def __init__(self, username=None, api_key=None, dev_mode=False, debug=False, set_locale=False, storage=None, domain=None): """Initializes the BigML API. If left unspecified, `username` and `api_key` will default to the values of the `BIGML_USERNAME` and `BIGML_API_KEY` environment variables respectively. If `dev_mode` is set to `True`, the API will be used in development mode where the size of your datasets are limited but you are not charged any credits. If storage is set to a directory name, the resources obtained in CRU operations will be stored in the given directory. If domain is set, the api will point to the specified domain. Default will be the one in the environment variable `BIGML_DOMAIN` or `bigml.io` if missing. The expected domain argument is a string or a Domain object. See Domain class for details. """ BigMLConnection.__init__(self, username=username, api_key=api_key, dev_mode=dev_mode, debug=debug, set_locale=set_locale, storage=storage, domain=domain) ResourceHandler.__init__(self) SourceHandler.__init__(self) DatasetHandler.__init__(self) ModelHandler.__init__(self) EnsembleHandler.__init__(self) PredictionHandler.__init__(self) ClusterHandler.__init__(self) CentroidHandler.__init__(self) AnomalyHandler.__init__(self) AnomalyScoreHandler.__init__(self) EvaluationHandler.__init__(self) BatchPredictionHandler.__init__(self) BatchCentroidHandler.__init__(self) BatchAnomalyScoreHandler.__init__(self) ProjectHandler.__init__(self) SampleHandler.__init__(self) self.getters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.getters[resource_type] = getattr(self, "get_%s" % method_name) self.creaters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.creaters[resource_type] = getattr(self, "create_%s" % method_name) self.updaters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.updaters[resource_type] = getattr(self, "update_%s" % method_name) self.deleters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.deleters[resource_type] = getattr(self, "delete_%s" % method_name)
def __init__(self, username=None, api_key=None, dev_mode=False, debug=False, set_locale=False, storage=None, domain=None): """Initializes the BigML API. If left unspecified, `username` and `api_key` will default to the values of the `BIGML_USERNAME` and `BIGML_API_KEY` environment variables respectively. If `dev_mode` is set to `True`, the API will be used in development mode where the size of your datasets are limited but you are not charged any credits. If storage is set to a directory name, the resources obtained in CRU operations will be stored in the given directory. If domain is set, the api will point to the specified domain. Default will be the one in the environment variable `BIGML_DOMAIN` or `bigml.io` if missing. The expected domain argument is a string or a Domain object. See Domain class for details. """ BigMLConnection.__init__(self, username=username, api_key=api_key, dev_mode=dev_mode, debug=debug, set_locale=set_locale, storage=storage, domain=domain) ResourceHandler.__init__(self) SourceHandler.__init__(self) DatasetHandler.__init__(self) ModelHandler.__init__(self) EnsembleHandler.__init__(self) PredictionHandler.__init__(self) ClusterHandler.__init__(self) CentroidHandler.__init__(self) AnomalyHandler.__init__(self) AnomalyScoreHandler.__init__(self) EvaluationHandler.__init__(self) BatchPredictionHandler.__init__(self) BatchCentroidHandler.__init__(self) BatchAnomalyScoreHandler.__init__(self) ProjectHandler.__init__(self) SampleHandler.__init__(self) CorrelationHandler.__init__(self) StatisticalTestHandler.__init__(self) LogisticRegressionHandler.__init__(self) AssociationHandler.__init__(self) AssociationSetHandler.__init__(self) ScriptHandler.__init__(self) ExecutionHandler.__init__(self) LibraryHandler.__init__(self) self.getters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.getters[resource_type] = getattr(self, "get_%s" % method_name) self.creaters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.creaters[resource_type] = getattr(self, "create_%s" % method_name) self.updaters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.updaters[resource_type] = getattr(self, "update_%s" % method_name) self.deleters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.deleters[resource_type] = getattr(self, "delete_%s" % method_name)
def __init__(self, username=None, api_key=None, dev_mode=False, debug=False, set_locale=False, storage=None, domain=None, project=None, organization=None): """Initializes the BigML API. If left unspecified, `username` and `api_key` will default to the values of the `BIGML_USERNAME` and `BIGML_API_KEY` environment variables respectively. If `dev_mode` is set to `True`, the API will be used in development mode where the size of your datasets are limited but you are not charged any credits. If storage is set to a directory name, the resources obtained in CRU operations will be stored in the given directory. If domain is set, the api will point to the specified domain. Default will be the one in the environment variable `BIGML_DOMAIN` or `bigml.io` if missing. The expected domain argument is a string or a Domain object. See Domain class for details. When project is set to a project ID, the user is considered to be working in an organization project. The scope of the API requests will be limited to this project and permissions should be previously given by the organization administrator. When organization is set to an organization ID, the user is considered to be working for an organization. The scope of the API requests will be limited to the projects of the organization and permissions need to be previously given by the organization administrator. """ BigMLConnection.__init__(self, username=username, api_key=api_key, dev_mode=dev_mode, debug=debug, set_locale=set_locale, storage=storage, domain=domain, project=project, organization=organization) ResourceHandler.__init__(self) SourceHandler.__init__(self) DatasetHandler.__init__(self) ModelHandler.__init__(self) EnsembleHandler.__init__(self) PredictionHandler.__init__(self) ClusterHandler.__init__(self) CentroidHandler.__init__(self) AnomalyHandler.__init__(self) AnomalyScoreHandler.__init__(self) EvaluationHandler.__init__(self) BatchPredictionHandler.__init__(self) BatchCentroidHandler.__init__(self) BatchAnomalyScoreHandler.__init__(self) ProjectHandler.__init__(self) SampleHandler.__init__(self) CorrelationHandler.__init__(self) StatisticalTestHandler.__init__(self) LogisticRegressionHandler.__init__(self) AssociationHandler.__init__(self) AssociationSetHandler.__init__(self) ScriptHandler.__init__(self) ExecutionHandler.__init__(self) LibraryHandler.__init__(self) TopicModelHandler.__init__(self) TopicDistributionHandler.__init__(self) BatchTopicDistributionHandler.__init__(self) TimeSeriesHandler.__init__(self) ForecastHandler.__init__(self) DeepnetHandler.__init__(self) OptimlHandler.__init__(self) FusionHandler.__init__(self) ConfigurationHandler.__init__(self) PCAHandler.__init__(self) ProjectionHandler.__init__(self) BatchProjectionHandler.__init__(self) LinearRegressionHandler.__init__(self) self.status_url = "%s%s" % (self.url, STATUS_PATH) self.getters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.getters[resource_type] = getattr(self, "get_%s" % method_name) self.creaters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.creaters[resource_type] = getattr(self, "create_%s" % method_name) self.updaters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.updaters[resource_type] = getattr(self, "update_%s" % method_name) self.deleters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.deleters[resource_type] = getattr(self, "delete_%s" % method_name) self.listers = {} for resource_type in RESOURCE_RE: method_name = IRREGULAR_PLURALS.get( \ resource_type, "%ss" % RENAMED_RESOURCES.get( \ resource_type, resource_type)) self.listers[resource_type] = getattr(self, "list_%s" % method_name)
def __init__(self, username=None, api_key=None, dev_mode=False, debug=False, set_locale=False, storage=None, domain=None, project=None, organization=None): """Initializes the BigML API. If left unspecified, `username` and `api_key` will default to the values of the `BIGML_USERNAME` and `BIGML_API_KEY` environment variables respectively. If `dev_mode` is set to `True`, the API will be used in development mode where the size of your datasets are limited but you are not charged any credits. If storage is set to a directory name, the resources obtained in CRU operations will be stored in the given directory. If domain is set, the api will point to the specified domain. Default will be the one in the environment variable `BIGML_DOMAIN` or `bigml.io` if missing. The expected domain argument is a string or a Domain object. See Domain class for details. When project is set to a project ID, the user is considered to be working in an organization project. The scope of the API requests will be limited to this project and permissions should be previously given by the organization administrator. When organization is set to an organization ID, the user is considered to be working for an organization. The scope of the API requests will be limited to the projects of the organization and permissions need to be previously given by the organization administrator. """ BigMLConnection.__init__(self, username=username, api_key=api_key, dev_mode=dev_mode, debug=debug, set_locale=set_locale, storage=storage, domain=domain, project=project, organization=organization) ResourceHandler.__init__(self) SourceHandler.__init__(self) DatasetHandler.__init__(self) ModelHandler.__init__(self) EnsembleHandler.__init__(self) PredictionHandler.__init__(self) ClusterHandler.__init__(self) CentroidHandler.__init__(self) AnomalyHandler.__init__(self) AnomalyScoreHandler.__init__(self) EvaluationHandler.__init__(self) BatchPredictionHandler.__init__(self) BatchCentroidHandler.__init__(self) BatchAnomalyScoreHandler.__init__(self) ProjectHandler.__init__(self) SampleHandler.__init__(self) CorrelationHandler.__init__(self) StatisticalTestHandler.__init__(self) LogisticRegressionHandler.__init__(self) AssociationHandler.__init__(self) AssociationSetHandler.__init__(self) ScriptHandler.__init__(self) ExecutionHandler.__init__(self) LibraryHandler.__init__(self) TopicModelHandler.__init__(self) TopicDistributionHandler.__init__(self) BatchTopicDistributionHandler.__init__(self) TimeSeriesHandler.__init__(self) ForecastHandler.__init__(self) DeepnetHandler.__init__(self) OptimlHandler.__init__(self) FusionHandler.__init__(self) ConfigurationHandler.__init__(self) PCAHandler.__init__(self) ProjectionHandler.__init__(self) BatchProjectionHandler.__init__(self) self.getters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.getters[resource_type] = getattr(self, "get_%s" % method_name) self.creaters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.creaters[resource_type] = getattr(self, "create_%s" % method_name) self.updaters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.updaters[resource_type] = getattr(self, "update_%s" % method_name) self.deleters = {} for resource_type in RESOURCE_RE: method_name = RENAMED_RESOURCES.get(resource_type, resource_type) self.deleters[resource_type] = getattr(self, "delete_%s" % method_name) self.listers = {} for resource_type in RESOURCE_RE: method_name = IRREGULAR_PLURALS.get( \ resource_type, "%ss" % RENAMED_RESOURCES.get( \ resource_type, resource_type)) self.listers[resource_type] = getattr(self, "list_%s" % method_name)