def create_n_connection_synapse(prototype_syn, n, nml_doc, existing_synapses): new_id = "%s_%sconns" % (prototype_syn.id, str(n).replace('.', '_')) if not existing_synapses.has_key(new_id): if isinstance(prototype_syn, ExpTwoSynapse): magnitude, unit = bioparameters.split_neuroml_quantity( prototype_syn.gbase) new_syn = ExpTwoSynapse(id=new_id, gbase="%s%s" % (magnitude * n, unit), erev=prototype_syn.erev, tau_decay=prototype_syn.tau_decay, tau_rise=prototype_syn.tau_rise) existing_synapses[new_id] = new_syn nml_doc.exp_two_synapses.append(new_syn) elif isinstance(prototype_syn, GapJunction): magnitude, unit = bioparameters.split_neuroml_quantity( prototype_syn.conductance) new_syn = GapJunction(id=new_id, conductance="%s%s" % (magnitude * n, unit)) existing_synapses[new_id] = new_syn nml_doc.gap_junctions.append(new_syn) else: new_syn = existing_synapses[new_id] return new_syn
def create_n_connection_synapse(prototype_syn, n, nml_doc, existing_synapses): new_id = "%s_%sconns"%(prototype_syn.id, str(n).replace('.', '_')) if not existing_synapses.has_key(new_id): if isinstance(prototype_syn, ExpTwoSynapse): magnitude, unit = bioparameters.split_neuroml_quantity(prototype_syn.gbase) new_syn = ExpTwoSynapse(id=new_id, gbase = "%s%s"%(magnitude*n, unit), erev = prototype_syn.erev, tau_decay = prototype_syn.tau_decay, tau_rise = prototype_syn.tau_rise) existing_synapses[new_id] = new_syn nml_doc.exp_two_synapses.append(new_syn) elif isinstance(prototype_syn, GapJunction): magnitude, unit = bioparameters.split_neuroml_quantity(prototype_syn.conductance) new_syn = GapJunction(id=new_id, conductance = "%s%s"%(magnitude*n, unit)) existing_synapses[new_id] = new_syn nml_doc.gap_junctions.append(new_syn) else: new_syn = existing_synapses[new_id] return new_syn
def create_n_connection_synapse(prototype_syn, n, nml_doc, existing_synapses): new_id = "%s_%sconns"%(prototype_syn.id, str(n).replace('.', '_')) if type(n) is float: new_id = "%s_%sconns" % (prototype_syn.id, get_str_from_expnotation(n).replace('.', '_')) if isinstance(prototype_syn, ExpTwoSynapse): new_id = "%s"%(prototype_syn.id) if not existing_synapses.has_key(new_id): if isinstance(prototype_syn, ExpTwoSynapse): new_syn = ExpTwoSynapse(id=new_id, gbase = prototype_syn.gbase, erev = prototype_syn.erev, tau_decay = prototype_syn.tau_decay, tau_rise = prototype_syn.tau_rise) existing_synapses[new_id] = new_syn nml_doc.exp_two_synapses.append(new_syn) elif isinstance(prototype_syn, GapJunction): magnitude, unit = bioparameters.split_neuroml_quantity(prototype_syn.conductance) cond = "%s%s" % (magnitude * n, unit) if type(n) is float: cond = "%s%s" % (get_str_from_expnotation(magnitude * n), unit) new_syn = GapJunction(id=new_id, conductance = cond) existing_synapses[new_id] = new_syn nml_doc.gap_junctions.append(new_syn) elif isinstance(prototype_syn, GradedSynapse): magnitude, unit = bioparameters.split_neuroml_quantity(prototype_syn.conductance) cond = "%s%s" % (magnitude * n, unit) if type(n) is float: cond = "%s%s" % (get_str_from_expnotation(magnitude * n), unit) new_syn = GradedSynapse(id=new_id, conductance = cond, delta = prototype_syn.delta, Vth = prototype_syn.Vth, erev = prototype_syn.erev, k = prototype_syn.k) existing_synapses[new_id] = new_syn nml_doc.graded_synapses.append(new_syn) else: new_syn = existing_synapses[new_id] return new_syn
def generate(net_id, params, cells = None, cells_to_plot = None, cells_to_stimulate = None, include_muscles=False, conn_number_override = None, conn_number_scaling = None, duration = 500, dt = 0.01, vmin = None, vmax = None, seed = 1234, validate=True, test=False, verbose=True, target_directory='./'): root_dir = os.path.dirname(os.path.abspath(__file__)) params.create_models() if vmin==None: if params.level == 'A': vmin=-72 elif params.level == 'B': vmin=-52 elif params.level == 'C': vmin=-60 else: vmin=-52 if vmax==None: if params.level == 'A': vmax=-48 elif params.level == 'B': vmax=-28 elif params.level == 'C': vmax=25 else: vmax=-28 random.seed(seed) info = "\n\nParameters and setting used to generate this network:\n\n"+\ " Cells: %s\n" % (cells if cells is not None else "All cells")+\ " Cell stimulated: %s\n" % (cells_to_stimulate if cells_to_stimulate is not None else "All cells")+\ " Connection numbers overridden: %s\n" % (conn_number_override if conn_number_override is not None else "None")+\ " Connection numbers scaled: %s\n" % (conn_number_scaling if conn_number_scaling is not None else "None")+\ " Include muscles: %s\n" % include_muscles print_(info) info += "\n%s\n"%(params.bioparameter_info(" ")) nml_doc = NeuroMLDocument(id=net_id, notes=info) if params.level == "A" or params.level == "B" or params.level == "BC1": nml_doc.iaf_cells.append(params.generic_cell) elif params.level == "C": nml_doc.cells.append(params.generic_cell) net = Network(id=net_id) nml_doc.networks.append(net) nml_doc.pulse_generators.append(params.offset_current) if params.level == "C" or params.level == "C1": nml_doc.fixed_factor_concentration_models.append(params.concentration_model) cell_names, conns = get_cell_names_and_connection() # To hold all Cell NeuroML objects vs. names all_cells = {} # lems_file = "" lems_info = {"comment": info, "reference": net_id, "duration": duration, "dt": dt, "vmin": vmin, "vmax": vmax, "cell_component": params.generic_cell.id} lems_info["plots"] = [] lems_info["activity_plots"] = [] lems_info["muscle_plots"] = [] lems_info["muscle_activity_plots"] = [] lems_info["to_save"] = [] lems_info["activity_to_save"] = [] lems_info["muscles_to_save"] = [] lems_info["muscles_activity_to_save"] = [] lems_info["cells"] = [] lems_info["muscles"] = [] lems_info["includes"] = [] if params.custom_component_types_definitions: lems_info["includes"].append(params.custom_component_types_definitions) if target_directory != './': def_file = "%s/%s"%(os.path.dirname(os.path.abspath(__file__)), params.custom_component_types_definitions) shutil.copy(def_file, target_directory) nml_doc.includes.append(IncludeType(href=params.custom_component_types_definitions)) backers_dir = root_dir+"/../../../../OpenWormBackers/" if test else root_dir+"/../../../OpenWormBackers/" sys.path.append(backers_dir) import backers cells_vs_name = backers.get_adopted_cell_names(backers_dir) populations_without_location = False # isinstance(params.elec_syn, GapJunction) count = 0 for cell in cell_names: if cells is None or cell in cells: inst = Instance(id="0") if not populations_without_location: # build a Population data structure out of the cell name pop0 = Population(id=cell, component=params.generic_cell.id, type="populationList") pop0.instances.append(inst) else: # build a Population data structure out of the cell name pop0 = Population(id=cell, component=params.generic_cell.id, size="1") # put that Population into the Network data structure from above net.populations.append(pop0) if cells_vs_name.has_key(cell): p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[cell]) pop0.properties.append(p) # also use the cell name to grab the morphology file, as a NeuroML data structure # into the 'all_cells' dict cell_file_path = root_dir+"/../../../" if test else root_dir+"/../../" #if running test cell_file = cell_file_path+'generatedNeuroML2/%s.cell.nml'%cell doc = loaders.NeuroMLLoader.load(cell_file) all_cells[cell] = doc.cells[0] location = doc.cells[0].morphology.segments[0].proximal if verbose: print_("Loaded morphology: %s; id: %s; location: (%s, %s, %s)"%(os.path.realpath(cell_file), all_cells[cell].id, location.x, location.y, location.z)) inst.location = Location(float(location.x), float(location.y), float(location.z)) target = "../%s/0/%s"%(pop0.id, params.generic_cell.id) if populations_without_location: target = "../%s[0]" % (cell) if cells_to_stimulate is None or cell in cells_to_stimulate: input_list = InputList(id="Input_%s_%s"%(cell,params.offset_current.id), component=params.offset_current.id, populations='%s'%cell) input_list.input.append(Input(id=0, target=target, destination="synapses")) net.input_lists.append(input_list) if cells_to_plot is None or cell in cells_to_plot: plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/v" % (cell, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/v" % (cell) lems_info["plots"].append(plot) if params.generic_cell.__class__.__name__ == 'IafActivityCell': plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/activity" % (cell, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/activity" % (cell) lems_info["activity_plots"].append(plot) if params.generic_cell.__class__.__name__ == 'Cell': plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/caConc" % (cell, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/caConc" % (cell) lems_info["activity_plots"].append(plot) save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/v" % (cell, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/v" % (cell) lems_info["to_save"].append(save) if params.generic_cell.__class__.__name__ == 'IafActivityCell': save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/activity" % (cell, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/activity" % (cell) lems_info["activity_to_save"].append(save) if params.generic_cell.__class__.__name__ == 'Cell': save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/caConc" % (cell, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/caConc" % (cell) lems_info["activity_to_save"].append(save) lems_info["cells"].append(cell) count+=1 if verbose: print_("Finished loading %i cells"%count) mneurons, all_muscles, muscle_conns = get_cell_muscle_names_and_connection() muscles = get_muscle_names() if include_muscles: muscle_count = 0 for muscle in muscles: inst = Instance(id="0") if not populations_without_location: # build a Population data structure out of the cell name pop0 = Population(id=muscle, component=params.generic_cell.id, type="populationList") pop0.instances.append(inst) else: # build a Population data structure out of the cell name pop0 = Population(id=muscle, component=params.generic_cell.id, size="1") # put that Population into the Network data structure from above net.populations.append(pop0) if cells_vs_name.has_key(muscle): # No muscles adopted yet, but just in case they are in future... p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[muscle]) pop0.properties.append(p) x = 80 * (-1 if muscle[1] == 'V' else 1) z = 80 * (-1 if muscle[2] == 'L' else 1) y = -300 + 30 * int(muscle[3:5]) print_('Positioning muscle: %s at (%s,%s,%s)'%(muscle,x,y,z)) inst.location = Location(x,y,z) target = "%s/0/%s"%(pop0.id, params.generic_cell.id) if populations_without_location: target = "%s[0]" % (muscle) plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/v" % (muscle, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/v" % (muscle) lems_info["muscle_plots"].append(plot) if params.generic_cell.__class__.__name__ == 'IafActivityCell': plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/activity" % (muscle, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/activity" % (muscle) lems_info["muscle_activity_plots"].append(plot) if params.generic_cell.__class__.__name__ == 'Cell': plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/caConc" % (muscle, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/caConc" % (muscle) lems_info["muscle_activity_plots"].append(plot) save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/v" % (muscle, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/v" % (muscle) lems_info["muscles_to_save"].append(save) if params.generic_cell.__class__.__name__ == 'IafActivityCell': save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/activity" % (muscle, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/activity" % (muscle) lems_info["muscles_activity_to_save"].append(save) if params.generic_cell.__class__.__name__ == 'Cell': save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/caConc" % (muscle, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/caConc" % (muscle) lems_info["muscles_activity_to_save"].append(save) lems_info["muscles"].append(muscle) muscle_count+=1 if verbose: print_("Finished creating %i muscles"%muscle_count) existing_synapses = {} for conn in conns: if conn.pre_cell in lems_info["cells"] and conn.post_cell in lems_info["cells"]: # take information about each connection and package it into a # NeuroML Projection data structure proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype) elect_conn = False analog_conn = False syn0 = params.exc_syn if 'GABA' in conn.synclass: syn0 = params.inh_syn if '_GJ' in conn.synclass: syn0 = params.elec_syn elect_conn = isinstance(params.elec_syn, GapJunction) if isinstance(syn0, GradedSynapse): analog_conn = True if len(nml_doc.silent_synapses)==0: silent = SilentSynapse(id="silent") nml_doc.silent_synapses.append(silent) number_syns = conn.number conn_shorthand = "%s-%s"%(conn.pre_cell, conn.post_cell) if conn_number_override is not None and (conn_number_override.has_key(conn_shorthand)): number_syns = conn_number_override[conn_shorthand] elif conn_number_scaling is not None and (conn_number_scaling.has_key(conn_shorthand)): number_syns = conn.number*conn_number_scaling[conn_shorthand] ''' else: print conn_shorthand print conn_number_override print conn_number_scaling''' if number_syns != conn.number: magnitude, unit = bioparameters.split_neuroml_quantity(syn0.gbase) cond0 = "%s%s"%(magnitude*conn.number, unit) cond1 = "%s%s"%(magnitude*number_syns, unit) if verbose: print_(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \ (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1)) syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses) if elect_conn: if populations_without_location: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) # Add a Connection with the closest locations conn0 = ElectricalConnection(id="0", \ pre_cell="0", post_cell="0", synapse=syn_new.id) proj0.electrical_connections.append(conn0) else: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) pre_cell_id="../%s/0/%s"%(conn.pre_cell, params.generic_cell.id) post_cell_id="../%s/0/%s"%(conn.post_cell, params.generic_cell.id) #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id)) # Add a Connection with the closest locations conn0 = ElectricalConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, synapse=syn_new.id) proj0.electrical_connection_instances.append(conn0) elif analog_conn: proj0 = ContinuousProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.continuous_projections.append(proj0) pre_cell_id="../%s/0/%s"%(conn.pre_cell, params.generic_cell.id) post_cell_id="../%s/0/%s"%(conn.post_cell, params.generic_cell.id) conn0 = ContinuousConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, pre_component="silent", post_component=syn_new.id) proj0.continuous_connection_instances.append(conn0) else: if not populations_without_location: proj0 = Projection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell, synapse=syn_new.id) net.projections.append(proj0) pre_cell_id="../%s/0/%s"%(conn.pre_cell, params.generic_cell.id) post_cell_id="../%s/0/%s"%(conn.post_cell, params.generic_cell.id) conn0 = ConnectionWD(id="0", \ pre_cell_id=pre_cell_id, post_cell_id=post_cell_id, weight = number_syns, delay = '0ms') proj0.connection_wds.append(conn0) if populations_without_location: raise NotImplementedError ''' # <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/> pre_cell_id="%s[0]"%(conn.pre_cell) post_cell_id="%s[0]"%(conn.post_cell) conn0 = SynapticConnection(from_=pre_cell_id, to=post_cell_id, synapse=syn_new.id, destination="synapses") net.synaptic_connections.append(conn0)''' if include_muscles: for conn in muscle_conns: if conn.pre_cell in lems_info["cells"] and conn.post_cell in muscles: # take information about each connection and package it into a # NeuroML Projection data structure proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype) elect_conn = False analog_conn = False syn0 = params.exc_syn if 'GABA' in conn.synclass: syn0 = params.inh_syn if '_GJ' in conn.synclass: syn0 = params.elec_syn elect_conn = isinstance(params.elec_syn, GapJunction) if isinstance(syn0, GradedSynapse): analog_conn = True if len(nml_doc.silent_synapses)==0: silent = SilentSynapse(id="silent") nml_doc.silent_synapses.append(silent) number_syns = conn.number conn_shorthand = "%s-%s"%(conn.pre_cell, conn.post_cell) if conn_number_override is not None and (conn_number_override.has_key(conn_shorthand)): number_syns = conn_number_override[conn_shorthand] elif conn_number_scaling is not None and (conn_number_scaling.has_key(conn_shorthand)): number_syns = conn.number*conn_number_scaling[conn_shorthand] ''' else: print conn_shorthand print conn_number_override print conn_number_scaling''' if number_syns != conn.number: magnitude, unit = bioparameters.split_neuroml_quantity(syn0.gbase) cond0 = "%s%s"%(magnitude*conn.number, unit) cond1 = "%s%s"%(magnitude*number_syns, unit) if verbose: print_(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \ (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1)) syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses) if elect_conn: if populations_without_location: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) # Add a Connection with the closest locations conn0 = ElectricalConnection(id="0", \ pre_cell="0", post_cell="0", synapse=syn_new.id) proj0.electrical_connections.append(conn0) else: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) pre_cell_id="../%s/0/%s"%(conn.pre_cell, params.generic_cell.id) post_cell_id="../%s/0/%s"%(conn.post_cell, params.generic_cell.id) #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id)) # Add a Connection with the closest locations conn0 = ElectricalConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, synapse=syn_new.id) proj0.electrical_connection_instances.append(conn0) elif analog_conn: proj0 = ContinuousProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.continuous_projections.append(proj0) pre_cell_id="../%s/0/%s"%(conn.pre_cell, params.generic_cell.id) post_cell_id="../%s/0/%s"%(conn.post_cell, params.generic_cell.id) conn0 = ContinuousConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, pre_component="silent", post_component=syn_new.id) proj0.continuous_connection_instances.append(conn0) else: if not populations_without_location: proj0 = Projection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell, synapse=syn_new.id) net.projections.append(proj0) # Add a Connection with the closest locations pre_cell_id="../%s/0/%s"%(conn.pre_cell, params.generic_cell.id) post_cell_id="../%s/0/%s"%(conn.post_cell, params.generic_cell.id) conn0 = Connection(id="0", \ pre_cell_id=pre_cell_id, post_cell_id=post_cell_id) proj0.connections.append(conn0) if populations_without_location: # <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/> pre_cell_id="%s[0]"%(conn.pre_cell) post_cell_id="%s[0]"%(conn.post_cell) conn0 = SynapticConnection(from_=pre_cell_id, to=post_cell_id, synapse=syn_new.id, destination="synapses") net.synaptic_connections.append(conn0) # import pprint # pprint.pprint(lems_info) template_path = root_dir+'/../' if test else root_dir+'/' # if running test write_to_file(nml_doc, lems_info, net_id, template_path, validate=validate, verbose=verbose, target_directory=target_directory) return nml_doc
def generate(net_id, params, cells=None, cells_to_plot=None, cells_to_stimulate=None, include_muscles=False, conn_number_override=None, conn_number_scaling=None, duration=500, dt=0.01, vmin=None, vmax=None, seed=1234, validate=True, test=False, verbose=True, target_directory='./'): root_dir = os.path.dirname(os.path.abspath(__file__)) params.create_models() if vmin == None: if params.level == 'A': vmin = -72 elif params.level == 'B': vmin = -52 elif params.level == 'C': vmin = -60 else: vmin = -52 if vmax == None: if params.level == 'A': vmax = -48 elif params.level == 'B': vmax = -28 elif params.level == 'C': vmax = 25 else: vmax = -28 random.seed(seed) info = "\n\nParameters and setting used to generate this network:\n\n"+\ " Cells: %s\n" % (cells if cells is not None else "All cells")+\ " Cell stimulated: %s\n" % (cells_to_stimulate if cells_to_stimulate is not None else "All cells")+\ " Connection numbers overridden: %s\n" % (conn_number_override if conn_number_override is not None else "None")+\ " Connection numbers scaled: %s\n" % (conn_number_scaling if conn_number_scaling is not None else "None")+\ " Include muscles: %s\n" % include_muscles print_(info) info += "\n%s\n" % (params.bioparameter_info(" ")) nml_doc = NeuroMLDocument(id=net_id, notes=info) if params.level == "A" or params.level == "B" or params.level == "BC1": nml_doc.iaf_cells.append(params.generic_muscle_cell) nml_doc.iaf_cells.append(params.generic_neuron_cell) elif params.level == "C": nml_doc.cells.append(params.generic_muscle_cell) nml_doc.cells.append(params.generic_neuron_cell) net = Network(id=net_id) nml_doc.networks.append(net) nml_doc.pulse_generators.append(params.offset_current) if params.level == "C" or params.level == "C1": nml_doc.fixed_factor_concentration_models.append( params.concentration_model) cell_names, conns = get_cell_names_and_connection() # To hold all Cell NeuroML objects vs. names all_cells = {} # lems_file = "" lems_info = { "comment": info, "reference": net_id, "duration": duration, "dt": dt, "vmin": vmin, "vmax": vmax, "cell_component": params.generic_neuron_cell.id } lems_info["plots"] = [] lems_info["activity_plots"] = [] lems_info["muscle_plots"] = [] lems_info["muscle_activity_plots"] = [] lems_info["to_save"] = [] lems_info["activity_to_save"] = [] lems_info["muscles_to_save"] = [] lems_info["muscles_activity_to_save"] = [] lems_info["cells"] = [] lems_info["muscles"] = [] lems_info["includes"] = [] if params.custom_component_types_definitions: lems_info["includes"].append(params.custom_component_types_definitions) if target_directory != './': def_file = "%s/%s" % (os.path.dirname(os.path.abspath(__file__)), params.custom_component_types_definitions) shutil.copy(def_file, target_directory) nml_doc.includes.append( IncludeType(href=params.custom_component_types_definitions)) backers_dir = root_dir + "/../../../../OpenWormBackers/" if test else root_dir + "/../../../OpenWormBackers/" sys.path.append(backers_dir) import backers cells_vs_name = backers.get_adopted_cell_names(backers_dir) populations_without_location = False # isinstance(params.elec_syn, GapJunction) count = 0 for cell in cell_names: if cells is None or cell in cells: inst = Instance(id="0") if not populations_without_location: # build a Population data structure out of the cell name pop0 = Population(id=cell, component=params.generic_neuron_cell.id, type="populationList") pop0.instances.append(inst) else: # build a Population data structure out of the cell name pop0 = Population(id=cell, component=params.generic_neuron_cell.id, size="1") # put that Population into the Network data structure from above net.populations.append(pop0) if cells_vs_name.has_key(cell): p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[cell]) pop0.properties.append(p) # also use the cell name to grab the morphology file, as a NeuroML data structure # into the 'all_cells' dict cell_file_path = root_dir + "/../../../" if test else root_dir + "/../../" #if running test cell_file = cell_file_path + 'generatedNeuroML2/%s.cell.nml' % cell doc = loaders.NeuroMLLoader.load(cell_file) all_cells[cell] = doc.cells[0] location = doc.cells[0].morphology.segments[0].proximal if verbose: print_( "Loaded morphology: %s; id: %s; location: (%s, %s, %s)" % (os.path.realpath(cell_file), all_cells[cell].id, location.x, location.y, location.z)) inst.location = Location(float(location.x), float(location.y), float(location.z)) target = "../%s/0/%s" % (pop0.id, params.generic_neuron_cell.id) if populations_without_location: target = "../%s[0]" % (cell) if cells_to_stimulate is None or cell in cells_to_stimulate: input_list = InputList(id="Input_%s_%s" % (cell, params.offset_current.id), component=params.offset_current.id, populations='%s' % cell) input_list.input.append( Input(id=0, target=target, destination="synapses")) net.input_lists.append(input_list) if cells_to_plot is None or cell in cells_to_plot: plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/v" % ( cell, params.generic_neuron_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/v" % (cell) lems_info["plots"].append(plot) if params.generic_neuron_cell.__class__.__name__ == 'IafActivityCell': plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/activity" % ( cell, params.generic_neuron_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/activity" % (cell) lems_info["activity_plots"].append(plot) if params.generic_neuron_cell.__class__.__name__ == 'Cell': plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/caConc" % ( cell, params.generic_neuron_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/caConc" % (cell) lems_info["activity_plots"].append(plot) save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/v" % (cell, params.generic_neuron_cell.id) if populations_without_location: save["quantity"] = "%s[0]/v" % (cell) lems_info["to_save"].append(save) if params.generic_neuron_cell.__class__.__name__ == 'IafActivityCell': save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/activity" % ( cell, params.generic_neuron_cell.id) if populations_without_location: save["quantity"] = "%s[0]/activity" % (cell) lems_info["activity_to_save"].append(save) if params.generic_neuron_cell.__class__.__name__ == 'Cell': save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/caConc" % ( cell, params.generic_neuron_cell.id) if populations_without_location: save["quantity"] = "%s[0]/caConc" % (cell) lems_info["activity_to_save"].append(save) lems_info["cells"].append(cell) count += 1 if verbose: print_("Finished loading %i cells" % count) mneurons, all_muscles, muscle_conns = get_cell_muscle_names_and_connection( ) muscles = get_muscle_names() if include_muscles: muscle_count = 0 for muscle in muscles: inst = Instance(id="0") if not populations_without_location: # build a Population data structure out of the cell name pop0 = Population(id=muscle, component=params.generic_muscle_cell.id, type="populationList") pop0.instances.append(inst) else: # build a Population data structure out of the cell name pop0 = Population(id=muscle, component=params.generic_muscle_cell.id, size="1") # put that Population into the Network data structure from above net.populations.append(pop0) if cells_vs_name.has_key(muscle): # No muscles adopted yet, but just in case they are in future... p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[muscle]) pop0.properties.append(p) x = 80 * (-1 if muscle[1] == 'V' else 1) z = 80 * (-1 if muscle[2] == 'L' else 1) y = -300 + 30 * int(muscle[3:5]) print_('Positioning muscle: %s at (%s,%s,%s)' % (muscle, x, y, z)) inst.location = Location(x, y, z) target = "%s/0/%s" % (pop0.id, params.generic_muscle_cell.id) if populations_without_location: target = "%s[0]" % (muscle) plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/v" % (muscle, params.generic_muscle_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/v" % (muscle) lems_info["muscle_plots"].append(plot) if params.generic_muscle_cell.__class__.__name__ == 'IafActivityCell': plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/activity" % ( muscle, params.generic_muscle_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/activity" % (muscle) lems_info["muscle_activity_plots"].append(plot) if params.generic_muscle_cell.__class__.__name__ == 'Cell': plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/caConc" % ( muscle, params.generic_muscle_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/caConc" % (muscle) lems_info["muscle_activity_plots"].append(plot) save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/v" % (muscle, params.generic_muscle_cell.id) if populations_without_location: save["quantity"] = "%s[0]/v" % (muscle) lems_info["muscles_to_save"].append(save) if params.generic_muscle_cell.__class__.__name__ == 'IafActivityCell': save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/activity" % ( muscle, params.generic_muscle_cell.id) if populations_without_location: save["quantity"] = "%s[0]/activity" % (muscle) lems_info["muscles_activity_to_save"].append(save) if params.generic_muscle_cell.__class__.__name__ == 'Cell': save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/caConc" % ( muscle, params.generic_muscle_cell.id) if populations_without_location: save["quantity"] = "%s[0]/caConc" % (muscle) lems_info["muscles_activity_to_save"].append(save) lems_info["muscles"].append(muscle) muscle_count += 1 if verbose: print_("Finished creating %i muscles" % muscle_count) existing_synapses = {} for conn in conns: if conn.pre_cell in lems_info["cells"] and conn.post_cell in lems_info[ "cells"]: # take information about each connection and package it into a # NeuroML Projection data structure proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype) elect_conn = False analog_conn = False syn0 = params.neuron_to_neuron_exc_syn if 'GABA' in conn.synclass: syn0 = params.neuron_to_neuron_inh_syn if '_GJ' in conn.synclass: syn0 = params.neuron_to_neuron_elec_syn elect_conn = isinstance(params.neuron_to_neuron_elec_syn, GapJunction) if isinstance(syn0, GradedSynapse): analog_conn = True if len(nml_doc.silent_synapses) == 0: silent = SilentSynapse(id="silent") nml_doc.silent_synapses.append(silent) number_syns = conn.number conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell) if conn_number_override is not None and ( conn_number_override.has_key(conn_shorthand)): number_syns = conn_number_override[conn_shorthand] elif conn_number_scaling is not None and ( conn_number_scaling.has_key(conn_shorthand)): number_syns = conn.number * conn_number_scaling[conn_shorthand] ''' else: print conn_shorthand print conn_number_override print conn_number_scaling''' if number_syns != conn.number: magnitude, unit = bioparameters.split_neuroml_quantity( syn0.gbase) cond0 = "%s%s" % (magnitude * conn.number, unit) cond1 = "%s%s" % (magnitude * number_syns, unit) if verbose: print_(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \ (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1)) syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses) if elect_conn: if populations_without_location: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) # Add a Connection with the closest locations conn0 = ElectricalConnection(id="0", \ pre_cell="0", post_cell="0", synapse=syn_new.id) proj0.electrical_connections.append(conn0) else: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) pre_cell_id = "../%s/0/%s" % ( conn.pre_cell, params.generic_neuron_cell.id) post_cell_id = "../%s/0/%s" % ( conn.post_cell, params.generic_neuron_cell.id) #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id)) # Add a Connection with the closest locations conn0 = ElectricalConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, synapse=syn_new.id) proj0.electrical_connection_instances.append(conn0) elif analog_conn: proj0 = ContinuousProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.continuous_projections.append(proj0) pre_cell_id = "../%s/0/%s" % (conn.pre_cell, params.generic_neuron_cell.id) post_cell_id = "../%s/0/%s" % (conn.post_cell, params.generic_neuron_cell.id) conn0 = ContinuousConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, pre_component="silent", post_component=syn_new.id) proj0.continuous_connection_instances.append(conn0) else: if not populations_without_location: proj0 = Projection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell, synapse=syn_new.id) net.projections.append(proj0) pre_cell_id = "../%s/0/%s" % ( conn.pre_cell, params.generic_neuron_cell.id) post_cell_id = "../%s/0/%s" % ( conn.post_cell, params.generic_neuron_cell.id) conn0 = ConnectionWD(id="0", \ pre_cell_id=pre_cell_id, post_cell_id=post_cell_id, weight = number_syns, delay = '0ms') proj0.connection_wds.append(conn0) if populations_without_location: raise NotImplementedError ''' # <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/> pre_cell_id="%s[0]"%(conn.pre_cell) post_cell_id="%s[0]"%(conn.post_cell) conn0 = SynapticConnection(from_=pre_cell_id, to=post_cell_id, synapse=syn_new.id, destination="synapses") net.synaptic_connections.append(conn0)''' if include_muscles: for conn in muscle_conns: if conn.pre_cell in lems_info[ "cells"] and conn.post_cell in muscles: # take information about each connection and package it into a # NeuroML Projection data structure proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype) elect_conn = False analog_conn = False syn0 = params.neuron_to_muscle_exc_syn if 'GABA' in conn.synclass: syn0 = params.neuron_to_muscle_inh_syn if '_GJ' in conn.synclass: syn0 = params.neuron_to_muscle_elec_syn elect_conn = isinstance(params.neuron_to_muscle_elec_syn, GapJunction) if isinstance(syn0, GradedSynapse): analog_conn = True if len(nml_doc.silent_synapses) == 0: silent = SilentSynapse(id="silent") nml_doc.silent_synapses.append(silent) number_syns = conn.number conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell) if conn_number_override is not None and ( conn_number_override.has_key(conn_shorthand)): number_syns = conn_number_override[conn_shorthand] elif conn_number_scaling is not None and ( conn_number_scaling.has_key(conn_shorthand)): number_syns = conn.number * conn_number_scaling[ conn_shorthand] ''' else: print conn_shorthand print conn_number_override print conn_number_scaling''' if number_syns != conn.number: magnitude, unit = bioparameters.split_neuroml_quantity( syn0.gbase) cond0 = "%s%s" % (magnitude * conn.number, unit) cond1 = "%s%s" % (magnitude * number_syns, unit) if verbose: print_(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \ (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1)) syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses) if elect_conn: if populations_without_location: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) # Add a Connection with the closest locations conn0 = ElectricalConnection(id="0", \ pre_cell="0", post_cell="0", synapse=syn_new.id) proj0.electrical_connections.append(conn0) else: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) pre_cell_id = "../%s/0/%s" % ( conn.pre_cell, params.generic_neuron_cell.id) post_cell_id = "../%s/0/%s" % ( conn.post_cell, params.generic_muscle_cell.id) #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id)) # Add a Connection with the closest locations conn0 = ElectricalConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, synapse=syn_new.id) proj0.electrical_connection_instances.append(conn0) elif analog_conn: proj0 = ContinuousProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.continuous_projections.append(proj0) pre_cell_id = "../%s/0/%s" % ( conn.pre_cell, params.generic_neuron_cell.id) post_cell_id = "../%s/0/%s" % ( conn.post_cell, params.generic_muscle_cell.id) conn0 = ContinuousConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, pre_component="silent", post_component=syn_new.id) proj0.continuous_connection_instances.append(conn0) else: if not populations_without_location: proj0 = Projection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell, synapse=syn_new.id) net.projections.append(proj0) # Add a Connection with the closest locations pre_cell_id = "../%s/0/%s" % ( conn.pre_cell, params.generic_neuron_cell.id) post_cell_id = "../%s/0/%s" % ( conn.post_cell, params.generic_muscle_cell.id) conn0 = Connection(id="0", \ pre_cell_id=pre_cell_id, post_cell_id=post_cell_id) proj0.connections.append(conn0) if populations_without_location: # <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/> pre_cell_id = "%s[0]" % (conn.pre_cell) post_cell_id = "%s[0]" % (conn.post_cell) conn0 = SynapticConnection(from_=pre_cell_id, to=post_cell_id, synapse=syn_new.id, destination="synapses") net.synaptic_connections.append(conn0) # import pprint # pprint.pprint(lems_info) template_path = root_dir + '/../' if test else root_dir + '/' # if running test write_to_file(nml_doc, lems_info, net_id, template_path, validate=validate, verbose=verbose, target_directory=target_directory) return nml_doc
def generate(net_id, params, cells=None, cells_to_plot=None, cells_to_stimulate=None, include_muscles=False, conn_number_override=None, conn_number_scaling=None, duration=500, dt=0.01, vmin=None, vmax=None, seed=1234, validate=True, test=False, verbose=True, target_directory='./'): params.create_models() if vmin == None: if params.level == 'A': vmin = -72 elif params.level == 'B': vmin = -52 elif params.level == 'C': vmin = -60 if vmax == None: if params.level == 'A': vmax = -48 elif params.level == 'B': vmax = -28 elif params.level == 'C': vmax = 25 random.seed(seed) info = "\n\nParameters and setting used to generate this network:\n\n"+\ " Cells: %s\n" % (cells if cells is not None else "All cells")+\ " Cell stimulated: %s\n" % (cells_to_stimulate if cells_to_stimulate is not None else "All cells")+\ " Connection numbers overridden: %s\n" % (conn_number_override if conn_number_override is not None else "None")+\ " Connection numbers scaled: %s\n" % (conn_number_scaling if conn_number_scaling is not None else "None")+\ " Include muscles: %s\n" % include_muscles info += "\n%s\n" % (params.bioparameter_info(" ")) nml_doc = NeuroMLDocument(id=net_id, notes=info) if params.level == "A" or params.level == "B": nml_doc.iaf_cells.append(params.generic_cell) elif params.level == "C": nml_doc.cells.append(params.generic_cell) net = Network(id=net_id) nml_doc.networks.append(net) nml_doc.pulse_generators.append(params.offset_current) # Use the spreadsheet reader to give a list of all cells and a list of all connections # This could be replaced with a call to "DatabaseReader" or "OpenWormNeuroLexReader" in future... # If called from unittest folder ammend path to "../../../../" spreadsheet_location = "../../../../" if test else "../../../" cell_names, conns = SpreadsheetDataReader.readDataFromSpreadsheet( spreadsheet_location, include_nonconnected_cells=True) cell_names.sort() # To hold all Cell NeuroML objects vs. names all_cells = {} # lems_file = "" lems_info = { "comment": info, "reference": net_id, "duration": duration, "dt": dt, "vmin": vmin, "vmax": vmax, "cell_component": params.generic_cell.id } lems_info["plots"] = [] lems_info["activity_plots"] = [] lems_info["muscle_plots"] = [] lems_info["muscle_activity_plots"] = [] lems_info["to_save"] = [] lems_info["activity_to_save"] = [] lems_info["muscles_to_save"] = [] lems_info["muscles_activity_to_save"] = [] lems_info["cells"] = [] lems_info["muscles"] = [] lems_info["includes"] = [] if params.custom_component_types_definitions: lems_info["includes"].append(params.custom_component_types_definitions) if target_directory != './': def_file = "%s/%s" % (os.path.dirname(__file__), params.custom_component_types_definitions) shutil.copy(def_file, target_directory) backers_dir = "../../../../OpenWormBackers/" if test else "../../../OpenWormBackers/" sys.path.append(backers_dir) import backers cells_vs_name = backers.get_adopted_cell_names(backers_dir) populations_without_location = isinstance(params.elec_syn, GapJunction) count = 0 for cell in cell_names: if cells is None or cell in cells: inst = Instance(id="0") if not populations_without_location: # build a Population data structure out of the cell name pop0 = Population(id=cell, component=params.generic_cell.id, type="populationList") pop0.instances.append(inst) else: # build a Population data structure out of the cell name pop0 = Population(id=cell, component=params.generic_cell.id, size="1") # put that Population into the Network data structure from above net.populations.append(pop0) if cells_vs_name.has_key(cell): p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[cell]) pop0.properties.append(p) # also use the cell name to grab the morphology file, as a NeuroML data structure # into the 'all_cells' dict cell_file_path = "../../../" if test else "../../" #if running test cell_file = cell_file_path + 'generatedNeuroML2/%s.cell.nml' % cell doc = loaders.NeuroMLLoader.load(cell_file) all_cells[cell] = doc.cells[0] location = doc.cells[0].morphology.segments[0].proximal if verbose: print( "Loaded morphology file from: %s, with id: %s, location: (%s, %s, %s)" % (cell_file, all_cells[cell].id, location.x, location.y, location.z)) inst.location = Location(float(location.x), float(location.y), float(location.z)) target = "%s/0/%s" % (pop0.id, params.generic_cell.id) if populations_without_location: target = "%s[0]" % (cell) exp_input = ExplicitInput(target=target, input=params.offset_current.id) if cells_to_stimulate is None or cell in cells_to_stimulate: net.explicit_inputs.append(exp_input) if cells_to_plot is None or cell in cells_to_plot: plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/v" % (cell, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/v" % (cell) lems_info["plots"].append(plot) if params.generic_cell.__class__.__name__ == 'IafActivityCell': plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/activity" % ( cell, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/activity" % (cell) lems_info["activity_plots"].append(plot) if params.generic_cell.__class__.__name__ == 'Cell': plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/caConc" % ( cell, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/caConc" % (cell) lems_info["activity_plots"].append(plot) save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/v" % (cell, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/v" % (cell) lems_info["to_save"].append(save) if params.generic_cell.__class__.__name__ == 'IafActivityCell': save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/activity" % ( cell, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/activity" % (cell) lems_info["activity_to_save"].append(save) lems_info["cells"].append(cell) count += 1 if verbose: print("Finished loading %i cells" % count) mneurons, all_muscles, muscle_conns = SpreadsheetDataReader.readMuscleDataFromSpreadsheet( spreadsheet_location) muscles = get_muscle_names() if include_muscles: muscle_count = 0 for muscle in muscles: inst = Instance(id="0") if not populations_without_location: # build a Population data structure out of the cell name pop0 = Population(id=muscle, component=params.generic_cell.id, type="populationList") pop0.instances.append(inst) else: # build a Population data structure out of the cell name pop0 = Population(id=muscle, component=params.generic_cell.id, size="1") # put that Population into the Network data structure from above net.populations.append(pop0) if cells_vs_name.has_key(muscle): # No muscles adopted yet, but just in case they are in future... p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[muscle]) pop0.properties.append(p) inst.location = Location(100, 10 * muscle_count, 100) target = "%s/0/%s" % (pop0.id, params.generic_cell.id) if populations_without_location: target = "%s[0]" % (muscle) plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/v" % (muscle, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/v" % (muscle) lems_info["muscle_plots"].append(plot) if params.generic_cell.__class__.__name__ == 'IafActivityCell': plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/activity" % ( muscle, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/activity" % (muscle) lems_info["muscle_activity_plots"].append(plot) save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/v" % (muscle, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/v" % (muscle) lems_info["muscles_to_save"].append(save) if params.generic_cell.__class__.__name__ == 'IafActivityCell': save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/activity" % ( muscle, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/activity" % (muscle) lems_info["muscles_activity_to_save"].append(save) lems_info["muscles"].append(muscle) muscle_count += 1 if verbose: print("Finished creating %i muscles" % muscle_count) existing_synapses = {} for conn in conns: if conn.pre_cell in lems_info["cells"] and conn.post_cell in lems_info[ "cells"]: # take information about each connection and package it into a # NeuroML Projection data structure proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype) elect_conn = False syn0 = params.exc_syn if 'GABA' in conn.synclass: syn0 = params.inh_syn if '_GJ' in conn.synclass: syn0 = params.elec_syn elect_conn = isinstance(params.elec_syn, GapJunction) number_syns = conn.number conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell) if conn_number_override is not None and ( conn_number_override.has_key(conn_shorthand)): number_syns = conn_number_override[conn_shorthand] elif conn_number_scaling is not None and ( conn_number_scaling.has_key(conn_shorthand)): number_syns = conn.number * conn_number_scaling[conn_shorthand] ''' else: print conn_shorthand print conn_number_override print conn_number_scaling''' if number_syns != conn.number: magnitude, unit = bioparameters.split_neuroml_quantity( syn0.gbase) cond0 = "%s%s" % (magnitude * conn.number, unit) cond1 = "%s%s" % (magnitude * number_syns, unit) if verbose: print(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \ (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1)) syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses) if not elect_conn: if not populations_without_location: proj0 = Projection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell, synapse=syn_new.id) net.projections.append(proj0) # Add a Connection with the closest locations pre_cell_id = "../%s/0/%s" % (conn.pre_cell, params.generic_cell.id) post_cell_id = "../%s/0/%s" % (conn.post_cell, params.generic_cell.id) conn0 = Connection(id="0", \ pre_cell_id=pre_cell_id, post_cell_id=post_cell_id) proj0.connections.append(conn0) if populations_without_location: # <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/> pre_cell_id = "%s[0]" % (conn.pre_cell) post_cell_id = "%s[0]" % (conn.post_cell) conn0 = SynapticConnection(from_=pre_cell_id, to=post_cell_id, synapse=syn_new.id, destination="synapses") net.synaptic_connections.append(conn0) else: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) # Add a Connection with the closest locations conn0 = ElectricalConnection(id="0", \ pre_cell="0", post_cell="0", synapse=syn_new.id) proj0.electrical_connections.append(conn0) if include_muscles: for conn in muscle_conns: if conn.pre_cell in lems_info[ "cells"] and conn.post_cell in muscles: # take information about each connection and package it into a # NeuroML Projection data structure proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype) elect_conn = False syn0 = params.exc_syn if 'GABA' in conn.synclass: syn0 = params.inh_syn if '_GJ' in conn.synclass: syn0 = params.elec_syn elect_conn = isinstance(params.elec_syn, GapJunction) number_syns = conn.number conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell) if conn_number_override is not None and ( conn_number_override.has_key(conn_shorthand)): number_syns = conn_number_override[conn_shorthand] elif conn_number_scaling is not None and ( conn_number_scaling.has_key(conn_shorthand)): number_syns = conn.number * conn_number_scaling[ conn_shorthand] ''' else: print conn_shorthand print conn_number_override print conn_number_scaling''' if number_syns != conn.number: magnitude, unit = bioparameters.split_neuroml_quantity( syn0.gbase) cond0 = "%s%s" % (magnitude * conn.number, unit) cond1 = "%s%s" % (magnitude * number_syns, unit) if verbose: print(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \ (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1)) syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses) if not elect_conn: if not populations_without_location: proj0 = Projection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell, synapse=syn_new.id) net.projections.append(proj0) # Add a Connection with the closest locations pre_cell_id = "../%s/0/%s" % (conn.pre_cell, params.generic_cell.id) post_cell_id = "../%s/0/%s" % (conn.post_cell, params.generic_cell.id) conn0 = Connection(id="0", \ pre_cell_id=pre_cell_id, post_cell_id=post_cell_id) proj0.connections.append(conn0) if populations_without_location: # <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/> pre_cell_id = "%s[0]" % (conn.pre_cell) post_cell_id = "%s[0]" % (conn.post_cell) conn0 = SynapticConnection(from_=pre_cell_id, to=post_cell_id, synapse=syn_new.id, destination="synapses") net.synaptic_connections.append(conn0) else: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) # Add a Connection with the closest locations conn0 = ElectricalConnection(id="0", \ pre_cell="0", post_cell="0", synapse=syn_new.id) proj0.electrical_connections.append(conn0) # import pprint # pprint.pprint(lems_info) template_path = '../' if test else '' # if running test write_to_file(nml_doc, lems_info, net_id, template_path, validate=validate, verbose=verbose, target_directory=target_directory) return nml_doc
def generate(net_id, params, data_reader = "SpreadsheetDataReader", cells = None, cells_to_plot = None, cells_to_stimulate = None, muscles_to_include=[], conns_to_include=[], conn_number_override = None, conn_number_scaling = None, conn_polarity_override = None, duration = 500, dt = 0.01, vmin = None, vmax = None, seed = 1234, test=False, verbose=True, param_overrides={}, target_directory='./'): validate = not (params.is_level_B() or params.is_level_C0()) root_dir = os.path.dirname(os.path.abspath(__file__)) for k in param_overrides.keys(): v = param_overrides[k] print_("Setting parameter %s = %s"%(k,v)) params.set_bioparameter(k, v, "Set with param_overrides", 0) params.create_models() if vmin==None: if params.is_level_A(): vmin=-72 elif params.is_level_B(): vmin=-52 elif params.is_level_C(): vmin=-60 elif params.is_level_D(): vmin=-60 else: vmin=-52 if vmax==None: if params.is_level_A(): vmax=-48 elif params.is_level_B(): vmax=-28 elif params.is_level_C(): vmax=25 elif params.is_level_D(): vmax=25 else: vmax=-28 random.seed(seed) info = "\n\nParameters and setting used to generate this network:\n\n"+\ " Data reader: %s\n" % data_reader+\ " Cells: %s\n" % (cells if cells is not None else "All cells")+\ " Cell stimulated: %s\n" % (cells_to_stimulate if cells_to_stimulate is not None else "All neurons")+\ " Connection: %s\n" % (conns_to_include if conns_to_include is not None else "All connections") + \ " Connection numbers overridden: %s\n" % (conn_number_override if conn_number_override is not None else "None")+\ " Connection numbers scaled: %s\n" % (conn_number_scaling if conn_number_scaling is not None else "None")+ \ " Connection polarities override: %s\n" % conn_polarity_override + \ " Muscles: %s\n" % (muscles_to_include if muscles_to_include is not None else "All muscles") if verbose: print_(info) info += "\n%s\n"%(params.bioparameter_info(" ")) nml_doc = NeuroMLDocument(id=net_id, notes=info) if params.is_level_A() or params.is_level_B() or params.level == "BC1": nml_doc.iaf_cells.append(params.generic_muscle_cell) nml_doc.iaf_cells.append(params.generic_neuron_cell) elif params.is_level_C(): nml_doc.cells.append(params.generic_muscle_cell) nml_doc.cells.append(params.generic_neuron_cell) elif params.is_level_D(): nml_doc.cells.append(params.generic_muscle_cell) net = Network(id=net_id) nml_doc.networks.append(net) nml_doc.pulse_generators.append(params.offset_current) if is_cond_based_cell(params): nml_doc.fixed_factor_concentration_models.append(params.concentration_model) cell_names, conns = get_cell_names_and_connection(data_reader) # To hold all Cell NeuroML objects vs. names all_cells = {} # lems_file = "" lems_info = {"comment": info, "reference": net_id, "duration": duration, "dt": dt, "vmin": vmin, "vmax": vmax} lems_info["plots"] = [] lems_info["activity_plots"] = [] lems_info["muscle_plots"] = [] lems_info["muscle_activity_plots"] = [] lems_info["to_save"] = [] lems_info["activity_to_save"] = [] lems_info["muscles_to_save"] = [] lems_info["muscles_activity_to_save"] = [] lems_info["cells"] = [] lems_info["muscles"] = [] lems_info["includes"] = [] if params.custom_component_types_definitions: if isinstance(params.custom_component_types_definitions, str): params.custom_component_types_definitions = [params.custom_component_types_definitions] for ctd in params.custom_component_types_definitions: lems_info["includes"].append(ctd) if target_directory != './': def_file = "%s/%s"%(os.path.dirname(os.path.abspath(__file__)), ctd) shutil.copy(def_file, target_directory) nml_doc.includes.append(IncludeType(href=ctd)) backers_dir = root_dir+"/../../../../OpenWormBackers/" if test else root_dir+"/../../../OpenWormBackers/" sys.path.append(backers_dir) import backers cells_vs_name = backers.get_adopted_cell_names(backers_dir) count = 0 for cell in cell_names: if cells is None or cell in cells: inst = Instance(id="0") if not params.is_level_D(): # build a Population data structure out of the cell name pop0 = Population(id=cell, component=params.generic_neuron_cell.id, type="populationList") cell_id = params.generic_neuron_cell.id else: # build a Population data structure out of the cell name pop0 = Population(id=cell, component=cell, type="populationList") cell_id = cell pop0.instances.append(inst) # put that Population into the Network data structure from above net.populations.append(pop0) if cells_vs_name.has_key(cell): p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[cell]) pop0.properties.append(p) # also use the cell name to grab the morphology file, as a NeuroML data structure # into the 'all_cells' dict cell_file_path = root_dir+"/../../../" if test else root_dir+"/../../" #if running test cell_file = cell_file_path+'generatedNeuroML2/%s.cell.nml'%cell doc = loaders.NeuroMLLoader.load(cell_file) all_cells[cell] = doc.cells[0] if params.is_level_D(): new_cell = params.create_neuron_cell(cell, doc.cells[0].morphology) nml_cell_doc = NeuroMLDocument(id=cell) nml_cell_doc.cells.append(new_cell) new_cell_file = 'cells/'+cell+'_D.cell.nml' nml_file = target_directory+'/'+new_cell_file print_("Writing new cell to: %s"%os.path.realpath(nml_file)) writers.NeuroMLWriter.write(nml_cell_doc, nml_file) nml_doc.includes.append(IncludeType(href=new_cell_file)) lems_info["includes"].append(new_cell_file) inst.location = Location(0,0,0) else: location = doc.cells[0].morphology.segments[0].proximal inst.location = Location(float(location.x), float(location.y), float(location.z)) if verbose: print_("Loaded morphology: %s; id: %s; placing at location: (%s, %s, %s)"%(os.path.realpath(cell_file), all_cells[cell].id, inst.location.x, inst.location.y, inst.location.z)) if cells_to_stimulate is None or cell in cells_to_stimulate: target = "../%s/0/%s"%(pop0.id, cell_id) if params.is_level_D(): target+="/0" input_list = InputList(id="Input_%s_%s"%(cell,params.offset_current.id), component=params.offset_current.id, populations='%s'%cell) input_list.input.append(Input(id=0, target=target, destination="synapses")) net.input_lists.append(input_list) if cells_to_plot is None or cell in cells_to_plot: plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/v" % (cell, cell_id) lems_info["plots"].append(plot) if params.is_level_B(): plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/activity" % (cell, cell_id) lems_info["activity_plots"].append(plot) if is_cond_based_cell(params): plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/caConc" % (cell, cell_id) lems_info["activity_plots"].append(plot) save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/v" % (cell, cell_id) lems_info["to_save"].append(save) if params.is_level_B(): save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/activity" % (cell, cell_id) lems_info["activity_to_save"].append(save) if is_cond_based_cell(params): save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/caConc" % (cell, cell_id) lems_info["activity_to_save"].append(save) lems_info["cells"].append(cell) count+=1 if verbose: print_("Finished loading %i cells"%count) mneurons, all_muscles, muscle_conns = get_cell_muscle_names_and_connection(data_reader) #if data_reader == "SpreadsheetDataReader": # all_muscles = get_muscle_names() if muscles_to_include == None or muscles_to_include == True: muscles_to_include = all_muscles elif muscles_to_include == False: muscles_to_include = [] for m in muscles_to_include: assert m in all_muscles if len(muscles_to_include)>0: muscle_count = 0 for muscle in muscles_to_include: inst = Instance(id="0") # build a Population data structure out of the cell name pop0 = Population(id=muscle, component=params.generic_muscle_cell.id, type="populationList") pop0.instances.append(inst) # put that Population into the Network data structure from above net.populations.append(pop0) if cells_vs_name.has_key(muscle): # No muscles adopted yet, but just in case they are in future... p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[muscle]) pop0.properties.append(p) x, y, z = get_muscle_position(muscle, data_reader) print_('Positioning muscle: %s at (%s,%s,%s)'%(muscle,x,y,z)) inst.location = Location(x,y,z) #target = "%s/0/%s"%(pop0.id, params.generic_muscle_cell.id) # unused plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/v" % (muscle, params.generic_muscle_cell.id) lems_info["muscle_plots"].append(plot) if params.generic_muscle_cell.__class__.__name__ == 'IafActivityCell': plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/activity" % (muscle, params.generic_muscle_cell.id) lems_info["muscle_activity_plots"].append(plot) if params.generic_muscle_cell.__class__.__name__ == 'Cell': plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/caConc" % (muscle, params.generic_muscle_cell.id) lems_info["muscle_activity_plots"].append(plot) save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/v" % (muscle, params.generic_muscle_cell.id) lems_info["muscles_to_save"].append(save) if params.generic_muscle_cell.__class__.__name__ == 'IafActivityCell': save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/activity" % (muscle, params.generic_muscle_cell.id) lems_info["muscles_activity_to_save"].append(save) if params.generic_muscle_cell.__class__.__name__ == 'Cell': save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/caConc" % (muscle, params.generic_muscle_cell.id) lems_info["muscles_activity_to_save"].append(save) lems_info["muscles"].append(muscle) muscle_count+=1 if muscle in cells_to_stimulate: target = "../%s/0/%s"%(pop0.id, params.generic_muscle_cell.id) if params.is_level_D(): target+="/0" input_list = InputList(id="Input_%s_%s"%(muscle,params.offset_current.id), component=params.offset_current.id, populations='%s'%pop0.id) input_list.input.append(Input(id=0, target=target, destination="synapses")) net.input_lists.append(input_list) if verbose: print_("Finished creating %i muscles"%muscle_count) existing_synapses = {} for conn in conns: if conn.pre_cell in lems_info["cells"] and conn.post_cell in lems_info["cells"]: # take information about each connection and package it into a # NeuroML Projection data structure proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype) conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell) elect_conn = False analog_conn = False syn0 = params.neuron_to_neuron_exc_syn orig_pol = "exc" if 'GABA' in conn.synclass: syn0 = params.neuron_to_neuron_inh_syn orig_pol = "inh" if '_GJ' in conn.synclass: syn0 = params.neuron_to_neuron_elec_syn elect_conn = isinstance(params.neuron_to_neuron_elec_syn, GapJunction) conn_shorthand = "%s-%s_GJ" % (conn.pre_cell, conn.post_cell) if conns_to_include and conn_shorthand not in conns_to_include: continue print conn_shorthand + " " + str(conn.number) + " " + orig_pol + " " + conn.synclass polarity = None if conn_polarity_override and conn_polarity_override.has_key(conn_shorthand): polarity = conn_polarity_override[conn_shorthand] if polarity and not elect_conn: if polarity == 'inh': syn0 = params.neuron_to_neuron_inh_syn else: syn0 = params.neuron_to_neuron_exc_syn if verbose and polarity != orig_pol: print_(">> Changing polarity of connection %s -> %s: was: %s, becomes %s " % \ (conn.pre_cell, conn.post_cell, orig_pol, polarity)) if isinstance(syn0, GradedSynapse) or isinstance(syn0, GradedSynapse2): analog_conn = True if len(nml_doc.silent_synapses)==0: silent = SilentSynapse(id="silent") nml_doc.silent_synapses.append(silent) number_syns = conn.number if conn_number_override is not None and (conn_number_override.has_key(conn_shorthand)): number_syns = conn_number_override[conn_shorthand] elif conn_number_scaling is not None and (conn_number_scaling.has_key(conn_shorthand)): number_syns = conn.number*conn_number_scaling[conn_shorthand] ''' else: print conn_shorthand print conn_number_override print conn_number_scaling''' """if polarity: print "%s %s num:%s" % (conn_shorthand, polarity, number_syns) elif elect_conn: print "%s num:%s" % (conn_shorthand, number_syns) else: print "%s %s num:%s" % (conn_shorthand, orig_pol, number_syns)""" if number_syns != conn.number: if analog_conn or elect_conn: magnitude, unit = bioparameters.split_neuroml_quantity(syn0.conductance) else: magnitude, unit = bioparameters.split_neuroml_quantity(syn0.gbase) cond0 = "%s%s"%(magnitude*conn.number, unit) cond1 = "%s%s" % (get_str_from_expnotation(magnitude * number_syns), unit) gj = "" if not elect_conn else " GapJunction" if verbose: print_(">> Changing number of effective synapses connection %s -> %s%s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \ (conn.pre_cell, conn.post_cell, gj, conn.number, cond0, number_syns, cond1)) #print "######## %s-%s %s %s" % (conn.pre_cell, conn.post_cell, conn.synclass, number_syns) #known_motor_prefixes = ["VA"] #if conn.pre_cell.startswith(tuple(known_motor_prefixes)) or conn.post_cell.startswith(tuple(known_motor_prefixes)): # print "######### %s-%s %s %s" % (conn.pre_cell, conn.post_cell, number_syns, conn.synclass) syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses) if elect_conn: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) pre_cell_id=get_cell_id_string(conn.pre_cell, params) post_cell_id= get_cell_id_string(conn.post_cell, params) #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id)) # Add a Connection with the closest locations conn0 = ElectricalConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, synapse=syn_new.id) proj0.electrical_connection_instances.append(conn0) elif analog_conn: proj0 = ContinuousProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.continuous_projections.append(proj0) pre_cell_id= get_cell_id_string(conn.pre_cell, params) post_cell_id= get_cell_id_string(conn.post_cell, params) conn0 = ContinuousConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, pre_component="silent", post_component=syn_new.id) proj0.continuous_connection_instances.append(conn0) else: proj0 = Projection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell, synapse=syn_new.id) net.projections.append(proj0) pre_cell_id= get_cell_id_string(conn.pre_cell, params) post_cell_id= get_cell_id_string(conn.post_cell, params) conn0 = ConnectionWD(id="0", \ pre_cell_id=pre_cell_id, post_cell_id=post_cell_id, weight = number_syns, delay = '0ms') proj0.connection_wds.append(conn0) if len(muscles_to_include)>0: for conn in muscle_conns: if not conn.post_cell in muscles_to_include: continue if not conn.pre_cell in lems_info["cells"] and not conn.pre_cell in muscles_to_include: continue # take information about each connection and package it into a # NeuroML Projection data structure proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype) conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell) elect_conn = False analog_conn = False syn0 = params.neuron_to_muscle_exc_syn orig_pol = "exc" if 'GABA' in conn.synclass: syn0 = params.neuron_to_muscle_inh_syn orig_pol = "inh" if '_GJ' in conn.synclass : elect_conn = isinstance(params.neuron_to_muscle_elec_syn, GapJunction) conn_shorthand = "%s-%s_GJ" % (conn.pre_cell, conn.post_cell) if conn.pre_cell in lems_info["cells"]: syn0 = params.neuron_to_muscle_elec_syn elif conn.pre_cell in muscles_to_include: try: syn0 = params.muscle_to_muscle_elec_syn except: syn0 = params.neuron_to_muscle_elec_syn if conns_to_include and conn_shorthand not in conns_to_include: continue print conn_shorthand + " " + str(conn.number) + " " + orig_pol + " " + conn.synclass polarity = None if conn_polarity_override and conn_polarity_override.has_key(conn_shorthand): polarity = conn_polarity_override[conn_shorthand] if polarity and not elect_conn: if polarity == 'inh': syn0 = params.neuron_to_neuron_inh_syn else: syn0 = params.neuron_to_neuron_exc_syn if verbose and polarity != orig_pol: print_(">> Changing polarity of connection %s -> %s: was: %s, becomes %s " % \ (conn.pre_cell, conn.post_cell, orig_pol, polarity)) if isinstance(syn0, GradedSynapse) or isinstance(syn0, GradedSynapse2): analog_conn = True if len(nml_doc.silent_synapses)==0: silent = SilentSynapse(id="silent") nml_doc.silent_synapses.append(silent) number_syns = conn.number if conn_number_override is not None and (conn_number_override.has_key(conn_shorthand)): number_syns = conn_number_override[conn_shorthand] elif conn_number_scaling is not None and (conn_number_scaling.has_key(conn_shorthand)): number_syns = conn.number*conn_number_scaling[conn_shorthand] ''' else: print conn_shorthand print conn_number_override print conn_number_scaling''' """if polarity: print "%s %s num:%s" % (conn_shorthand, polarity, number_syns) elif elect_conn: print "%s num:%s" % (conn_shorthand, number_syns) else: print "%s %s num:%s" % (conn_shorthand, orig_pol, number_syns)""" if number_syns != conn.number: if analog_conn or elect_conn: magnitude, unit = bioparameters.split_neuroml_quantity(syn0.conductance) else: magnitude, unit = bioparameters.split_neuroml_quantity(syn0.gbase) cond0 = "%s%s"%(magnitude*conn.number, unit) cond1 = "%s%s" % (get_str_from_expnotation(magnitude * number_syns), unit) gj = "" if not elect_conn else " GapJunction" if verbose: print_(">> Changing number of effective synapses connection %s -> %s%s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \ (conn.pre_cell, conn.post_cell, gj, conn.number, cond0, number_syns, cond1)) syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses) if elect_conn: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) pre_cell_id= get_cell_id_string(conn.pre_cell, params) post_cell_id= get_cell_id_string(conn.post_cell, params, muscle=True) #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id)) # Add a Connection with the closest locations conn0 = ElectricalConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, synapse=syn_new.id) proj0.electrical_connection_instances.append(conn0) elif analog_conn: proj0 = ContinuousProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.continuous_projections.append(proj0) pre_cell_id= get_cell_id_string(conn.pre_cell, params) post_cell_id= get_cell_id_string(conn.post_cell, params, muscle=True) conn0 = ContinuousConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, pre_component="silent", post_component=syn_new.id) proj0.continuous_connection_instances.append(conn0) else: proj0 = Projection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell, synapse=syn_new.id) net.projections.append(proj0) # Add a Connection with the closest locations pre_cell_id= get_cell_id_string(conn.pre_cell, params) post_cell_id= get_cell_id_string(conn.post_cell, params, muscle=True) conn0 = Connection(id="0", \ pre_cell_id=pre_cell_id, post_cell_id=post_cell_id) proj0.connections.append(conn0) # import pprint # pprint.pprint(lems_info) template_path = root_dir+'/../' if test else root_dir+'/' # if running test write_to_file(nml_doc, lems_info, net_id, template_path, validate=validate, verbose=verbose, target_directory=target_directory) return nml_doc
def create_n_connection_synapse(prototype_syn, n, nml_doc, existing_synapses): new_id = "%s_%sconns"%(prototype_syn.id, str(n).replace('.', '_')) if type(n) is float: new_id = "%s_%sconns" % (prototype_syn.id, get_str_from_expnotation(n).replace('.', '_')) if isinstance(prototype_syn, ExpTwoSynapse): new_id = "%s"%(prototype_syn.id) if not existing_synapses.has_key(new_id): if isinstance(prototype_syn, ExpTwoSynapse): new_syn = ExpTwoSynapse(id=new_id, gbase = prototype_syn.gbase, erev = prototype_syn.erev, tau_decay = prototype_syn.tau_decay, tau_rise = prototype_syn.tau_rise) existing_synapses[new_id] = new_syn nml_doc.exp_two_synapses.append(new_syn) elif isinstance(prototype_syn, GapJunction): magnitude, unit = bioparameters.split_neuroml_quantity(prototype_syn.conductance) cond = "%s%s" % (magnitude * n, unit) if type(n) is float: cond = "%s%s" % (get_str_from_expnotation(magnitude * n), unit) new_syn = GapJunction(id=new_id, conductance = cond) existing_synapses[new_id] = new_syn nml_doc.gap_junctions.append(new_syn) elif isinstance(prototype_syn, GradedSynapse): magnitude, unit = bioparameters.split_neuroml_quantity(prototype_syn.conductance) cond = "%s%s" % (magnitude * n, unit) if type(n) is float: cond = "%s%s" % (get_str_from_expnotation(magnitude * n), unit) new_syn = GradedSynapse(id=new_id, conductance = cond, delta = prototype_syn.delta, Vth = prototype_syn.Vth, erev = prototype_syn.erev, k = prototype_syn.k) existing_synapses[new_id] = new_syn nml_doc.graded_synapses.append(new_syn) elif isinstance(prototype_syn, GradedSynapse2): magnitude, unit = bioparameters.split_neuroml_quantity(prototype_syn.conductance) cond = "%s%s" % (magnitude * n, unit) if type(n) is float: cond = "%s%s" % (get_str_from_expnotation(magnitude * n), unit) new_syn = GradedSynapse2(id=new_id, conductance = cond, ar = prototype_syn.ar, ad = prototype_syn.ad, beta = prototype_syn.beta, vth = prototype_syn.vth, erev = prototype_syn.erev) existing_synapses[new_id] = new_syn nml_doc.graded_synapses.append(new_syn) else: new_syn = existing_synapses[new_id] return new_syn