Esempio n. 1
0
    def test_mnist_pipeline(self):
        network = DiehlAndCook2015(n_inpt=784, n_neurons=400, exc=22.5, inh=17.5, dt=1.0, norm=78.4)
        environment = DatasetEnvironment(dataset=MNIST(path='../data/MNIST', download=True), train=True, intensity=0.25)
        pipeline = Pipeline(network=network, environment=environment, encoding=poisson, time=350)

        assert pipeline.network == network
        assert pipeline.env == environment
        assert pipeline.encoding == poisson
        assert pipeline.time == 350
        assert pipeline.history_length is None
from bindsnet.encoding import poisson
from bindsnet.pipeline import Pipeline
from bindsnet.models import DiehlAndCook2015
from bindsnet.environment import DatasetEnvironment

# Build network.
network = DiehlAndCook2015(n_input=32 * 32 * 3,
                           n_neurons=100,
                           dt=1.0,
                           exc=22.5,
                           inh=17.5,
                           nu=[0, 1e-2],
                           norm=78.4)

# Specify dataset wrapper environment.
environment = DatasetEnvironment(dataset=CIFAR10(path='../../data/CIFAR10'),
                                 train=True)

# Build pipeline from components.
pipeline = Pipeline(network=network,
                    environment=environment,
                    encoding=poisson,
                    time=50,
                    plot_interval=1)

# Train the network.
labels = environment.labels
for i in range(60000):
    # Choose an output neuron to clamp to spiking behavior.
    c = choice(10, size=1, replace=False)
    c = 10 * labels[i].long() + Tensor(c).long()
    clamp = torch.zeros(pipeline.time, network.n_neurons, dtype=torch.uint8)
Esempio n. 3
0
n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
path = os.path.join('..', '..', 'data', 'CIFAR10')

# Build network.
network = DiehlAndCook2015(n_inpt=32 * 32 * 3,
                           n_neurons=n_neurons,
                           exc=exc,
                           inh=inh,
                           dt=dt,
                           nu_pre=2e-5,
                           nu_post=2e-3,
                           norm=10.0)

# Initialize data "environment".
environment = DatasetEnvironment(dataset=CIFAR10(path=path, download=True),
                                 train=train,
                                 time=time,
                                 intensity=intensity)

# Specify data encoding.
encoding = poisson

spikes = {}
for layer in set(network.layers):
    spikes[layer] = Monitor(network.layers[layer], state_vars=['s'], time=time)
    network.add_monitor(spikes[layer], name='%s_spikes' % layer)

voltages = {}
for layer in set(network.layers) - {'X'}:
    voltages[layer] = Monitor(network.layers[layer],
                              state_vars=['v'],
                              time=time)
Esempio n. 4
0
from bindsnet.encoding    import poisson
from bindsnet.pipeline    import Pipeline
from bindsnet.models      import DiehlAndCook2015
from bindsnet.environment import DatasetEnvironment

# Build Diehl & Cook 2015 network.
network = DiehlAndCook2015(n_inpt=784,
						   n_neurons=400,
						   exc=22.5,
						   inh=17.5,
						   dt=1.0,
						   norm=78.4)

# Specify dataset wrapper environment.
environment = DatasetEnvironment(dataset=MNIST(path='../../data/MNIST'),
								 train=True,
								 download=True,
								 intensity=0.25)

# Build pipeline from components.
pipeline = Pipeline(network=network,
					environment=environment,
					encoding=poisson,
					time=350,
				    plot_interval=1)

# Train the network.
for i in range(60000):    
	pipeline.step()
	network._reset()
Esempio n. 5
0
from bindsnet.encoding import poisson
from bindsnet.pipeline import Pipeline
from bindsnet.models import DiehlAndCook2015
from bindsnet.environment import DatasetEnvironment

# Build Diehl & Cook 2015 network.
network = DiehlAndCook2015(n_inpt=32 * 32 * 3,
                           n_neurons=400,
                           exc=22.5,
                           inh=17.5,
                           dt=1.0,
                           norm=78.4)

# Specify dataset wrapper environment.
environment = DatasetEnvironment(dataset=CIFAR10(path='../../data/CIFAR10',
                                                 download=True),
                                 train=True,
                                 intensity=0.25)

# Build pipeline from components.
pipeline = Pipeline(network=network,
                    environment=environment,
                    encoding=poisson,
                    time=350,
                    plot_interval=1)

# Train the network.
for i in range(60000):
    pipeline.step()
    network._reset()