prob(f, h_sums):
        h = N_tosses + 0
        money = (1 + 2 * f)**h
        while money > 1e9:
            h -= 1
            money *= (1 - f) / (1 + 2 * f)
        h += 1
        return h
Esempio n. 29
0
 def main():
     assert_ratio(1, 0.5, 1e-8)
     assert_ratio(2, BigFloat(36.46) / 100, 1e-2)
     assert_ratio(15, 0.1, 1e-2)
     print_less_than(0.1)
     print_less_than(BigFloat('1e-3'))
Esempio n. 30
0
        self.a = self.b = None

    def __iter__(self):
        for value in self.values():
            self.a, self.b = self.b, value
            yield value

    def values(self):
        yield Fraction(2, 1)
        yield Fraction(-4, 1)
        while True:

            def f(y, z):
                a = Fraction(111, 1)
                b = Fraction(1130, 1) / y
                c = Fraction(3000, 1) / (z * y)
                return a - b + c

            yield f(self.b, self.a)


print(list(take(10, JMM())))

with precision(9000):
    for a, b in zip(forever(0), JMM()):
        fnumerator = BigFloat(b.numerator)
        fdenominator = BigFloat(b.denominator)
        big = fnumerator / fdenominator
        strbig = str(big)[:140]
        print(f"{a:>5}: {strbig} {b}")
Esempio n. 31
0
 def rec(sum_, c):
     if i == c:
         ret[sum_] += BigFloat(v)/(BigFloat(s)**i)
     else:
         for x in xrange(1, s+1):
             rec(sum_+x, c+1)
Esempio n. 32
0
 def __init__(self, constant: float):
     context_down = bf.precision(53) + bf.RoundTowardNegative
     context_up = bf.precision(53) + bf.RoundTowardPositive
     super(ExactConstant, self).__init__([], BigFloat(constant, context_down), BigFloat(constant, context_up))
Esempio n. 33
0
import sys
from bigfloat import precision, BigFloat, const_pi, sqrt, asin

if sys.version_info > (3, ):
    long = int

with precision(100):
    L_sect_area = (1 - BigFloat(const_pi()) / 4)

    def calc_ratio(n):
        l = BigFloat(0)
        h = BigFloat(1)
        m = (l + h) * 0.5

        def calc_y1(x):
            return x / n

        def diff(x):
            return (calc_y1(x) - (1 - sqrt(1 - (1 - x)**2)))

        m_d = diff(m)
        DIFF = BigFloat('1e-20')
        while abs(m_d) > DIFF:
            if m_d < 0:
                l = m
            else:
                h = m
            m = (l + h) * 0.5
            m_d = diff(m)
        x = x1 = m
        y1 = calc_y1(x)