Esempio n. 1
0
    def test_add_objects(self):
        network = Network(dt=1.0, learning=False)

        inpt = Input(100)
        network.add_layer(inpt, name='X')
        lif = LIFNodes(50)
        network.add_layer(lif, name='Y')

        assert inpt == network.layers['X']
        assert lif == network.layers['Y']

        conn = Connection(inpt, lif)
        network.add_connection(conn, source='X', target='Y')

        assert conn == network.connections[('X', 'Y')]

        monitor = Monitor(lif, state_vars=['s', 'v'])
        network.add_monitor(monitor, 'Y')

        assert monitor == network.monitors['Y']

        network.save('net.pt')
        _network = load('net.pt', learning=True)
        assert _network.learning
        assert 'X' in _network.layers
        assert 'Y' in _network.layers
        assert ('X', 'Y') in _network.connections
        assert 'Y' in _network.monitors
        del _network

        os.remove('net.pt')
Esempio n. 2
0
def lif_feed_forward_benchmark(parameters: BenchmarkParameters):
    T = parameters.dt * parameters.sequence_length
    network = Network(batch_size=parameters.batch_size, dt=parameters.dt)

    network.add_layer(Input(n=parameters.features), name="Input")
    network.add_layer(LIFNodes(n=parameters.features), name="Neurons")
    network.add_connection(
        Connection(source=network.layers["Input"], target=network.layers["Neurons"]),
        source="Input",
        target="Neurons",
    )

    input_spikes = (
        PoissonEncoder(time=T, dt=parameters.dt)(
            0.3 * torch.ones(parameters.batch_size, parameters.features)
        )
        .to(parameters.device)
        .float()
    )
    input_spikes.requires_grad = False

    input_data = {"Input": input_spikes}
    network.to(parameters.device)
    for param in network.parameters():
        param.requires_grad = False
    start = time.time()
    network.run(inputs=input_data, time=T)
    end = time.time()

    duration = end - start
    return duration
Esempio n. 3
0
    def test_add_objects(self):
        network = Network(dt=1.0, learning=False)

        inpt = Input(100)
        network.add_layer(inpt, name="X")
        lif = LIFNodes(50)
        network.add_layer(lif, name="Y")

        assert inpt == network.layers["X"]
        assert lif == network.layers["Y"]

        conn = Connection(inpt, lif)
        network.add_connection(conn, source="X", target="Y")

        assert conn == network.connections[("X", "Y")]

        monitor = Monitor(lif, state_vars=["s", "v"])
        network.add_monitor(monitor, "Y")

        assert monitor == network.monitors["Y"]

        network.save("net.pt")
        _network = load("net.pt", learning=True)
        assert _network.learning
        assert "X" in _network.layers
        assert "Y" in _network.layers
        assert ("X", "Y") in _network.connections
        assert "Y" in _network.monitors
        del _network

        os.remove("net.pt")
Esempio n. 4
0
    def test_post_pre(self):
        # Connection test
        network = Network(dt=1.0)
        network.add_layer(Input(n=100, traces=True), name='input')
        network.add_layer(LIFNodes(n=100, traces=True), name='output')
        network.add_connection(Connection(source=network.layers['input'],
                                          target=network.layers['output'],
                                          nu=1e-2,
                                          update_rule=PostPre),
                               source='input',
                               target='output')
        network.run(
            inpts={'input': torch.bernoulli(torch.rand(250, 100)).byte()},
            time=250)

        # Conv2dConnection test
        network = Network(dt=1.0)
        network.add_layer(Input(shape=[1, 1, 10, 10], traces=True),
                          name='input')
        network.add_layer(LIFNodes(shape=[1, 32, 8, 8], traces=True),
                          name='output')
        network.add_connection(Conv2dConnection(
            source=network.layers['input'],
            target=network.layers['output'],
            kernel_size=3,
            stride=1,
            nu=1e-2,
            update_rule=PostPre),
                               source='input',
                               target='output')
        network.run(inpts={
            'input':
            torch.bernoulli(torch.rand(250, 1, 1, 10, 10)).byte()
        },
                    time=250)
Esempio n. 5
0
def create_bindsnet(input_width, input_height, action_num=3):
    from bindsnet.network import Network
    from bindsnet.learning import MSTDP
    from bindsnet.network.nodes import Input, LIFNodes
    from bindsnet.network.topology import Connection

    network = Network(dt=1.0)
    # Layers of neurons.
    inpt = Input(n=input_height * input_width,
                 shape=[input_height, input_width],
                 traces=True)
    middle = LIFNodes(n=100, traces=True)
    out = LIFNodes(n=action_num, refrac=0, traces=True)

    # Connections between layers.
    inpt_middle = Connection(source=inpt, target=middle, wmin=0, wmax=1e-1)
    middle_out = Connection(source=middle,
                            target=out,
                            wmin=0,
                            wmax=1,
                            update_rule=MSTDP,
                            nu=1e-1,
                            norm=0.5 * middle.n)

    # Add all layers and connections to the network.
    network.add_layer(inpt, name='Input Layer')
    network.add_layer(middle, name='Hidden Layer')
    network.add_layer(out, name='Output Layer')
    network.add_connection(inpt_middle,
                           source='Input Layer',
                           target='Hidden Layer')
    network.add_connection(middle_out,
                           source='Hidden Layer',
                           target='Output Layer')
    return network
Esempio n. 6
0
    def test_weight_dependent_post_pre(self):
        # Connection test
        network = Network(dt=1.0)
        network.add_layer(Input(n=100, traces=True), name="input")
        network.add_layer(LIFNodes(n=100, traces=True), name="output")
        network.add_connection(
            Connection(
                source=network.layers["input"],
                target=network.layers["output"],
                nu=1e-2,
                update_rule=WeightDependentPostPre,
                wmin=-1,
                wmax=1,
            ),
            source="input",
            target="output",
        )
        network.run(
            inputs={"input": torch.bernoulli(torch.rand(250, 100)).byte()},
            time=250,
        )

        # Conv2dConnection test
        network = Network(dt=1.0)
        network.add_layer(Input(shape=[1, 10, 10], traces=True), name="input")
        network.add_layer(
            LIFNodes(shape=[32, 8, 8], traces=True), name="output"
        )
        network.add_connection(
            Conv2dConnection(
                source=network.layers["input"],
                target=network.layers["output"],
                kernel_size=3,
                stride=1,
                nu=1e-2,
                update_rule=WeightDependentPostPre,
                wmin=-1,
                wmax=1,
            ),
            source="input",
            target="output",
        )
        network.run(
            inputs={
                "input": torch.bernoulli(torch.rand(250, 1, 1, 10, 10)).byte()
            },
            time=250,
        )
Esempio n. 7
0
 def test_rmax(self):
     # Connection test
     network = Network(dt=1.0)
     network.add_layer(Input(n=100, traces=True, traces_additive=True),
                       name='input')
     network.add_layer(SRM0Nodes(n=100), name='output')
     network.add_connection(Connection(source=network.layers['input'],
                                       target=network.layers['output'],
                                       nu=1e-2,
                                       update_rule=Rmax),
                            source='input',
                            target='output')
     network.run(
         inpts={'input': torch.bernoulli(torch.rand(250, 100)).byte()},
         time=250,
         reward=1.)
Esempio n. 8
0
	def test_add_objects(self):
		network = Network(dt=1.0)
		
		inpt = Input(100); network.add_layer(inpt, name='X')
		lif = LIFNodes(50); network.add_layer(lif, name='Y')
		
		assert inpt == network.layers['X']
		assert lif == network.layers['Y']
		
		conn = Connection(inpt, lif); network.add_connection(conn, source='X', target='Y')
		
		assert conn == network.connections[('X', 'Y')]
		
		monitor = Monitor(lif, state_vars=['s', 'v']); network.add_monitor(monitor, 'Y')
		
		assert monitor == network.monitors['Y']
Esempio n. 9
0
    def test_mstdpet(self):
        # Connection test
        network = Network(dt=1.0)
        network.add_layer(Input(n=100), name="input")
        network.add_layer(LIFNodes(n=100), name="output")
        network.add_connection(
            Connection(
                source=network.layers["input"],
                target=network.layers["output"],
                nu=1e-2,
                update_rule=MSTDPET,
            ),
            source="input",
            target="output",
        )
        network.run(
            inputs={"input": torch.bernoulli(torch.rand(250, 100)).byte()},
            time=250,
            reward=1.0,
        )

        # Conv2dConnection test
        network = Network(dt=1.0)
        network.add_layer(Input(shape=[1, 10, 10]), name="input")
        network.add_layer(LIFNodes(shape=[32, 8, 8]), name="output")
        network.add_connection(
            Conv2dConnection(
                source=network.layers["input"],
                target=network.layers["output"],
                kernel_size=3,
                stride=1,
                nu=1e-2,
                update_rule=MSTDPET,
            ),
            source="input",
            target="output",
        )

        network.run(
            inputs={
                "input": torch.bernoulli(torch.rand(250, 1, 1, 10, 10)).byte()
            },
            time=250,
            reward=1.0,
        )
Esempio n. 10
0
    def test_hebbian(self):
        # Connection test
        network = Network(dt=1.0)
        network.add_layer(Input(n=100, traces=True), name="input")
        network.add_layer(LIFNodes(n=100, traces=True), name="output")
        network.add_connection(
            Connection(
                source=network.layers["input"],
                target=network.layers["output"],
                nu=1e-2,
                update_rule=Hebbian,
            ),
            source="input",
            target="output",
        )
        network.run(
            inputs={"input": torch.bernoulli(torch.rand(250, 100)).byte()},
            time=250,
        )

        # Conv2dConnection test
        network = Network(dt=1.0)
        network.add_layer(Input(shape=[1, 10, 10], traces=True), name="input")
        network.add_layer(
            LIFNodes(shape=[32, 8, 8], traces=True), name="output"
        )
        network.add_connection(
            Conv2dConnection(
                source=network.layers["input"],
                target=network.layers["output"],
                kernel_size=3,
                stride=1,
                nu=1e-2,
                update_rule=Hebbian,
            ),
            source="input",
            target="output",
        )
        # shape is [time, batch, channels, height, width]
        network.run(
            inputs={
                "input": torch.bernoulli(torch.rand(250, 1, 1, 10, 10)).byte()
            },
            time=250,
        )
Esempio n. 11
0
def BindsNET_cpu(n_neurons, time):
    t0 = t()

    torch.set_default_tensor_type('torch.FloatTensor')

    t1 = t()

    network = Network()
    network.add_layer(Input(n=n_neurons), name='X')
    network.add_layer(LIFNodes(n=n_neurons), name='Y')
    network.add_connection(Connection(source=network.layers['X'],
                                      target=network.layers['Y']),
                           source='X',
                           target='Y')

    data = {'X': poisson(datum=torch.rand(n_neurons), time=time)}
    network.run(inpts=data, time=time)

    return t() - t0, t() - t1
Esempio n. 12
0
def BindsNET_cpu(n_neurons, time):
    t0 = t()

    torch.set_default_tensor_type("torch.FloatTensor")

    t1 = t()

    network = Network()
    network.add_layer(Input(n=n_neurons), name="X")
    network.add_layer(LIFNodes(n=n_neurons), name="Y")
    network.add_connection(
        Connection(source=network.layers["X"], target=network.layers["Y"]),
        source="X",
        target="Y",
    )

    data = {"X": poisson(datum=torch.rand(n_neurons), time=time)}
    network.run(inputs=data, time=time)

    return t() - t0, t() - t1
Esempio n. 13
0
    def __init__(self, parameters: BenchmarkParameters):
        super(BindsNetModule, self).__init__()
        network = Network(batch_size=parameters.batch_size, dt=parameters.dt)
        lif_nodes = LIFNodes(n=parameters.features)
        monitor = Monitor(obj=lif_nodes,
                          state_vars=("s"),
                          time=parameters.sequence_length)
        network.add_layer(Input(n=parameters.features), name="Input")
        network.add_layer(lif_nodes, name="Neurons")
        network.add_connection(
            Connection(source=network.layers["Input"],
                       target=network.layers["Neurons"]),
            source="Input",
            target="Neurons",
        )
        network.add_monitor(monitor, "Monitor")
        network.to(parameters.device)

        self.parameters = parameters
        self.network = network
        self.monitor = monitor
Esempio n. 14
0
def main(n_input=1, n_output=10, time=1000):
    # Network building.
    network = Network(dt=1.0)
    input_layer = RealInput(n=n_input)
    output_layer = LIFNodes(n=n_output)
    connection = Connection(source=input_layer, target=output_layer)
    monitor = Monitor(obj=output_layer, state_vars=('v', ), time=time)

    # Adding network components.
    network.add_layer(input_layer, name='X')
    network.add_layer(output_layer, name='Y')
    network.add_connection(connection, source='X', target='Y')
    network.add_monitor(monitor, name='X_monitor')

    # Creating real-valued inputs and running simulation.
    inpts = {'X': torch.ones(time, n_input)}
    network.run(inpts=inpts, time=time)

    # Plot voltage activity.
    plt.plot(monitor.get('v').numpy().T)
    plt.show()
Esempio n. 15
0
from bindsnet.network.monitors import Monitor
from bindsnet.network.nodes import LIFNodes
from bindsnet.network.topology import Connection
from bindsnet.utils import get_square_weights

network = Network(dt=1.0)
inpt = Input(784, shape=(28, 28))
network.add_layer(inpt, name="I")
output = LIFNodes(625, thresh=-52 + torch.randn(625))
network.add_layer(output, name="O")
C1 = Connection(source=inpt, target=output, w=torch.randn(inpt.n, output.n))
C2 = Connection(source=output,
                target=output,
                w=0.5 * torch.randn(output.n, output.n))

network.add_connection(C1, source="I", target="O")
network.add_connection(C2, source="O", target="O")

spikes = {}
for l in network.layers:
    spikes[l] = Monitor(network.layers[l], ["s"], time=250)
    network.add_monitor(spikes[l], name="%s_spikes" % l)

voltages = {"O": Monitor(network.layers["O"], ["v"], time=250)}
network.add_monitor(voltages["O"], name="O_voltages")

# Get MNIST training images and labels.
images, labels = MNIST(path="../../data/MNIST", download=True).get_train()
images *= 0.25

# Create lazily iterating Poisson-distributed data loader.
Esempio n. 16
0
def main(args):
    if args.gpu:
        torch.cuda.manual_seed_all(args.seed)
    else:
        torch.manual_seed(args.seed)

    conv_size = int(
        (28 - args.kernel_size + 2 * args.padding) / args.stride) + 1

    # Build network.
    network = Network()
    input_layer = Input(n=784, shape=(1, 28, 28), traces=True)

    conv_layer = DiehlAndCookNodes(
        n=args.n_filters * conv_size * conv_size,
        shape=(args.n_filters, conv_size, conv_size),
        traces=True,
    )

    conv_conn = Conv2dConnection(
        input_layer,
        conv_layer,
        kernel_size=args.kernel_size,
        stride=args.stride,
        update_rule=PostPre,
        norm=0.4 * args.kernel_size**2,
        nu=[0, args.lr],
        reduction=max_without_indices,
        wmax=1.0,
    )

    w = torch.zeros(args.n_filters, conv_size, conv_size, args.n_filters,
                    conv_size, conv_size)
    for fltr1 in range(args.n_filters):
        for fltr2 in range(args.n_filters):
            if fltr1 != fltr2:
                for i in range(conv_size):
                    for j in range(conv_size):
                        w[fltr1, i, j, fltr2, i, j] = -100.0

    w = w.view(args.n_filters * conv_size * conv_size,
               args.n_filters * conv_size * conv_size)
    recurrent_conn = Connection(conv_layer, conv_layer, w=w)

    network.add_layer(input_layer, name="X")
    network.add_layer(conv_layer, name="Y")
    network.add_connection(conv_conn, source="X", target="Y")
    network.add_connection(recurrent_conn, source="Y", target="Y")

    # Voltage recording for excitatory and inhibitory layers.
    voltage_monitor = Monitor(network.layers["Y"], ["v"], time=args.time)
    network.add_monitor(voltage_monitor, name="output_voltage")

    if args.gpu:
        network.to("cuda")

    # Load MNIST data.
    train_dataset = MNIST(
        PoissonEncoder(time=args.time, dt=args.dt),
        None,
        os.path.join(ROOT_DIR, "data", "MNIST"),
        download=True,
        train=True,
        transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Lambda(lambda x: x * args.intensity)
        ]),
    )

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=["s"],
                                time=args.time)
        network.add_monitor(spikes[layer], name="%s_spikes" % layer)

    voltages = {}
    for layer in set(network.layers) - {"X"}:
        voltages[layer] = Monitor(network.layers[layer],
                                  state_vars=["v"],
                                  time=args.time)
        network.add_monitor(voltages[layer], name="%s_voltages" % layer)

    # Train the network.
    print("Begin training.\n")
    start = time()

    weights_im = None

    for epoch in range(args.n_epochs):
        if epoch % args.progress_interval == 0:
            print("Progress: %d / %d (%.4f seconds)" %
                  (epoch, args.n_epochs, time() - start))
            start = time()

        train_dataloader = DataLoader(
            train_dataset,
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=4,
            pin_memory=args.gpu,
        )

        for step, batch in enumerate(tqdm(train_dataloader)):
            # Get next input sample.
            inpts = {"X": batch["encoded_image"]}
            if args.gpu:
                inpts = {k: v.cuda() for k, v in inpts.items()}

            # Run the network on the input.
            network.run(inpts=inpts, time=args.time, input_time_dim=0)

            # Decay learning rate.
            network.connections["X", "Y"].nu[1] *= 0.99

            # Optionally plot various simulation information.
            if args.plot:
                weights = conv_conn.w
                weights_im = plot_conv2d_weights(weights, im=weights_im)

                plt.pause(1e-8)

            network.reset_()  # Reset state variables.

    print("Progress: %d / %d (%.4f seconds)\n" %
          (args.n_epochs, args.n_epochs, time() - start))
    print("Training complete.\n")
Esempio n. 17
0
                        target=tnn_layer_1,
                        w=0 * torch.rand(tnn_layer_1.n, tnn_layer_1.n),
                        update_rule=TNN_STDP,
                        ucapture=10 / 128,
                        uminus=10 / 128,
                        usearch=2 / 128,
                        ubackoff=96 / 128,
                        umin=4 / 128,
                        timesteps=num_timesteps,
                        maxweight=max_weight)

network.add_layer(input_layer, name="I")
network.add_layer(tnn_layer_1, name="TNN_1")
network.add_layer(buffer_layer_1, name="BUF")
# network.add_connection(C2, source="TNN_1", target="TNN_1")
network.add_connection(buf_to_TNN, source="BUF", target="TNN_1")
network.add_connection(TNN_to_buf, source="TNN_1", target="BUF")
network.add_connection(C1, source="I", target="TNN_1")

spikes = {}
for l in network.layers:
    spikes[l] = Monitor(network.layers[l], ["s"], time=num_timesteps)
    network.add_monitor(spikes[l], name="%s_spikes" % l)

dataset = MNIST(
    RampNoLeakTNNEncoder(time=num_timesteps, dt=1),
    None,
    root=os.path.join("..", "..", "data", "MNIST"),
    download=True,
    transform=transforms.Compose(
        [transforms.ToTensor(),
# Spike recordings for all layers.
spikes = {}
for layer in layers:
    spikes[layer] = Monitor(layers[layer], ['s'], time=plot_interval)

# Voltage recordings for excitatory and readout layers.
voltages = {}
for layer in set(layers.keys()) - {'X'}:
    voltages[layer] = Monitor(layers[layer], ['v'], time=plot_interval)

# Add all layers and connections to the network.
for layer in layers:
    network.add_layer(layers[layer], name=layer)

network.add_connection(input_exc_conn, source='X', target='E')
network.add_connection(exc_readout_conn, source='E', target='R')

# Add all monitors to the network.
for layer in layers:
    network.add_monitor(spikes[layer], name='%s_spikes' % layer)
    
    if layer in voltages:
        network.add_monitor(voltages[layer], name='%s_voltages' % layer)

# Load SpaceInvaders environment.
environment = GymEnvironment('Asteroids-v0')
environment.reset()

pipeline = Pipeline(network, environment, encoding=bernoulli, time=1, history=5, delta=10, plot_interval=plot_interval,
                    print_interval=print_interval, render_interval=render_interval, action_function=select_multinomial,
def toLIF(network: Network):
    new_network = Network(dt=1, learning=True)
    input_layer = Input(n=network.X.n,
                        shape=network.X.shape,
                        traces=True,
                        tc_trace=network.X.tc_trace.item())
    exc_layer = LIFNodes(
        n=network.Ae.n,
        traces=True,
        rest=network.Ai.rest.item(),
        reset=network.Ai.reset.item(),
        thresh=network.Ai.thresh.item(),
        refrac=network.Ai.refrac.item(),
        tc_decay=network.Ai.tc_decay.item(),
    )
    inh_layer = LIFNodes(
        n=network.Ai.n,
        traces=False,
        rest=network.Ai.rest.item(),
        reset=network.Ai.reset.item(),
        thresh=network.Ai.thresh.item(),
        tc_decay=network.Ai.tc_decay.item(),
        refrac=network.Ai.refrac.item(),
    )

    # Connections
    w = network.X_to_Ae.w
    input_exc_conn = Connection(
        source=input_layer,
        target=exc_layer,
        w=w,
        update_rule=PostPre,
        nu=network.X_to_Ae.nu,
        reduction=network.X_to_Ae.reduction,
        wmin=network.X_to_Ae.wmin,
        wmax=network.X_to_Ae.wmax,
        norm=network.X_to_Ae.norm * 1,
    )
    w = network.Ae_to_Ai.w
    exc_inh_conn = Connection(source=exc_layer,
                              target=inh_layer,
                              w=w,
                              wmin=network.Ae_to_Ai.wmin,
                              wmax=network.Ae_to_Ai.wmax)
    w = network.Ai_to_Ae.w

    inh_exc_conn = Connection(source=inh_layer,
                              target=exc_layer,
                              w=w,
                              wmin=network.Ai_to_Ae.wmin,
                              wmax=network.Ai_to_Ae.wmax)

    # Add to network
    new_network.add_layer(input_layer, name="X")
    new_network.add_layer(exc_layer, name="Ae")
    new_network.add_layer(inh_layer, name="Ai")
    new_network.add_connection(input_exc_conn, source="X", target="Ae")
    new_network.add_connection(exc_inh_conn, source="Ae", target="Ai")
    new_network.add_connection(inh_exc_conn, source="Ai", target="Ae")

    exc_voltage_monitor = Monitor(new_network.layers["Ae"], ["v"], time=500)
    inh_voltage_monitor = Monitor(new_network.layers["Ai"], ["v"], time=500)
    new_network.add_monitor(exc_voltage_monitor, name="exc_voltage")
    new_network.add_monitor(inh_voltage_monitor, name="inh_voltage")

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(new_network.layers[layer],
                                state_vars=["s"],
                                time=time)
        new_network.add_monitor(spikes[layer], name="%s_spikes" % layer)

    return new_network
Esempio n. 20
0
out = LIFNodes(n=60, refrac=0, traces=True, thresh=-40.0)

# Connections between layers.
inpt_middle = Connection(source=inpt, target=middle, wmax=1e-2)
middle_out = Connection(source=middle,
                        target=out,
                        wmax=0.5,
                        update_rule=m_stdp_et,
                        nu=2e-2,
                        norm=0.15 * middle.n)

# Add all layers and connections to the network.
network.add_layer(inpt, name='X')
network.add_layer(middle, name='Y')
network.add_layer(out, name='Z')
network.add_connection(inpt_middle, source='X', target='Y')
network.add_connection(middle_out, source='Y', target='Z')

# Load SpaceInvaders environment.
environment = GymEnvironment('SpaceInvaders-v0')
environment.reset()

# Build pipeline from specified components.
pipeline = Pipeline(network,
                    environment,
                    encoding=bernoulli,
                    feedback=select_multinomial,
                    output='Z',
                    time=1,
                    history_length=2,
                    delta=4,
Esempio n. 21
0
def ann_to_snn(ann: Union[nn.Module, str],
               input_shape: Sequence[int],
               data: Optional[torch.Tensor] = None,
               percentile: float = 99.9,
               node_type: Optional[nodes.Nodes] = SubtractiveResetIFNodes,
               **kwargs) -> Network:
    # language=rst
    """
    Converts an artificial neural network (ANN) written as a ``torch.nn.Module`` into a near-equivalent spiking neural
    network.

    :param ann: Artificial neural network implemented in PyTorch. Accepts either ``torch.nn.Module`` or path to network
                saved using ``torch.save()``.
    :param input_shape: Shape of input data.
    :param data: Data to use to perform data-based weight normalization of shape ``[n_examples, ...]``.
    :param percentile: Percentile (in ``[0, 100]``) of activations to scale by in data-based normalization scheme.
    :return: Spiking neural network implemented in PyTorch.
    """
    if isinstance(ann, str):
        ann = torch.load(ann)
    else:
        ann = deepcopy(ann)

    assert isinstance(ann, nn.Module)

    if data is None:
        import warnings

        warnings.warn("Data is None. Weights will not be scaled.",
                      RuntimeWarning)
    else:
        ann = data_based_normalization(ann=ann,
                                       data=data.detach(),
                                       percentile=percentile)

    snn = Network()

    input_layer = nodes.RealInput(shape=input_shape)
    snn.add_layer(input_layer, name="Input")

    children = []
    for c in ann.children():
        if isinstance(c, nn.Sequential):
            for c2 in list(c.children()):
                children.append(c2)
        else:
            children.append(c)

    i = 0
    prev = input_layer
    while i < len(children) - 1:
        current, nxt = children[i:i + 2]
        layer, connection = _ann_to_snn_helper(prev, current, node_type,
                                               **kwargs)

        i += 1

        if layer is None or connection is None:
            continue

        snn.add_layer(layer, name=str(i))
        snn.add_connection(connection, source=str(i - 1), target=str(i))

        prev = layer

    current = children[-1]
    layer, connection = _ann_to_snn_helper(prev, current, node_type, **kwargs)

    i += 1

    if layer is not None or connection is not None:
        snn.add_layer(layer, name=str(i))
        snn.add_connection(connection, source=str(i - 1), target=str(i))

    return snn
Esempio n. 22
0
# w_recur[torch.rand(rtnn_layer_1.n, rtnn_layer_1.n) < 0.90] = 0
# buf1_to_rTNN = Connection(
# 	source=buffer_layer_1,
# 	target=rtnn_layer_1,
# 	w = w_recur,
#     timesteps = num_timesteps,
#     update_rule=None )

# Add all nodes to network:
network.add_layer(input_layer_a, name="I_a")
network.add_layer(rtnn_layer_1, name="rTNN_1")
# network.add_layer(buffer_layer_1, name="BUF_1")

# Add connections to network:
# (feedforward)
network.add_connection(FF1a, source="I_a", target="rTNN_1")
# (Recurrences)
# network.add_connection(rTNN_to_buf1, source="rTNN_1", target="BUF_1")
# network.add_connection(buf1_to_rTNN, source="BUF_1", target="rTNN_1")

# End of network creation

# Monitors:
spikes = {}
for l in network.layers:
    spikes[l] = Monitor(network.layers[l], ["s"], time=num_timesteps)
    network.add_monitor(spikes[l], name="%s_spikes" % l)

# Data and initial encoding:
dataset = MNIST(
    RampNoLeakTNNEncoder(time=num_timesteps, dt=1),
Esempio n. 23
0
                    w=-0.1 * torch.ones(PK.n, DCN.n))

PK_DCN_Anti = Connection(source=PK_Anti,
                         target=DCN_Anti,
                         w_max=0,
                         w=-0.1 * torch.ones(PK_Anti.n, DCN_Anti.n))

network.add_layer(layer=GR_Joint_layer, name="GR_Joint_layer")
network.add_layer(layer=PK, name="PK")
network.add_layer(layer=PK_Anti, name="PK_Anti")
network.add_layer(layer=IO, name="IO")
network.add_layer(layer=IO_Anti, name="IO_Anti")
network.add_layer(layer=DCN, name="DCN")
network.add_layer(layer=DCN_Anti, name="DCN_Anti")
network.add_connection(connection=Parallelfiber,
                       source="GR_Joint_layer",
                       target="PK")
network.add_connection(connection=Parallelfiber_Anti,
                       source="GR_Joint_layer",
                       target="PK_Anti")
network.add_connection(connection=Climbingfiber, source="IO", target="PK")
network.add_connection(connection=Climbingfiber_Anti,
                       source="IO_Anti",
                       target="PK_Anti")
network.add_connection(connection=PK_DCN, source="PK", target="DCN")
network.add_connection(connection=PK_DCN_Anti,
                       source="PK_Anti",
                       target="DCN_Anti")

GR_monitor = Monitor(obj=GR_Joint_layer, state_vars=("s"), time=time)
PK_monitor = Monitor(obj=PK, state_vars=("s", "v"), time=time)
Esempio n. 24
0
    w = 0.5 * max_weight * torch.rand(rtnn_layer_1.n, rtnn_layer_1.n),
    timesteps = num_timesteps,
    update_rule=TNN_STDP, **stdp_rtnn_params )

# Add all nodes to network:
network.add_layer(input_layer_a, name="I_a")
network.add_layer(input_layer_b, name="I_b")
network.add_layer(tnn_layer_1a, name="TNN_1a")
network.add_layer(tnn_layer_1b, name="TNN_1b")
network.add_layer(buffer_layer_1, name="BUF_1")
# network.add_layer(buffer_layer_2, name="BUF_2")
network.add_layer(rtnn_layer_1, name="rTNN_1")

# Add connections to network:
# (feedforward)
network.add_connection(FF1a, source="I_a", target="TNN_1a")
network.add_connection(FF1b, source="I_b", target="TNN_1b")
network.add_connection(FF2a, source="TNN_1a", target="rTNN_1")
network.add_connection(FF2b, source="TNN_1b", target="rTNN_1")
# (Recurrences)
network.add_connection(rTNN_to_buf1, source="rTNN_1", target="BUF_1")
# network.add_connection(buf1_to_buf2, source="BUF_1", target="BUF_2")
network.add_connection(buf1_to_rTNN, source="BUF_1", target="rTNN_1")
# network.add_connection(buf2_to_rTNN, source="BUF_2", target="rTNN_1")


# End of network creation

# Monitors:
spikes = {}
for l in network.layers:
Esempio n. 25
0
inpt_middle = Connection(source=inpt, target=middle, wmin=0, wmax=1e-1)
middle_out = Connection(
    source=middle,
    target=out,
    wmin=0,
    wmax=1,
    update_rule=MSTDP,
    nu=1e-1,
    norm=0.5 * middle.n,
)

# Add all layers and connections to the network.
network.add_layer(inpt, name="Input Layer")
network.add_layer(middle, name="Hidden Layer")
network.add_layer(out, name="Output Layer")
network.add_connection(inpt_middle, source="Input Layer", target="Hidden Layer")
network.add_connection(middle_out, source="Hidden Layer", target="Output Layer")

# Load the Breakout environment.
environment = GymEnvironment("BreakoutDeterministic-v4")
environment.reset()

# Build pipeline from specified components.
environment_pipeline = EnvironmentPipeline(
    network,
    environment,
    encoding=bernoulli,
    action_function=select_softmax,
    output="Output Layer",
    time=100,
    history_length=1,
Esempio n. 26
0
w = torch.zeros(n_filters, conv_size, conv_size, n_filters, conv_size,
                conv_size)
for fltr1 in range(n_filters):
    for fltr2 in range(n_filters):
        if fltr1 != fltr2:
            for i in range(conv_size):
                for j in range(conv_size):
                    w[fltr1, i, j, fltr2, i, j] = -100.0

w = w.view(n_filters * conv_size * conv_size,
           n_filters * conv_size * conv_size)
recurrent_conn = Connection(conv_layer, conv_layer, w=w)

network.add_layer(input_layer, name="X")
network.add_layer(conv_layer, name="Y")
network.add_connection(conv_conn, source="X", target="Y")
network.add_connection(recurrent_conn, source="Y", target="Y")

# Voltage recording for excitatory and inhibitory layers.
voltage_monitor = Monitor(network.layers["Y"], ["v"], time=time)
network.add_monitor(voltage_monitor, name="output_voltage")

if gpu:
    network.to("cuda")

# Load MNIST data.
train_dataset = MNIST(
    PoissonEncoder(time=time, dt=dt),
    None,
    "../../data/MNIST",
    download=True,
def main(seed=0,
         n_train=60000,
         n_test=10000,
         kernel_size=(16, ),
         stride=(4, ),
         n_filters=25,
         padding=0,
         inhib=100,
         time=25,
         lr=1e-3,
         lr_decay=0.99,
         dt=1,
         intensity=1,
         progress_interval=10,
         update_interval=250,
         plot=False,
         train=True,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
        'No. examples must be divisible by update_interval'

    params = [
        seed, n_train, kernel_size, stride, n_filters, padding, inhib, time,
        lr, lr_decay, dt, intensity, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, n_train, n_test, kernel_size, stride, n_filters, padding,
            inhib, time, lr, lr_decay, dt, intensity, update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    input_shape = [20, 20]

    if kernel_size == input_shape:
        conv_size = [1, 1]
    else:
        conv_size = (int((input_shape[0] - kernel_size[0]) / stride[0]) + 1,
                     int((input_shape[1] - kernel_size[1]) / stride[1]) + 1)

    n_classes = 10
    n_neurons = n_filters * np.prod(conv_size)
    total_kernel_size = int(np.prod(kernel_size))
    total_conv_size = int(np.prod(conv_size))

    # Build network.
    if train:
        network = Network()
        input_layer = Input(n=400, shape=(1, 1, 20, 20), traces=True)
        conv_layer = DiehlAndCookNodes(n=n_filters * total_conv_size,
                                       shape=(1, n_filters, *conv_size),
                                       thresh=-64.0,
                                       traces=True,
                                       theta_plus=0.05 * (kernel_size[0] / 20),
                                       refrac=0)
        conv_layer2 = LIFNodes(n=n_filters * total_conv_size,
                               shape=(1, n_filters, *conv_size),
                               refrac=0)
        conv_conn = Conv2dConnection(input_layer,
                                     conv_layer,
                                     kernel_size=kernel_size,
                                     stride=stride,
                                     update_rule=WeightDependentPostPre,
                                     norm=0.05 * total_kernel_size,
                                     nu=[0, lr],
                                     wmin=0,
                                     wmax=0.25)
        conv_conn2 = Conv2dConnection(input_layer,
                                      conv_layer2,
                                      w=conv_conn.w,
                                      kernel_size=kernel_size,
                                      stride=stride,
                                      update_rule=None,
                                      wmax=0.25)

        w = -inhib * torch.ones(n_filters, conv_size[0], conv_size[1],
                                n_filters, conv_size[0], conv_size[1])
        for f in range(n_filters):
            for f2 in range(n_filters):
                if f != f2:
                    w[f, :, :f2, :, :] = 0

        w = w.view(n_filters * conv_size[0] * conv_size[1],
                   n_filters * conv_size[0] * conv_size[1])
        recurrent_conn = Connection(conv_layer, conv_layer, w=w)

        network.add_layer(input_layer, name='X')
        network.add_layer(conv_layer, name='Y')
        network.add_layer(conv_layer2, name='Y_')
        network.add_connection(conv_conn, source='X', target='Y')
        network.add_connection(conv_conn2, source='X', target='Y_')
        network.add_connection(recurrent_conn, source='Y', target='Y')

        # Voltage recording for excitatory and inhibitory layers.
        voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
        network.add_monitor(voltage_monitor, name='output_voltage')
    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load MNIST data.
    dataset = MNIST(data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images *= intensity
    images = images[:, 4:-4, 4:-4].contiguous()

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons)
    full_spike_record = torch.zeros(n_examples, n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        logreg_model = LogisticRegression(warm_start=True,
                                          n_jobs=-1,
                                          solver='lbfgs',
                                          max_iter=1000,
                                          multi_class='multinomial')
        logreg_model.coef_ = np.zeros([n_classes, n_neurons])
        logreg_model.intercept_ = np.zeros(n_classes)
        logreg_model.classes_ = np.arange(n_classes)
    else:
        path = os.path.join(params_path,
                            '_'.join(['auxiliary', model_name]) + '.pt')
        logreg_coef, logreg_intercept = torch.load(open(path, 'rb'))
        logreg_model = LogisticRegression(warm_start=True,
                                          n_jobs=-1,
                                          solver='lbfgs',
                                          max_iter=1000,
                                          multi_class='multinomial')
        logreg_model.coef_ = logreg_coef
        logreg_model.intercept_ = logreg_intercept
        logreg_model.classes_ = np.arange(n_classes)

    # Sequence of accuracy estimates.
    curves = {'logreg': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}

    if train:
        best_accuracy = 0

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_ims = None
    inpt_axes = None
    spike_ims = None
    spike_axes = None
    weights_im = None

    plot_update_interval = 100

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print('Progress: %d / %d (%.4f seconds)' %
                  (i, n_examples, t() - start))
            start = t()

        if i % update_interval == 0 and i > 0:
            if train:
                network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
                current_record = full_spike_record[-update_interval:]
            else:
                current_labels = labels[i % len(labels) - update_interval:i %
                                        len(labels)]
                current_record = full_spike_record[i % len(labels) -
                                                   update_interval:i %
                                                   len(labels)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(curves,
                                          current_labels,
                                          n_classes,
                                          full_spike_record=current_record,
                                          logreg=logreg_model)
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat(
                    [predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples),
                       open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(
                        params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((logreg_model.coef_, logreg_model.intercept_),
                               open(path, 'wb'))
                    best_accuracy = max([x[-1] for x in curves.values()])

                # Refit logistic regression model.
                logreg_model = logreg_fit(full_spike_record[:i], labels[:i],
                                          logreg_model)

            print()

        # Get next input sample.
        image = images[i % len(images)]
        sample = bernoulli(datum=image, time=time, dt=dt,
                           max_prob=1).unsqueeze(1).unsqueeze(1)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        network.connections['X', 'Y_'].w = network.connections['X', 'Y'].w

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y_'].get('s').view(
            time, -1)
        full_spike_record[i] = spikes['Y_'].get('s').view(time, -1).sum(0)

        # Optionally plot various simulation information.
        if plot and i % plot_update_interval == 0:
            _input = inpts['X'].view(time, 400).sum(0).view(20, 20)
            w = network.connections['X', 'Y'].w

            _spikes = {
                'X': spikes['X'].get('s').view(400, time),
                'Y': spikes['Y'].get('s').view(n_filters * total_conv_size,
                                               time),
                'Y_': spikes['Y_'].get('s').view(n_filters * total_conv_size,
                                                 time)
            }

            inpt_axes, inpt_ims = plot_input(image.view(20, 20),
                                             _input,
                                             label=labels[i % len(labels)],
                                             ims=inpt_ims,
                                             axes=inpt_axes)
            spike_ims, spike_axes = plot_spikes(spikes=_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_conv2d_weights(
                w, im=weights_im, wmax=network.connections['X', 'Y'].wmax)

            plt.pause(1e-2)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
        current_record = full_spike_record[-update_interval:]
    else:
        current_labels = labels[i % len(labels) - update_interval:i %
                                len(labels)]
        current_record = full_spike_record[i % len(labels) -
                                           update_interval:i % len(labels)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(curves,
                                  current_labels,
                                  n_classes,
                                  full_spike_record=current_record,
                                  logreg=logreg_model)
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]],
                                        -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            network.save(os.path.join(params_path, model_name + '.pt'))
            path = os.path.join(params_path,
                                '_'.join(['auxiliary', model_name]) + '.pt')
            torch.save((logreg_model.coef_, logreg_model.intercept_),
                       open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    to_write = [str(x) for x in to_write]
    f = '_'.join(to_write) + '.pt'
    torch.save((curves, update_interval, n_examples),
               open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    results = [np.mean(curves['logreg']), np.std(curves['logreg'])]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                columns = [
                    'seed', 'n_train', 'kernel_size', 'stride', 'n_filters',
                    'padding', 'inhib', 'time', 'lr', 'lr_decay', 'dt',
                    'intensity', 'update_interval', 'mean_logreg', 'std_logreg'
                ]

                header = ','.join(columns) + '\n'
                f.write(header)
            else:
                columns = [
                    'seed', 'n_train', 'n_test', 'kernel_size', 'stride',
                    'n_filters', 'padding', 'inhib', 'time', 'lr', 'lr_decay',
                    'dt', 'intensity', 'update_interval', 'mean_logreg',
                    'std_logreg'
                ]

                header = ','.join(columns) + '\n'
                f.write(header)

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))
Esempio n. 28
0
def Translate_Into_Networks(input_N, Shape, Output_N, Weight):
    network_list = []
    path = "gene/"
    file_list = os.listdir(path)
    gene_file_check = [file for file in file_list if file.endswith(".txt")]
    if len(gene_file_check) == 0:
        import startup
    Gene_List = Genetic.Read_Gene()
    for i in range(len(Gene_List)):
        network = Network()
        Decoded_List = []
        Decoded_DNA_List = []
        for j in range(len(Gene_List[i])):
            Decoded_Gene = Gene_List[i][j].split('-')

            if (Decoded_Gene[3] == 'F'):
                pass
            else:
                if Decoded_Gene[1] == '~':
                    Decoded_List.append(
                        [int(Decoded_Gene[0]),
                         int(Decoded_Gene[2]), 0])
                elif Decoded_Gene[1] == '!':
                    Decoded_List.append(
                        [int(Decoded_Gene[0]),
                         int(Decoded_Gene[2]), 1])
                elif Decoded_Gene[1] == '@':
                    Decoded_List.append(
                        [int(Decoded_Gene[0]),
                         int(Decoded_Gene[2]), 2])
                elif Decoded_Gene[1] == '#':
                    Decoded_List.append(
                        [int(Decoded_Gene[0]),
                         int(Decoded_Gene[2]), 3])
                elif Decoded_Gene[1] == '$':
                    Decoded_List.append(
                        [int(Decoded_Gene[0]),
                         int(Decoded_Gene[2]), 4])
                else:
                    print("THE GENOTYPE VALUE IS UNVALID")
                    raise ValueError
            Decoded_DNA_List.append(Decoded_List)

        Decoded_RNA_List: list = Decoded_DNA_List.copy()

        for decoded_dna_idx, decoded_dna in enumerate(Decoded_DNA_List):
            Gene_NUM = len(decoded_dna)
            for k in range(Gene_NUM):
                a = Decoded_DNA_List[decoded_dna_idx][k]
                for l in range(k, Gene_NUM):
                    b = Decoded_DNA_List[decoded_dna_idx][l]
                    if a and b == 1:
                        if decoded_dna[k][2] == 0:
                            Decoded_RNA_List[decoded_dna_idx].remove(
                                decoded_dna[l])

                        elif decoded_dna[k][2] == 1:
                            if decoded_dna[l][2] < 1:
                                Decoded_RNA_List[decoded_dna_idx].remove(
                                    decoded_dna[k])
                            else:
                                Decoded_RNA_List[decoded_dna_idx].remove(
                                    decoded_dna[l])

                        elif decoded_dna[k][2] == 2:
                            if decoded_dna[l][2] < 2:
                                Decoded_RNA_List[decoded_dna_idx].remove(
                                    decoded_dna[k])
                            else:
                                Decoded_RNA_List[decoded_dna_idx].remove(
                                    decoded_dna[l])

                        elif decoded_dna[k][2] == 3:
                            if decoded_dna[l][2] < 3:
                                Decoded_RNA_List[decoded_dna_idx].remove(
                                    decoded_dna[k])
                            else:
                                Decoded_RNA_List[decoded_dna_idx].remove(
                                    decoded_dna[l])

                        elif decoded_dna[k][2] == 4:
                            if decoded_dna[l][2] >= 4:
                                Decoded_RNA_List[decoded_dna_idx].remove(
                                    decoded_dna[l])
                            else:
                                Decoded_RNA_List[decoded_dna_idx].remove(
                                    decoded_dna[k])

                        else:
                            pass

                    else:
                        pass

        for Decoded_RNA in Decoded_RNA_List:

            layer_list = {}

            for m in range(len(Decoded_RNA)):

                for n in range(m, len(Decoded_RNA)):
                    if Decoded_RNA[m][1] == Decoded_RNA[n][0]:
                        if Decoded_RNA[n][2] == 0:
                            layer_list[Decoded_RNA[m][0]] = nodes.IFNodes(
                                n=1, traces=True)
                        elif Decoded_RNA[n][2] == 1:
                            layer_list[Decoded_RNA[m][0]] = nodes.LIFNodes(
                                n=1, traces=True)
                        elif Decoded_RNA[n][2] == 2:
                            layer_list[Decoded_RNA[m]
                                       [0]] = nodes.McCullochPitts(n=1,
                                                                   traces=True)
                        elif Decoded_RNA[n][2] == 3:
                            layer_list[Decoded_RNA[m]
                                       [0]] = nodes.IzhikevichNodes(
                                           n=1, traces=True)
                        elif Decoded_RNA[n][2] == 4:
                            layer_list[Decoded_RNA[m][0]] = nodes.SRM0Nodes(
                                n=1, traces=True)
                        else:
                            print("UNVALID GENO_NEURON CODE")
                            raise ValueError

                    elif n == len(Decoded_List) - 1:
                        layer_list[Decoded_RNA[m][1]] = nodes.LIFNodes(n=1)

            for l in range(len(Decoded_RNA)):
                if not Decoded_RNA[l][0] in layer_list:
                    if Decoded_RNA[l][2] == 0:
                        layer_list[Decoded_RNA[l][0]] = nodes.IFNodes(
                            n=1, traces=True)
                    elif Decoded_RNA[l][2] == 1:
                        layer_list[Decoded_RNA[l][0]] = nodes.LIFNodes(
                            n=1, traces=True)
                    elif Decoded_RNA[l][2] == 2:
                        layer_list[Decoded_RNA[l][0]] = nodes.McCullochPitts(
                            n=1, traces=True)
                    elif Decoded_RNA[l][2] == 3:
                        layer_list[Decoded_RNA[l][0]] = nodes.IzhikevichNodes(
                            n=1, traces=True)
                    elif Decoded_RNA[l][2] == 4:
                        layer_list[Decoded_RNA[l][0]] = nodes.SRM0Nodes(
                            n=1, traces=True)

        Input_Layer = nodes.Input(n=input_N, shape=Shape, traces=True)
        out = nodes.LIFNodes(n=Output_N, refrac=0, traces=True)
        network.add_layer(layer=Input_Layer, name="Input Layer")
        for key_l in list(layer_list.keys()):
            network.add_layer(layer=layer_list[key_l], name=str(key_l))
        network.add_layer(layer=out, name="Output Layer")
        if len(layer_list.keys()) == 0:
            layer = nodes.LIFNodes(n=1, traces=True)
            network.add_layer(layer=layer, name="mid layer")
            inpt_connection = Connection(source=Input_Layer,
                                         target=layer,
                                         w=Weight * torch.ones(input_N))
            opt_connection = Connection(source=layer,
                                        target=out,
                                        w=Weight * torch.ones(1))
            network.add_connection(inpt_connection,
                                   source="Input_Layer",
                                   target="mid layer")
            network.add_connection(opt_connection,
                                   source="mid layer",
                                   target="Output Layer")
        else:
            for key_ic in list(layer_list.keys()):
                inpt_connection = Connection(source=Input_Layer,
                                             target=layer_list[key_ic],
                                             w=Weight * torch.ones(input_N))
                network.add_connection(inpt_connection,
                                       source="Input_Layer",
                                       target=str(key_ic))
            for key_op in list(layer_list.keys()):
                output_connection = Connection(source=layer_list[key_op],
                                               target=out,
                                               w=Weight * torch.ones(1),
                                               update_rule=MSTDP)
                network.add_connection(output_connection,
                                       source=str(key_op),
                                       target="Output Layer")
            for generating_protein in Decoded_RNA:
                mid_connection = Connection(
                    source=layer_list[generating_protein[0]],
                    target=layer_list[generating_protein[1]],
                    w=Weight * torch.ones(1),
                    update_rule=MSTDP)
                network.add_connection(mid_connection,
                                       source=str(generating_protein[0]),
                                       target=str(generating_protein[1]))

        network_list.append(network)
        network.save('Network/' + str(i) + '.pt')
    return network_list
Esempio n. 29
0
# Connections between layers.
inpt_middle = Connection(source=inpt, target=middle, wmax=1e-2)
middle_out = Connection(
    source=middle,
    target=out,
    wmax=0.5,
    update_rule=MSTDPET,
    nu=2e-2,
    norm=0.15 * middle.n,
)

# Add all layers and connections to the network.
network.add_layer(inpt, name="X")
network.add_layer(middle, name="Y")
network.add_layer(out, name="Z")
network.add_connection(inpt_middle, source="X", target="Y")
network.add_connection(middle_out, source="Y", target="Z")

# Load SpaceInvaders environment.
environment = GymEnvironment(
    "SpaceInvaders-v0",
    BernoulliEncoder(time=int(network.dt), dt=network.dt),
    history_length=2,
    delta=4,
)
environment.reset()

# Plotting configuration.
plot_config = {
    "data_step": 1,
    "data_length": 10,
# Spike recordings for all layers.
spikes = {}
for layer in layers:
    spikes[layer] = Monitor(layers[layer], ["s"], time=plot_interval)

# Voltage recordings for excitatory and readout layers.
voltages = {}
for layer in set(layers.keys()) - {"X"}:
    voltages[layer] = Monitor(layers[layer], ["v"], time=plot_interval)

# Add all layers and connections to the network.
for layer in layers:
    network.add_layer(layers[layer], name=layer)

network.add_connection(input_exc_conn, source="X", target="E")
network.add_connection(exc_readout_conn, source="E", target="R")

# Add all monitors to the network.
for layer in layers:
    network.add_monitor(spikes[layer], name="%s_spikes" % layer)

    if layer in voltages:
        network.add_monitor(voltages[layer], name="%s_voltages" % layer)

# Load the Breakout environment.
environment = GymEnvironment("BreakoutDeterministic-v4")
environment.reset()

pipeline = EnvironmentPipeline(
    network,