Esempio n. 1
1
def get_dimension_only(imagefile):

    # get OME-XML and change the encoding to UTF-8
    omexml = bioformats.get_omexml_metadata(imagefile)
    new_omexml = omexml.encode('utf-8')

    rdr = bioformats.get_image_reader(None, path=imagefile)
    # read total number of image series
    totalseries = rdr.rdr.getSeriesCount()

    # get dimensions for CTZXY
    md = bioformats.OMEXML(new_omexml)
    pixels = md.image(IMAGEID).Pixels
    SizeC = pixels.SizeC
    SizeT = pixels.SizeT
    SizeZ = pixels.SizeZ
    SizeX = pixels.SizeX
    SizeY = pixels.SizeY

    print 'Series: ', totalseries, 'T: ', SizeT,  'Z: ', SizeZ,  'C: ', SizeC,  'X: ', SizeX,  'Y: ', SizeY

    # usually the x-axis of an image is from left --> right and y from top --> bottom
    # in order to be compatible with numpy arrays XY are switched
    # for numpy arrays the 2st axis are columns (top --> down) = Y-Axis for an image

    sizes = [totalseries, SizeT, SizeZ, SizeC, SizeY, SizeX]

    return sizes
def get_czi_metadata(infile):
    """
    This parses the CZI file with the bioformats tool: showinf.
    :param infile: file location of the CZI file
    :return: dictionary of meta information
    """
    command = [
        '/usr/local/share/bftools/showinf', '-nopix', '-omexml-only', infile
    ]
    metadata = subprocess.check_output(command).decode('utf-8')
    metadata = bioformats.OMEXML(metadata)

    # Series #0 should be the first tissue sample at full resolution.
    # Series #1 tends to be this same tissue sample at half the resolution.
    # This continues halving resolution 5-6 times in succession. We only
    # want the full resolution tissue series so we ignore those with dimensions
    # that are much smaller than expected. Valid series are checked in get_fullres_series_indices

    metadata_dict = {}
    for i in range(metadata.image_count):
        image = metadata.image(i)
        metadata_dict[i] = {}
        metadata_dict[i]['width'] = image.Pixels.SizeX
        metadata_dict[i]['height'] = image.Pixels.SizeY
        metadata_dict[i]['channels'] = image.Pixels.channel_count

    image = metadata.image(0)
    for i in range(image.Pixels.channel_count):
        metadata_dict[f'channel_{i}_name'] = image.Pixels.channel(i).Name

    return metadata_dict
Esempio n. 3
0
def readZPositions(stk_files):

    # the only entry parameter for this function is a list with
    # the stk files

    print('\n\t\treading z-values... ')
    javabridge.start_vm(class_path=bioformats.JARS)

    zs = []  # array with z-positions
    ts = []  # array with time point (got from data files)

    print('starting loop...')

    for file_path in stk_files:

        print('reading file: {}'.format(file_path))

        md = bioformats.get_omexml_metadata(file_path)
        ome = bioformats.OMEXML(md)

        # create an instance of an image to read z-position
        zp = ome.image().Pixels.Plane().get_PositionZ()

        time = int(file_path[:-4].split('t')[-1])

        zs.append(zp)
        ts.append(time)

    z_offsets = np.array([item - min(np.array(zs)) for item in zs])

    javabridge.kill_vm()

    return np.array(zs), np.array(ts), z_offsets
Esempio n. 4
0
    def save_images(self):
        """Saves the individual images as a npy file

        2D might have more acquisitions +/- focal plane, (usually 3 images).
        focal_plane_idx corresponds to the plane to consider. Mid-plane is the
        one in focus and the +/- on either side would be blurred. For 2D
        acquisitions, this is stored along the Z dimension. How is this handled
        for 3D acquisitions?
        """

        if not os.path.exists(self.lif_fname):
            raise FileNotFoundError("LIF file doesn't exist at:",
                                    self.lif_fname)
        os.makedirs(self.split_dir, exist_ok=True)

        jv.start_vm(class_path=bf.JARS, max_heap_size='8G')
        metadata = bf.get_omexml_metadata(self.lif_fname)
        omexml_object = bf.OMEXML(metadata)
        num_channels = omexml_object.image().Pixels.channel_count
        num_samples = omexml_object.get_image_count()
        num_timepoints = omexml_object.image().Pixels.SizeT
        num_pix_z = omexml_object.image().Pixels.SizeZ
        size_x_um = omexml_object.image().Pixels.PhysicalSizeX
        size_y_um = omexml_object.image().Pixels.PhysicalSizeY
        size_z_um = omexml_object.image().Pixels.PhysicalSizeZ

        reader = bf.ImageReader(self.lif_fname, perform_init=True)

        records = []
        for timepoint_idx in range(num_timepoints):
            timepoint_dir = os.path.join(self.split_dir,
                                         'timepoint_{}'.format(timepoint_idx))
            os.makedirs(timepoint_dir, exist_ok=True)

            for channel_idx in range(num_channels):
                channel_dir = os.path.join(timepoint_dir,
                                           'channel_{}'.format(channel_idx))
                os.makedirs(channel_dir, exist_ok=True)
                for sample_idx in range(15, 412):  # num_samples
                    cur_records = self.save_each_image(reader, num_pix_z,
                                                       channel_dir,
                                                       timepoint_idx,
                                                       channel_idx, sample_idx,
                                                       size_x_um, size_y_um,
                                                       size_z_um)
                    records.extend(cur_records)
                msg = 'Wrote files for tp:{}, channel:{}'.format(
                    timepoint_idx, channel_idx)
                self._log_info(msg)
        df = pd.DataFrame.from_records(records,
                                       columns=[
                                           'timepoint', 'channel_num',
                                           'sample_num', 'slice_num', 'fname',
                                           'size_x_microns', 'size_y_microns',
                                           'size_z_microns'
                                       ])
        metadata_fname = os.path.join(self.split_dir, 'split_images_info.csv')
        df.to_csv(metadata_fname, sep=',')
        jv.kill_vm()
def extract_meta_bioformats(filepath, metadata=dict()):
    omexmlstr = bioformats.get_omexml_metadata(filepath)
    o = bioformats.OMEXML(omexmlstr)
    x = o.image().Pixels
    metadata['size_Z'] = x.SizeZ
    metadata['size_T'] = x.SizeT
    metadata['scale'] = x.PhysicalSizeX
    return metadata
def getImageInfo(filename):
    md = bf.get_omexml_metadata(filename)
    ome = bf.OMEXML(md)
    pixels = ome.image().Pixels
    pT = pixels.SizeT
    pX = pixels.SizeX
    pY = pixels.SizeY
    return pT, pX, pY
Esempio n. 7
0
def getImageShape(path):
    xmlimage=bf.get_omexml_metadata(path=path)
    metadata= bf.OMEXML(xmlimage)

    NX= metadata.image().Pixels.SizeX
    NY= metadata.image().Pixels.SizeY
    NZ= metadata.image().Pixels.SizeZ
    NC= metadata.image().Pixels.SizeC  
    NT= metadata.image().Pixels.SizeT
    return (NX,NY,NZ,NC,NT)
Esempio n. 8
0
def get_editable_omexml(path):
    """
    Parse OMEXML header data from a Bio-Formats-compatible file.

    Used to parse metadata from .nd2 file and pass on to .ome.tiff file.
    """

    o = bioformats.get_omexml_metadata(path)
    new_omexml = bioformats.OMEXML(o)

    return new_omexml
Esempio n. 9
0
def get_movie_shape(path):
    xml_image = bf.get_omexml_metadata(path=path)
    metadata = bf.OMEXML(xml_image)
    path = path

    NX = metadata.image().Pixels.SizeX
    NY = metadata.image().Pixels.SizeY
    NZ = metadata.image().Pixels.SizeZ
    NC = metadata.image().Pixels.SizeC
    NT = metadata.image().Pixels.SizeT
    return NX,NY,NZ,NC,NT
Esempio n. 10
0
def get_metadata_store(imagefile):

    if not VM_STARTED:
        start_jvm()
    if VM_KILLED:
        jvm_error()

    omexml = bioformats.get_omexml_metadata(imagefile)
    new_omexml = omexml.encode('utf-8')
    metadatastore = bioformats.OMEXML(new_omexml)

    return metadatastore
Esempio n. 11
0
def get_metadata_store(imagefile):

    if not VM_STARTED:
        start_jvm()
    if VM_KILLED:
        jvm_error()

    # get OME-XML and change the encoding to UTF-8
    omexml = get_OMEXML(imagefile)
    # get the metadata from the OME-XML
    omexmlmetadata = bioformats.OMEXML(omexml)

    return omexmlmetadata
def showGrahp(filename, num):
    md = bf.get_omexml_metadata(filename)
    #rdr = bf.ImageReader(filename, perform_init=True)
    ome = bf.OMEXML(md)
    pixels = ome.image().Pixels
    print('pixels in Z: ' + str(pixels.SizeZ))
    print('pixels in C: ' + str(pixels.SizeC))
    print('pixels in T: ' + str(pixels.SizeT))
    print('pixels in X: ' + str(pixels.SizeX))
    print('pixels in Y: ' + str(pixels.SizeY))
    with bf.ImageReader(filename) as reader:
        img = reader.read(t=num)
        plt.imshow(img, cmap=plt.cm.binary)
        plt.show()
        reader.close()
Esempio n. 13
0
def readfile(filename):
    # read metadata
    metadata = bioformats.get_omexml_metadata(filename)
    xml = bioformats.OMEXML(metadata)
    Pixels = xml.image().Pixels
    nx, ny, nz, nt = Pixels.SizeX, Pixels.SizeY, Pixels.SizeZ, Pixels.SizeT

    # read image data
    image4d = np.zeros(shape=(nx, ny, nz, nt))
    reader = bioformats.ImageReader(filename)
    for t in range(nt):
        for z in range(nz):
            image4d[:, :, z, t] = reader.read(z=z, t=t, rescale=False)

    return image4d
Esempio n. 14
0
    def read(self, microscope_metadata_files, microscope_image_files):
        '''Provides an empty OMEXML.

        Parameters
        ----------
        microscope_metadata_files: List[str]
            absolute path to the microscope metadata files
        microscope_image_files: List[str]
            absolute path to the microscope image files

        Returns
        -------
        bioformats.omexml.OMEXML
            OMEXML image metadata
        '''
        return bioformats.OMEXML(XML_DECLARATION)
Esempio n. 15
0
    def read_metadata(self):
        omexmlstr = bioformats.get_omexml_metadata(self.path)
        omexml = bioformats.OMEXML(omexmlstr)
        # orgmetadata = bioformats.OMEXML.OriginalMetadata(omexml)
        root = ET.fromstring(omexmlstr)
        print(omexml)
        tree = ET.ElementTree(root)
        self.channel_count = omexml.image().Pixels.channel_count
        self.channel_names = []
        # populate channel_names
        for i in np.arange(0, self.channel_count, 1):
            self.channel_names.append(omexml.image().Pixels.Channel(i).Name)
        # print('image_count:',omexml.get_image_count())
        # print('image physical sizex unit',omexml.image().Pixels.get_PhysicalSizeXUnit())
        # print('image physical sizex',omexml.image().Pixels.get_PhysicalSizeX())
        # print('image sizex',omexml.image().Pixels.get_SizeX())
        # print('image physical sizey unit',omexml.image().Pixels.get_PhysicalSizeYUnit())
        # print('image physical sizey',omexml.image().Pixels.get_PhysicalSizeY())
        # print('image sizey',omexml.image().Pixels.get_SizeY())
        # print('image sizez',omexml.image().Pixels.get_SizeZ())
        # print('image sixec',omexml.image().Pixels.get_SizeC())
        # print('image sizet',omexml.image().Pixels.get_SizeT())
        # print('image dimensions',omexml.image().Pixels.get_DimensionOrder())

        tagprefix = '{http://www.openmicroscopy.org/Schemas/OME/2016-06}'

        for child1 in root:
            print('Child1: ', child1.tag, '\t', child1.attrib)
            for child2 in child1:
                print('Child2: ', child2.tag, '\t', child2.attrib)
                count = 0
                for child3 in child2:
                    print('Child3: ', child3.tag, child3.attrib)
                    if (count >= 10):
                        break
                    if (child3.tag == tagprefix + 'Plane'):
                        count = count + 1
                    for child4 in child3:
                        print('Child4: ', child4.tag, child4.attrib)
                        for child5 in child4:
                            print('Child5: ', child5.tag, child5.attrib)
                            for child6 in child5:
                                print('Child6: ', child6.tag, child6.attrib)

                print('-----------------------------------')
            print('====================================')
Esempio n. 16
0
    def load_slide_scanner_image(self, z=0, serie=4):

        self.downfactor = 1

        self._img_vsi = bf.load_image(self.path.as_posix(),
                                      t=0,
                                      series=serie,
                                      z=z)

        metadata = bf.get_omexml_metadata(self.path.as_posix())

        o = bf.OMEXML(metadata)

        n_zslices = o.image_count

        self.n_slices_known.emit(n_zslices, self._img_vsi.shape[-1], 4, 1)

        self.slice_slide_scanner()
Esempio n. 17
0
 def __init__(self, filename):
     self.reader: bioformats.ImageReader
     self.indexes = []
     self.sizes = []
     self.mags = []
     xml = bioformats.get_omexml_metadata(filename)
     self.meta = bioformats.OMEXML(xml)
     # get magnification
     #meta.Objective()...
     for i in range(self.meta.get_image_count()):
         imeta = self.meta.image(i)
         pmeta = imeta.Pixels
         name = imeta.Name
         if pmeta.PhysicalSizeX is not None and name.endswith('x'):
             self.indexes.append(i)
             self.sizes.append((pmeta.SizeX, pmeta.SizeY))
             self.mags.append(int(name[0:-1]))
     self.reader = bioformats.ImageReader(filename)
Esempio n. 18
0
 def get_metadata(self, save=True):
     # Retrieve metadata info, put it in data frame and save it.
     print('Getting and saving metadata for ' + self.fullpath + '...')
     ome = bf.OMEXML(bf.get_omexml_metadata(self.fullpath))
     md = []
     for ind in range(ome.image_count):
         iome = ome.image(ind)
         md.append([
             iome.get_ID(),
             iome.get_Name(),
             iome.Pixels.get_SizeC(),
             iome.Pixels.get_SizeX(),
             iome.Pixels.get_PhysicalSizeX(),
             iome.Pixels.get_PhysicalSizeXUnit(),
             iome.Pixels.get_SizeY(),
             iome.Pixels.get_PhysicalSizeY(),
             iome.Pixels.get_PhysicalSizeYUnit(),
             iome.Pixels.get_SizeZ(),
             iome.Pixels.get_PhysicalSizeZ(),
             iome.Pixels.get_PhysicalSizeZUnit(),
             iome.Pixels.get_PixelType()
         ])
     self.md = pd.DataFrame(md)
     self.md.columns = [
         'ID', 'Name', 'Nchan', 'SizeX', 'PhysicalSizeX',
         'PhysicalSizeXUnit', 'SizeY', 'PhysicalSizeY', 'PhysicalSizeYUnit',
         'SizeZ', 'PhysicalSizeZ', 'PhysicalSizeZUnit', 'PixelType'
     ]
     if save:
         print('Saving metadata...')
         fname = os.path.join(self.dpath, self.date, self.project,
                              'parsed_metadata')
         with open(fname + '.pickle', 'wb') as f:
             pickle.dump(self.md, f)
         self.md.to_csv(fname + '.csv', index=False)
     # Create one folder per series
     project_path = os.path.join(self.dpath, self.date, self.project)
     for i in range(ome.image_count):
         folder_name = 'S{:0>2d}'.format(i + 1) + '_' + self.md.Name[i]
         # Useful ref: https://mkaz.blog/code/python-string-format-cookbook/
         series_folder = os.path.join(project_path, folder_name)
         if not os.path.exists(series_folder):
             print('Creating subfolder ' + series_folder + '...')
             os.makedirs(series_folder)
Esempio n. 19
0
 def read_metadata(self,update=False):
     if self._metadata and not update:
         return self._metadata
     # For some reason, tif files need to use the generic ImageReader while everything else
     # can use the OMETiffReader.
     if self._file_path.endswith('.ome.tif'):
         rdr = jutil.JClassWrapper('loci.formats.in.OMETiffReader')()
     else:
         rdr = jutil.JClassWrapper('loci.formats.ImageReader')()
     rdr.setOriginalMetadataPopulated(True)
     clsOMEXMLService = jutil.JClassWrapper('loci.formats.services.OMEXMLService')
     serviceFactory = jutil.JClassWrapper('loci.common.services.ServiceFactory')()
     service = serviceFactory.getInstance(clsOMEXMLService.klass)
     omexml = service.createOMEXMLMetadata()
     rdr.setMetadataStore(omexml)
     rdr.setId(self._file_path)
     
     self._metadata = bioformats.OMEXML(omexml.dumpXML())
     return self._metadata
Esempio n. 20
0
def read_stack(file_path, axis='T'):
    xml = bf.OMEXML(bf.get_omexml_metadata(file_path))
    sizeZ = xml.image().Pixels.SizeZ
    sizeC = xml.image().Pixels.SizeC
    sizeT = xml.image().Pixels.SizeT
    sizeX = xml.image().Pixels.SizeX
    sizeY = xml.image().Pixels.SizeY

    axes = {'z': sizeZ, 'c': sizeC, 't': sizeT}
    ax3 = axes[axis.lower()]

    out_arr = np.zeros((ax3, sizeX, sizeY), dtype='uint16')
    with bf.ImageReader(file_path) as r:
        for i in range(ax3):
            kwargs = {axis.lower(): i}
            im = r.read(rescale=False, **kwargs)
            out_arr[i] = im

    return out_arr
def getMax(filename):
    md = bf.get_omexml_metadata(filename)
    #rdr = bf.ImageReader(filename, perform_init=True)
    ome = bf.OMEXML(md)
    pixels = ome.image().Pixels
    count = pixels.SizeT
    xSum = []
    with bf.ImageReader(filename) as reader:
        for i in range(count):
            img = reader.read(t=i)
            mm = np.max(img)
            v2 = img >= mm / 15
            im2 = img * v2
            ssum = sum(sum(im2)) / sum(sum(v2))
            xSum.append(ssum)
        reader.close()
        mP = max(xSum)
        idx = xSum.index(mP)
    return mP, idx
Esempio n. 22
0
def im_compile(filename, path=None, rescale=False):
    """
    Converts image stack to a numpy nd array using python-bioformats.

    Parses the metadata of an image file and constructs a numpy ndarray of the
    images based on the number of channels, z-planes, and timepoints.

    Args:
        filename: Filename of the image to parse.
        path: The path to the image file.

    Returns:
        An ndarray of the images in the order YXCZT.
    """
    import bioformats as bf
    import numpy as np
    import os

    if path is None:
        fullfile = filename
    elif isinstance(path, str):
        fullfile = os.path.join(path, filename)
    metadata = bf.get_omexml_metadata(fullfile)
    ome_data = bf.OMEXML(xml=metadata)
    mat = np.zeros([
        ome_data.image().Pixels.SizeY,
        ome_data.image().Pixels.SizeX,
        ome_data.image().Pixels.channel_count,
        ome_data.image().Pixels.SizeZ,
        ome_data.image().Pixels.SizeT
    ])
    with bf.ImageReader(fullfile) as rdr:
        for c_cnt in range(ome_data.image().Pixels.channel_count):
            for t_cnt in range(ome_data.image().Pixels.SizeT):
                for z_cnt in range(ome_data.image().Pixels.SizeZ):
                    image = rdr.read(c=c_cnt,
                                     t=t_cnt,
                                     z=z_cnt,
                                     rescale=rescale)
                    mat[:, :, c_cnt, z_cnt, t_cnt] = image
    return mat.astype(ome_data.image().Pixels.PixelType)
Esempio n. 23
0
def czi2tif(nameczi, nametif, slice):

    image_info = bioformats.get_omexml_metadata(nameczi)
    omxml_data = bioformats.OMEXML(image_info)

    pixels = omxml_data.image(slice).Pixels
    sx = pixels.SizeX
    sy = pixels.SizeY

    dst_ds = gdal.GetDriverByName('GTiff').Create(
        nametif, sx, sy, 3, gdal.GDT_Byte,
        ['COMPRESS=LZW', 'BIGTIFF=YES', 'TILED=YES'])
    r1 = dst_ds.GetRasterBand(1)
    r2 = dst_ds.GetRasterBand(2)
    r3 = dst_ds.GetRasterBand(3)

    step = int(np.round(sy / 4))

    with bioformats.formatreader.ImageReader(nameczi) as reader:
        for k in range(0, sy, step):
            #            print(k)
            if k + step >= sy:
                step = step - (k + step - sy) - 1

            if step > 0:
                data = reader.read(nameczi,
                                   z=0,
                                   t=0,
                                   series=slice,
                                   rescale=False,
                                   XYWH=(0, k, sx, step))
                data = np.array(np.reshape(data, (step, -1, 3)))
                r1.WriteArray(data[:, :, 0], 0, k)
                r2.WriteArray(data[:, :, 1], 0, k)
                r3.WriteArray(data[:, :, 2], 0, k)

    dst_ds.BuildOverviews("NEAREST", [2, 4, 8, 16, 32, 64])
    dst_ds.FlushCache()  # write to disk
    dst_ds = None
Esempio n. 24
0
    def _read_metadata(self):
        ## Read metadata from ONEXML
        metadata = bioformats.get_omexml_metadata(str(self.file_path))
        o = bioformats.OMEXML(metadata)
        dom = o.dom
        self._root = dom.getroot()

        for ch in self._root:
            tag = ch.tag[ch.tag.find('}') + 1:]
            if 'Image' in tag:
                attrib = ch.attrib
                if 'Primary' in attrib['Name']:
                    for ch1 in ch:
                        tag1 = ch1.tag[ch1.tag.find('}') + 1:]
                        attrib1 = ch1.attrib
                        if 'Pixels' in tag1:
                            pixels_info = attrib1

        self._num_channels = int(pixels_info['SizeC'])
        self._num_frames = int(pixels_info['SizeT'])
        self._size_x = int(pixels_info['SizeX'])
        self._size_y = int(pixels_info['SizeY'])
        self._size_z = int(pixels_info['SizeZ'])
        self._dtype = pixels_info['Type']
        self._pixelinfo = pixels_info

        # TODO retrieve channel names
        self._channel_names = [f'channel_{i}' for i in range(self._num_channels)]

        # TODO find better approach
        get_next = False
        for it in self._root.iter():
            if it.text is not None:
                if get_next:
                    self._sampling_frequency = float(it.text)
                    get_next = False
                if 'frame' in it.text:
                    get_next = True
Esempio n. 25
0
def readBioFormatsMeta(fn):
    """Reads meta data out of bioformats format.
	
	.. note:: Changes system default encoding to UTF8.
	
	Args:
		fn (str): Path to file.
	
	Returns:
		OMEXML: meta data of all data.
	
	"""

    #Change system encoding to UTF 8
    reload(sys)
    sys.setdefaultencoding('UTF8')

    #Load and convert to utf8
    meta = bioformats.get_omexml_metadata(path=fn)
    meta = meta.decode().encode('utf-8')

    meta2 = bioformats.OMEXML(meta)

    return meta2
def genGraphSingle(filename):
    md = bf.get_omexml_metadata(filename)
    #rdr = bf.ImageReader(filename, perform_init=True)
    ome = bf.OMEXML(md)
    pixels = ome.image().Pixels
    count = pixels.SizeT
    vPZ = []
    pZ = 250
    for i in range(count):
        vPZ.append(i * pZ / 1000)
    xSum = []
    with bf.ImageReader(filename) as reader:
        for i in range(count):
            #print(i)
            img = reader.read(t=i)
            #img = ndimage.gaussian_filter(img, sigma=(200, 200))
            mm = np.max(img)
            v2 = img >= mm / 15
            im2 = img * v2
            ssum = sum(sum(im2)) / sum(sum(v2))
            xSum.append(ssum)
        reader.close()
        plt.plot(vPZ, xSum)
        plt.show()
import javabridge
import bioformats
import numpy as np
import nrrd
import matplotlib.pyplot as plt

javabridge.start_vm(class_path=bioformats.JARS)

path_to_data = 'test_data/Nucleisegmentedfill.tif'
depth = 't'     # z or t

# Get XML metadata of complete file
xml_string = bioformats.get_omexml_metadata(path_to_data)
ome = bioformats.OMEXML(xml_string)

# Print the number of images that are in the tif
print(ome.image_count)

# Read the metadata from the first image -> series 0
iome = ome.image(0)
series_count = ome.get_image_count()
image_name = iome.get_Name()
image_id = iome.get_ID()
image_acquisition = iome.get_AcquisitionDate()

print('Series count: ', series_count)
print('Name: ', image_name)
print('ID: ', image_id)
print('Acquisition Date: ', image_acquisition)

# Geth the pixel meta data from the image
print('User Selected:  %s' %filename)


# ##### Show metadata
# I am using Python-bioformats version 1.1.0 and, as of 4/26/2016, there is a bug in omexml.py. To fix this bug, 
# - Go to your path that contains omexml.py (/anaconda/envs/env2_bioformats/lib/python2.7/site-packages/bioformats/ in my case)
# - Delete omexml.pyc
# - Then open omexml.py and change line 318 from 'isinstance(xml, str):' to 'isinstance(xml, basestring)'
# 
# If you don't do this, you may get an error that says "ascii codec can't encode character"

# In[60]:

md = bf.get_omexml_metadata(file_full_path)
ome = bf.OMEXML(md)
iome = ome.image(0) # e.g. first image
#print(ome.image_count)

print('Image Name:  %s' %iome.get_Name())
print('Image ID:  %s' %iome.get_ID()) #what is image ID?
print('Acquisition Date:  %s'  %iome.AcquisitionDate)
print('')

print('Bit Depth:  %s' %iome.Pixels.get_PixelType())
print('XYZ Dimensions:  %s x %s x %s pixels' %(iome.Pixels.get_SizeX(),iome.Pixels.get_SizeY(),iome.Pixels.get_SizeZ()))
print('Time Points:  %s' %iome.Pixels.get_SizeT())
print('DimensionOrder:  %s' %iome.Pixels.DimensionOrder)
#print('get_DimensionOrder:  %s' %iome.Pixels.get_DimensionOrder()) #what is the difference between get_DimensionOrder() and DimensionOrder?
print('Channels:  %s' %iome.Pixels.get_SizeC())
print('Ch1:  %s' %iome.Pixels.Channel(0).Name)
Esempio n. 29
0
    def _combine_omexml_elements(self, omexml_images, omexml_metadata):
        logger.info('combine OMEXML elements')
        # We assume here that each image files contains the same number images.
        n_images = omexml_images.values()[0].image_count * len(omexml_images)
        if omexml_metadata is not None:
            extra_omexml_available = True
            if not isinstance(omexml_metadata, bioformats.omexml.OMEXML):
                raise TypeError('Argument "omexml_metadata" must have type '
                                'bioformats.omexml.OMEXML.')
            if omexml_metadata.image_count != n_images:
                raise MetadataError(
                    'Number of images in "omexml_metadata" must match '
                    'the total number of Image elements in "omexml_images".')
        else:
            extra_omexml_available = False
            omexml_metadata = bioformats.OMEXML(XML_DECLARATION)
            omexml_metadata.image_count = n_images

        image_element_attributes = {'AcquisitionDate', 'Name'}
        channel_element_attributes = {'Name'}
        pixel_element_attributes = {
            'PixelType', 'SizeC', 'SizeT', 'SizeX', 'SizeY', 'SizeZ'
        }
        plane_element_attributes = {
            'PositionX', 'PositionY', 'PositionZ', 'TheC', 'TheT', 'TheZ'
        }
        filenames = natsorted(omexml_images)
        count = 0
        for i, f in enumerate(filenames):
            omexml_img = omexml_images[f]
            n_series = omexml_img.image_count
            for s in xrange(n_series):
                extracted_image = omexml_img.image(s)
                md_image = omexml_metadata.image(count)
                for attr in image_element_attributes:
                    extracted_value = getattr(extracted_image, attr)
                    if extracted_value is not None:
                        setattr(md_image, attr, extracted_value)

                extracted_pixels = extracted_image.Pixels
                n_planes = extracted_pixels.plane_count
                if n_planes == 0:
                    # Sometimes an image doesn't have any plane elements.
                    # Let's create them for consistency.
                    extracted_pixels = self._create_channel_planes(
                        extracted_pixels)
                    n_planes = extracted_pixels.plane_count

                md_pixels = md_image.Pixels
                md_pixels.plane_count = n_planes
                if extra_omexml_available and (md_pixels.plane_count !=
                                               n_planes):
                    raise MetadataError(
                        'Image element #%d in OMEXML obtained from additional '
                        'metdata files must have the same number of Plane  '
                        'elements as the corresponding Image elements in the '
                        'OMEXML element obtained from image file "%s".' %
                        (i, f))

                for attr in pixel_element_attributes:
                    extracted_value = getattr(extracted_pixels, attr)
                    if extracted_value is not None:
                        # This is python-bioformats being stupid by setting
                        # random default values.
                        setattr(md_pixels, attr, extracted_value)

                for p in xrange(n_planes):
                    extracted_plane = extracted_pixels.Plane(p)
                    md_plane = md_pixels.Plane(p)
                    for attr in plane_element_attributes:
                        extracted_value = getattr(extracted_plane, attr)
                        md_value = getattr(md_plane, attr)
                        if md_value is None and extracted_value is not None:
                            setattr(md_plane, attr, extracted_value)

                    fm = ImageFileMapping()
                    fm.ref_index = count + p
                    fm.files = [f]
                    fm.series = [s]
                    fm.planes = [p]
                    self._file_mapper_list.append(fm)
                    self._file_mapper_lut[f].append(fm)

                n_channels = extracted_pixels.channel_count
                md_image.channel_count = n_channels
                for c in xrange(n_channels):
                    extracted_channel = extracted_pixels.Channel(c)
                    md_channel = md_pixels.Channel(c)
                    for attr in channel_element_attributes:
                        extracted_value = getattr(extracted_channel, attr)
                        if extracted_value is not None:
                            setattr(md_channel, attr, extracted_value)

                count += 1

        return omexml_metadata
Esempio n. 30
0
    def run_job(self, batch, assume_clean_state=False):
        '''Configures OMEXML metadata extracted from microscope image files and
        complements it with metadata retrieved from additional microscope
        metadata files and/or user input.

        The actual processing is delegated to a format-specific implementation of
        :class:`MetadataHandler <tmlib.workflow.metaconfig.base.MetadataHandler>`.

        Parameters
        ----------
        batch: dict
            job description
        assume_clean_state: bool, optional
            assume that output of previous runs has already been cleaned up

        See also
        --------
        :mod:`tmlib.workflow.metaconfig.cellvoyager`
        '''
        regexp = batch.get('regex', '')
        if not regexp:
            regexp = get_microscope_type_regex(
                batch['microscope_type'], as_string=True
            )[0]
        with tm.utils.ExperimentSession(self.experiment_id) as session:
            experiment = session.query(tm.Experiment).one()
            plate_dimensions = experiment.plates[0].dimensions
            acquisition = session.query(tm.Acquisition).\
                get(batch['acquisition_id'])
            metadata_files = session.query(tm.MicroscopeMetadataFile.location).\
                filter_by(acquisition_id=batch['acquisition_id']).\
                all()
            metadata_filenames = [f.location for f in metadata_files]
            image_files = session.query(
                    tm.MicroscopeImageFile.name, tm.MicroscopeImageFile.omexml
                ).\
                filter_by(acquisition_id=batch['acquisition_id']).\
                all()
            omexml_images = {
                f.name: bioformats.OMEXML(f.omexml) for f in image_files
            }

        MetadataReader = metadata_reader_factory(batch['microscope_type'])
        if MetadataReader is not None:
            with MetadataReader() as mdreader:
                omexml_metadata = mdreader.read(
                    metadata_filenames, omexml_images.keys()
                )
        else:
            omexml_metadata = None

        MetadataHandler = metadata_handler_factory(batch['microscope_type'])
        mdhandler = MetadataHandler(omexml_images, omexml_metadata)
        mdhandler.configure_from_omexml()
        missing = mdhandler.determine_missing_metadata()
        if missing:
            logger.warning(
                'required metadata information is missing: "%s"',
                '", "'.join(missing)
            )
            logger.info(
                'try to retrieve missing metadata from filenames '
                'using regular expression'
            )
            if regexp is None:
                logger.warn('no regular expression provided')
            mdhandler.configure_from_filenames(
                plate_dimensions=plate_dimensions, regex=regexp
            )
        missing = mdhandler.determine_missing_metadata()
        if missing:
            raise MetadataError(
                'The following metadata information is missing:\n"%s"\n'
                % '", "'.join(missing)
            )
        # Once we have collected basic metadata such as information about
        # channels and focal planes, we try to determine the relative position
        # of images within the acquisition grid
        try:
            logger.info(
                'try to determine grid coordinates from microscope '
                'stage positions'
            )
            mdhandler.determine_grid_coordinates_from_stage_positions()
        except MetadataError as error:
            logger.warning(
                'microscope stage positions are not available: "%s"'
                % str(error)
            )
            logger.info(
                'try to determine grid coordinates from provided stitch layout'
            )
            # In general, the values of these arguments can be ``None``, because
            # they are not required and may not be used.
            # However, in case the grid coordinates should be determined based
            # on user interput, these arguments are required.
            if not isinstance(batch['n_vertical'], int):
                raise TypeError(
                    'Value of argument "n_vertical" must be an integer.'
                )
            if not isinstance(batch['n_horizontal'], int):
                raise TypeError(
                    'Value of argument "n_horizontal" must be an integer.'
                )
            mdhandler.determine_grid_coordinates_from_layout(
                stitch_layout=batch['stitch_layout'],
                stitch_dimensions=(batch['n_vertical'], batch['n_horizontal'])
            )

        if batch['perform_mip']:
            mdhandler.group_metadata_per_zstack()

        # Create consistent zero-based ids
        mdhandler.update_indices()
        mdhandler.assign_acquisition_site_indices()
        md = mdhandler.remove_redundant_columns()
        fmaps = mdhandler.create_image_file_mappings()

        logger.info('create database entries')

        with tm.utils.ExperimentSession(self.experiment_id) as session:
            channels = dict()
            bit_depth = md['bit_depth'][0]
            for ch_name in np.unique(md['channel_name']):
                logger.info('create channel "%s"', ch_name)
                ch = session.get_or_create(
                    tm.Channel, experiment_id=self.experiment_id,
                    name=ch_name, wavelength=ch_name, bit_depth=bit_depth,
                )
                channels[ch_name] = ch.id

        for w in np.unique(md.well_name):

            with tm.utils.ExperimentSession(self.experiment_id) as session:
                acquisition = session.query(tm.Acquisition).\
                    get(batch['acquisition_id'])

                logger.info('create well "%s"', w)
                w_index = (md.well_name == w)
                well = session.get_or_create(
                    tm.Well, plate_id=acquisition.plate.id, name=w
                )

                channel_image_files = []
                for s in np.unique(md.loc[w_index, 'site']):
                    logger.debug('create site #%d', s)
                    s_index = (md.site == s)
                    y = md.loc[s_index, 'well_position_y'].values[0]
                    x = md.loc[s_index, 'well_position_x'].values[0]
                    height = md.loc[s_index, 'height'].values[0]
                    width = md.loc[s_index, 'width'].values[0]
                    site = session.get_or_create(
                        tm.Site, y=y, x=x, height=height, width=width,
                        well_id=well.id
                    )

                    for index, i in md.ix[s_index].iterrows():
                        channel_image_files.append(
                            tm.ChannelImageFile(
                                tpoint=i.tpoint, zplane=i.zplane,
                                channel_id=channels[i.channel_name],
                                site_id=site.id, acquisition_id=acquisition.id,
                                file_map=fmaps[index],
                            )
                        )

                session.bulk_save_objects(channel_image_files)