Esempio n. 1
0
def test_lagrange_neg_monophase_time_constraint():
    (
        biorbd_model,
        number_shooting_points,
        final_time,
        time_min,
        time_max,
        torque_min,
        torque_max,
        torque_init,
        dynamics,
        x_bounds,
        x_init,
        u_bounds,
        u_init,
    ) = partial_ocp_parameters(nb_phases=1)

    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100)
    objective_functions.add(Objective.Lagrange.MINIMIZE_TIME)

    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS,
                    node=Node.START,
                    first_marker_idx=0,
                    second_marker_idx=1)
    constraints.add(Constraint.TIME_CONSTRAINT,
                    node=Node.END,
                    minimum=time_min[0],
                    maximum=time_max[0])

    with pytest.raises(
            RuntimeError,
            match="Time constraint/objective cannot declare more than once"):
        OptimalControlProgram(
            biorbd_model,
            dynamics,
            number_shooting_points,
            final_time,
            x_init,
            u_init,
            x_bounds,
            u_bounds,
            objective_functions,
            constraints,
        )
def test_mayer_neg_monophase_time_constraint():
    (
        biorbd_model,
        n_shooting,
        final_time,
        time_min,
        time_max,
        torque_min,
        torque_max,
        torque_init,
        dynamics,
        x_bounds,
        x_init,
        u_bounds,
        u_init,
    ) = partial_ocp_parameters(n_phases=1)

    objective_functions = ObjectiveList()
    objective_functions.add(ObjectiveFcn.Mayer.MINIMIZE_TIME)

    constraints = ConstraintList()
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                    node=Node.START,
                    first_marker="m0",
                    second_marker="m1")
    constraints.add(ConstraintFcn.TIME_CONSTRAINT,
                    node=Node.END,
                    minimum=time_min[0],
                    maximum=time_max[0])

    with pytest.raises(
            RuntimeError,
            match="Time constraint/objective cannot declare more than once"):
        OptimalControlProgram(
            biorbd_model,
            dynamics,
            n_shooting,
            final_time,
            x_init,
            u_init,
            x_bounds,
            u_bounds,
            objective_functions,
            constraints,
        )
Esempio n. 3
0
def test_custom_constraint_mx_fail():
    def custom_mx_fail(pn):
        if pn.u is None:
            return None
        u = pn.nlp.controls
        return MX.zeros(u.shape), u.cx, MX.zeros(u.shape)

    bioptim_folder = TestUtils.bioptim_folder()
    model_path = bioptim_folder + "/examples/getting_started/models/cube.bioMod"
    constraints = ConstraintList()
    constraints.add(custom_mx_fail, node=Node.ALL)

    ocp = OptimalControlProgram(
        biorbd.Model(model_path), Dynamics(DynamicsFcn.TORQUE_DRIVEN), 30, 2, constraints=constraints
    )

    with pytest.raises(RuntimeError, match="Ipopt doesn't support SX/MX types in constraints bounds"):
        ocp.solve()
Esempio n. 4
0
def test_acados_one_end_constraints():
    if platform == "win32":
        print("Test for ACADOS on Windows is skipped")
        return

    from bioptim.examples.acados import cube as ocp_module

    bioptim_folder = os.path.dirname(ocp_module.__file__)

    ocp = ocp_module.prepare_ocp(
        biorbd_model_path=bioptim_folder + "/models/cube.bioMod",
        n_shooting=10,
        tf=2,
    )

    model = ocp.nlp[0].model
    objective_functions = ObjectiveList()
    objective_functions.add(
        ObjectiveFcn.Mayer.TRACK_STATE, index=0, key="q", weight=100, target=np.array([[1]]), multi_thread=False
    )
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau", weight=100, multi_thread=False)
    ocp.update_objectives(objective_functions)

    # Path constraint
    x_bounds = QAndQDotBounds(model)
    x_bounds[1:6, [0, -1]] = 0
    x_bounds[0, 0] = 0
    ocp.update_bounds(x_bounds=x_bounds)

    constraints = ConstraintList()
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS, node=Node.END, first_marker="m0", second_marker="m2")
    ocp.update_constraints(constraints)

    sol = ocp.solve(solver=Solver.ACADOS())

    # Check some of the results
    q, qdot, tau = sol.states["q"], sol.states["qdot"], sol.controls["tau"]

    # final position
    np.testing.assert_almost_equal(q[:, -1], np.array((2, 0, 0)), decimal=6)

    # initial and final controls
    np.testing.assert_almost_equal(tau[:, 0], np.array((2.72727272, 9.81, 0)), decimal=6)
    np.testing.assert_almost_equal(tau[:, -2], np.array((-2.72727272, 9.81, 0)), decimal=6)
Esempio n. 5
0
def prepare_nmpc(model_path, cycle_len, cycle_duration, max_torque):
    model = biorbd.Model(model_path)
    dynamics = Dynamics(DynamicsFcn.TORQUE_DRIVEN)

    x_bound = QAndQDotBounds(model)
    u_bound = Bounds([-max_torque] * model.nbQ(), [max_torque] * model.nbQ())

    x_init = InitialGuess(
        np.zeros(
            model.nbQ() * 2,
        )
    )
    u_init = InitialGuess(
        np.zeros(
            model.nbQ(),
        )
    )

    new_objectives = Objective(ObjectiveFcn.Lagrange.MINIMIZE_STATE, key="q")

    # Rotate the wheel and force the marker of the hand to follow the marker on the wheel
    wheel_target = np.linspace(-np.pi, np.pi, cycle_len + 1)[np.newaxis, :]
    constraints = ConstraintList()
    constraints.add(ConstraintFcn.TRACK_STATE, key="q", index=0, node=Node.ALL, target=wheel_target)
    constraints.add(
        ConstraintFcn.SUPERIMPOSE_MARKERS,
        node=Node.ALL,
        first_marker="wheel",
        second_marker="COM_hand",
        axes=[Axis.X, Axis.Y],
    )

    return MyCyclicNMPC(
        model,
        dynamics,
        cycle_len,
        cycle_duration,
        objective_functions=new_objectives,
        constraints=constraints,
        x_init=x_init,
        u_init=u_init,
        x_bounds=x_bound,
        u_bounds=u_bound,
    )
Esempio n. 6
0
def test_custom_constraint_mx_fail():
    def custom_mx_fail(pn):
        return MX(0), vertcat(*pn.u), MX(0)

    bioptim_folder = TestUtils.bioptim_folder()
    model_path = bioptim_folder + "/examples/getting_started/cube.bioMod"
    constraints = ConstraintList()
    constraints.add(custom_mx_fail, node=Node.ALL)

    ocp = OptimalControlProgram(
        biorbd.Model(model_path),
        Dynamics(DynamicsFcn.TORQUE_DRIVEN),
        30,
        2,
        constraints=constraints,
    )

    with pytest.raises(RuntimeError, match="Ipopt doesn't support SX/MX types in constraints bounds"):
        sol = ocp.solve(show_online_optim=True)
Esempio n. 7
0
def test_acados_custom_dynamics(problem_type_custom):
    # Load pendulum
    PROJECT_FOLDER = Path(__file__).parent / ".."
    spec = importlib.util.spec_from_file_location(
        "custom_problem_type_and_dynamics",
        str(PROJECT_FOLDER) + "/examples/getting_started/custom_dynamics.py",
    )
    pendulum = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(pendulum)

    ocp = pendulum.prepare_ocp(
        biorbd_model_path=str(PROJECT_FOLDER) +
        "/examples/getting_started/cube.bioMod",
        problem_type_custom=problem_type_custom,
        ode_solver=OdeSolver.RK,
        use_SX=True,
    )
    constraints = ConstraintList()
    constraints.add(ConstraintFcn.ALIGN_MARKERS,
                    node=Node.END,
                    first_marker_idx=0,
                    second_marker_idx=2)
    ocp.update_constraints(constraints)
    sol = ocp.solve(solver=Solver.ACADOS)

    # Check some of the results
    states, controls = Data.get_data(ocp, sol["x"])
    q, qdot, tau = states["q"], states["q_dot"], controls["tau"]

    # initial and final position
    np.testing.assert_almost_equal(q[:, 0], np.array((2, 0, 0)), decimal=6)
    np.testing.assert_almost_equal(q[:, -1], np.array((2, 0, 1.57)))

    # initial and final velocities
    np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0, 0)))
    np.testing.assert_almost_equal(qdot[:, -1], np.array((0, 0, 0)))

    # initial and final controls
    np.testing.assert_almost_equal(tau[:, 0], np.array((0, 9.81, 2.27903226)))
    np.testing.assert_almost_equal(tau[:, -1], np.array(
        (0, 9.81, -2.27903226)))
Esempio n. 8
0
def test_custom_constraint_mx_fail():
    def custom_mx_fail(ocp, nlp, t, x, u, p):
        return MX(0), vertcat(*u), MX(0)

    PROJECT_FOLDER = Path(__file__).parent / ".."
    model_path = str(PROJECT_FOLDER) + "/examples/getting_started/cube.bioMod"
    constraints = ConstraintList()
    constraints.add(custom_mx_fail, node=Node.ALL)

    ocp = OptimalControlProgram(
        biorbd.Model(model_path),
        Dynamics(DynamicsFcn.TORQUE_DRIVEN),
        30,
        2,
        constraints=constraints,
    )

    with pytest.raises(
            RuntimeError,
            match="Ipopt doesn't support SX/MX types in constraints bounds"):
        sol = ocp.solve(show_online_optim=True)
Esempio n. 9
0
def test_acados_constraints_end_all():
    if platform == "win32":
        print("Test for ACADOS on Windows is skipped")
        return

    from bioptim.examples.track import track_marker_on_segment as ocp_module

    bioptim_folder = os.path.dirname(ocp_module.__file__)

    ocp = ocp_module.prepare_ocp(
        biorbd_model_path=bioptim_folder + "/models/cube_and_line.bioMod",
        n_shooting=30,
        final_time=2,
        initialize_near_solution=True,
        constr=False,
        use_sx=True,
    )

    constraints = ConstraintList()
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS, node=Node.END, first_marker="m0", second_marker="m5")
    constraints.add(
        ConstraintFcn.TRACK_MARKER_WITH_SEGMENT_AXIS, node=Node.ALL_SHOOTING, marker="m1", segment="seg_rt", axis=Axis.X
    )
    ocp.update_constraints(constraints)

    sol = ocp.solve(solver=Solver.ACADOS())

    # Check some of the results
    q, qdot, tau = sol.states["q"], sol.states["qdot"], sol.controls["tau"]

    # final position
    np.testing.assert_almost_equal(q[:, 0], np.array([2.01701330, 0, 0, 3.20057865e-01]), decimal=6)
    np.testing.assert_almost_equal(q[:, -1], np.array((2, 0, 1.57, 7.85398168e-01)), decimal=6)

    np.testing.assert_almost_equal(qdot[:, 0], np.array([0, 0, 0, 0]), decimal=6)
    np.testing.assert_almost_equal(qdot[:, -1], np.array([0, 0, 0, 0]), decimal=6)

    # initial and final controls
    np.testing.assert_almost_equal(tau[:, 0], np.array((0.04648408, 9.88616194, 2.24285498, 0.864213)), decimal=6)
    np.testing.assert_almost_equal(tau[:, -2], np.array((0.19389194, 9.99905781, -2.37713652, -0.19858311)), decimal=6)
Esempio n. 10
0
def test_acados_constraints_all():
    if platform == "win32":
        print("Test for ACADOS on Windows is skipped")
        return

    from bioptim.examples.track import track_marker_on_segment as ocp_module

    bioptim_folder = os.path.dirname(ocp_module.__file__)

    ocp = ocp_module.prepare_ocp(
        biorbd_model_path=bioptim_folder + "/models/cube_and_line.bioMod",
        n_shooting=30,
        final_time=2,
        initialize_near_solution=True,
        constr=False,
        use_sx=True,
    )

    constraints = ConstraintList()
    constraints.add(
        ConstraintFcn.TRACK_MARKER_WITH_SEGMENT_AXIS, node=Node.ALL, marker="m1", segment="seg_rt", axis=Axis.X
    )
    ocp.update_constraints(constraints)

    sol = ocp.solve(solver=Solver.ACADOS())

    # Check some of the results
    q, qdot, tau = sol.states["q"], sol.states["qdot"], sol.controls["tau"]

    # final position
    np.testing.assert_almost_equal(q[:, 0], np.array([2.28988221, 0, 0, 2.95087911e-01]), decimal=6)
    np.testing.assert_almost_equal(q[:, -1], np.array((2.28215749, 0, 1.57, 6.62470772e-01)), decimal=6)

    np.testing.assert_almost_equal(qdot[:, 0], np.array([0, 0, 0, 0]), decimal=6)
    np.testing.assert_almost_equal(qdot[:, -1], np.array([0, 0, 0, 0]), decimal=6)

    # initial and final controls
    np.testing.assert_almost_equal(tau[:, 0], np.array((0.04483914, 9.90739842, 2.24951691, 0.78496612)), decimal=6)
    np.testing.assert_almost_equal(tau[:, -2], np.array((0.15945561, 10.03978178, -2.36075327, 0.07267697)), decimal=6)
Esempio n. 11
0
def test_lagrange_multiphase_time_constraint():
    (
        biorbd_model,
        n_shooting,
        final_time,
        time_min,
        time_max,
        torque_min,
        torque_max,
        torque_init,
        dynamics,
        x_bounds,
        x_init,
        u_bounds,
        u_init,
    ) = partial_ocp_parameters(n_phases=3)

    objective_functions = ObjectiveList()
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau", weight=100, phase=0)
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_TIME, phase=0)

    constraints = ConstraintList()
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS, node=Node.START, first_marker="m0", second_marker="m1", phase=2)
    constraints.add(ConstraintFcn.TIME_CONSTRAINT, node=Node.END, minimum=time_min[0], maximum=time_max[0], phase=2)

    OptimalControlProgram(
        biorbd_model,
        dynamics,
        n_shooting,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
    )
Esempio n. 12
0
def test_acados_custom_dynamics(problem_type_custom):
    if platform == "win32":
        print("Test for ACADOS on Windows is skipped")
        return
    bioptim_folder = TestUtils.bioptim_folder()
    cube = TestUtils.load_module(
        bioptim_folder + "/examples/getting_started/custom_dynamics.py")
    ocp = cube.prepare_ocp(
        biorbd_model_path=bioptim_folder +
        "/examples/getting_started/models/cube.bioMod",
        problem_type_custom=problem_type_custom,
        ode_solver=OdeSolver.RK4(),
        use_sx=True,
    )
    constraints = ConstraintList()
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                    node=Node.END,
                    first_marker="m0",
                    second_marker="m2")
    ocp.update_constraints(constraints)
    sol = ocp.solve(solver=Solver.ACADOS)

    # Check some of the results
    q, qdot, tau = sol.states["q"], sol.states["qdot"], sol.controls["tau"]

    # initial and final position
    np.testing.assert_almost_equal(q[:, 0], np.array((2, 0, 0)), decimal=6)
    np.testing.assert_almost_equal(q[:, -1], np.array((2, 0, 1.57)))

    # initial and final velocities
    np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0, 0)))
    np.testing.assert_almost_equal(qdot[:, -1], np.array((0, 0, 0)))

    # initial and final controls
    np.testing.assert_almost_equal(tau[:, 0], np.array((0, 9.81, 2.27903226)))
    np.testing.assert_almost_equal(tau[:, -2], np.array(
        (0, 9.81, -2.27903226)))
def test_lagrange_multiphase_time_constraint():
    (
        biorbd_model,
        number_shooting_points,
        final_time,
        time_min,
        time_max,
        torque_min,
        torque_max,
        torque_init,
        dynamics,
        x_bounds,
        x_init,
        u_bounds,
        u_init,
    ) = partial_ocp_parameters(nb_phases=3)

    objective_functions = ObjectiveList()
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_TORQUE, weight=100, phase=0)
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_TIME, phase=0)

    constraints = ConstraintList()
    constraints.add(ConstraintFcn.ALIGN_MARKERS, node=Node.START, first_marker_idx=0, second_marker_idx=1, phase=2)
    constraints.add(ConstraintFcn.TIME_CONSTRAINT, node=Node.END, minimum=time_min[0], maximum=time_max[0], phase=2)

    OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
    )
Esempio n. 14
0
def prepare_ocp(
    biorbd_model_path: str,
    problem_type_custom: bool = True,
    ode_solver: OdeSolver = OdeSolver.RK4(),
    use_sx: bool = False,
) -> OptimalControlProgram:
    """
    Prepare the program

    Parameters
    ----------
    biorbd_model_path: str
        The path of the biorbd model
    problem_type_custom: bool
        If the preparation should be done using the user-defined dynamic function or the normal TORQUE_DRIVEN.
        They should return the same results
    ode_solver: OdeSolver
        The type of ode solver used
    use_sx: bool
        If the program should be constructed using SX instead of MX (longer to create the CasADi graph, faster to solve)

    Returns
    -------
    The ocp ready to be solved
    """

    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    n_shooting = 30
    final_time = 2

    # Add objective functions
    objective_functions = Objective(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau", weight=100, multi_thread=False)

    # Dynamics
    dynamics = DynamicsList()
    expand = False if isinstance(ode_solver, OdeSolver.IRK) else True
    if problem_type_custom:
        dynamics.add(custom_configure, dynamic_function=custom_dynamic, my_additional_factor=1, expand=expand)
    else:
        dynamics.add(DynamicsFcn.TORQUE_DRIVEN, dynamic_function=custom_dynamic, expand=expand)

    # Constraints
    constraints = ConstraintList()
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS, node=Node.START, first_marker="m0", second_marker="m1")
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS, node=Node.END, first_marker="m0", second_marker="m2")

    # Path constraint
    x_bounds = QAndQDotBounds(biorbd_model)
    x_bounds[1:6, [0, -1]] = 0
    x_bounds[2, -1] = 1.57

    # Initial guess
    x_init = InitialGuess([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    tau_min, tau_max, tau_init = -100, 100, 0
    u_bounds = Bounds([tau_min] * biorbd_model.nbGeneralizedTorque(), [tau_max] * biorbd_model.nbGeneralizedTorque())

    u_init = InitialGuess([tau_init] * biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        n_shooting,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
        use_sx=use_sx,
    )
def prepare_ocp(
    biorbd_model_path: str,
    final_time: float,
    n_shooting: int,
    initialize_near_solution: bool,
    ode_solver: OdeSolver = OdeSolver.RK4(),
    constr: bool = True,
    use_sx: bool = False,
) -> OptimalControlProgram:
    """
    Prepare the ocp

    Parameters
    ----------
    biorbd_model_path: str
        The path to the bioMod file
    final_time: float
        The time at the final node
    n_shooting: int
        The number of shooting points
    initialize_near_solution: bool
        If the initial guess should be almost the solution (this is merely to reduce the time of the tests)
    ode_solver: OdeSolver
        The ode solver to use
    constr: bool
        If the constraint should be applied (this is merely to reduce the time of the tests)
    use_sx: bool
        If SX CasADi variables should be used

    Returns
    -------
    The OptimalControlProgram ready to be solved
    """

    biorbd_model = biorbd.Model(biorbd_model_path)

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_TORQUE, weight=100)

    # Dynamics
    dynamics = DynamicsList()
    dynamics.add(DynamicsFcn.TORQUE_DRIVEN)

    # Constraints
    if constr:
        constraints = ConstraintList()
        constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                        node=Node.START,
                        first_marker="m0",
                        second_marker="m4")
        constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                        node=Node.END,
                        first_marker="m0",
                        second_marker="m5")
        constraints.add(ConstraintFcn.TRACK_MARKER_WITH_SEGMENT_AXIS,
                        node=Node.ALL,
                        marker="m1",
                        segment="seg_rt",
                        axis=Axis.X)
    else:
        constraints = ConstraintList()

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model))

    for i in range(1, 8):
        if i != 3:
            x_bounds[0][i, [0, -1]] = 0
    x_bounds[0][2, -1] = 1.57

    # Initial guess
    x_init = InitialGuessList()
    x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))
    if initialize_near_solution:
        for i in range(2):
            x_init[0].init[i] = 1.5
        for i in range(4, 6):
            x_init[0].init[i] = 0.7
        for i in range(6, 8):
            x_init[0].init[i] = 0.6

    # Define control path constraint
    tau_min, tau_max, tau_init = -100, 100, 0
    u_bounds = BoundsList()
    u_bounds.add([tau_min] * biorbd_model.nbGeneralizedTorque(),
                 [tau_max] * biorbd_model.nbGeneralizedTorque())

    u_init = InitialGuessList()
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        n_shooting,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
        use_sx=use_sx,
    )
Esempio n. 16
0
def prepare_ocp(
    biorbd_model_path: str, ode_solver: OdeSolver = OdeSolver.RK4()
) -> OptimalControlProgram:
    """
    Prepare the program

    Parameters
    ----------
    biorbd_model_path: str
        The path of the biorbd model
    ode_solver: OdeSolver
        The type of ode solver used

    Returns
    -------
    The ocp ready to be solved
    """

    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    n_shooting = 30
    final_time = 2
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = Objective(ObjectiveFcn.Lagrange.MINIMIZE_TORQUE,
                                    weight=100)

    # Dynamics
    dynamics = Dynamics(DynamicsFcn.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(custom_func_track_markers,
                    node=Node.START,
                    first_marker="m0",
                    second_marker="m1")
    constraints.add(custom_func_track_markers,
                    node=Node.END,
                    first_marker="m0",
                    second_marker="m2")

    # Path constraint
    x_bounds = QAndQDotBounds(biorbd_model)
    x_bounds[1:6, [0, -1]] = 0
    x_bounds[2, -1] = 1.57

    # Initial guess
    x_init = InitialGuess([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    u_bounds = Bounds([tau_min] * biorbd_model.nbGeneralizedTorque(),
                      [tau_max] * biorbd_model.nbGeneralizedTorque())

    u_init = InitialGuess([tau_init] * biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        n_shooting,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
    )
Esempio n. 17
0
def prepare_ocp(biorbd_model_path="cube_with_forces.bioMod",
                ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    number_shooting_points = 30
    final_time = 2
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS,
                    node=Node.START,
                    first_marker_idx=0,
                    second_marker_idx=1)
    constraints.add(Constraint.ALIGN_MARKERS,
                    node=Node.END,
                    first_marker_idx=0,
                    second_marker_idx=2)

    # External forces
    external_forces = [
        np.repeat(np.array([[0, 0, 0, 0, 0, -2], [0, 0, 0, 0, 0,
                                                  5]]).T[:, :, np.newaxis],
                  number_shooting_points,
                  axis=2)
    ]

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0][3:6, [0, -1]] = 0

    # Initial guess
    x_init = InitialGuessList()
    x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * biorbd_model.nbGeneralizedTorque(),
                  [tau_max] * biorbd_model.nbGeneralizedTorque()])

    u_init = InitialGuessList()
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions=objective_functions,
        constraints=constraints,
        external_forces=external_forces,
        ode_solver=ode_solver,
    )
def prepare_ocp(biorbd_model_path, phase_time, n_shooting, min_bound,
                max_bound):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    tau_min, tau_max, tau_init = -500, 500, 0
    activation_min, activation_max, activation_init = 0, 1, 0.5
    dof_mapping = BiMappingList()
    dof_mapping.add("tau", [None, None, None, 0], [3])

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(ObjectiveFcn.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT)

    # Dynamics
    dynamics = DynamicsList()
    dynamics.add(DynamicsFcn.MUSCLE_DRIVEN,
                 with_torque=True,
                 with_contact=True)

    # Constraints
    constraints = ConstraintList()
    constraints.add(
        ConstraintFcn.TRACK_CONTACT_FORCES,
        min_bound=min_bound,
        max_bound=max_bound,
        node=Node.ALL_SHOOTING,
        contact_index=1,
    )
    constraints.add(
        ConstraintFcn.TRACK_CONTACT_FORCES,
        min_bound=min_bound,
        max_bound=max_bound,
        node=Node.ALL_SHOOTING,
        contact_index=2,
    )

    # Path constraint
    n_q = biorbd_model.nbQ()
    n_qdot = n_q
    pose_at_first_node = [0, 0, -0.75, 0.75]

    # Initialize x_bounds
    x_bounds = BoundsList()
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model))
    x_bounds[0][:, 0] = pose_at_first_node + [0] * n_qdot

    # Initial guess
    x_init = InitialGuessList()
    x_init.add(pose_at_first_node + [0] * n_qdot)

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add(
        [tau_min] * len(dof_mapping["tau"].to_first) +
        [activation_min] * biorbd_model.nbMuscleTotal(),
        [tau_max] * len(dof_mapping["tau"].to_first) +
        [activation_max] * biorbd_model.nbMuscleTotal(),
    )

    u_init = InitialGuessList()
    u_init.add([tau_init] * len(dof_mapping["tau"].to_first) +
               [activation_init] * biorbd_model.nbMuscleTotal())
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        n_shooting,
        phase_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints=constraints,
        variable_mappings=dof_mapping,
    )
Esempio n. 19
0
def prepare_ocp(
    biorbd_model_path: str,
    n_shooting: int,
    final_time: float,
    interpolation_type: InterpolationType = InterpolationType.
    CONSTANT_WITH_FIRST_AND_LAST_DIFFERENT,
) -> OptimalControlProgram:
    """
    Prepare the ocp for the specified interpolation type

    Parameters
    ----------
    biorbd_model_path: str
        The path to the biorbd model
    n_shooting: int
        The number of shooting point
    final_time: float
        The movement time
    interpolation_type: InterpolationType
        The requested InterpolationType

    Returns
    -------
    The OCP fully prepared and ready to be solved
    """

    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    nq = biorbd_model.nbQ()
    nqdot = biorbd_model.nbQdot()
    ntau = biorbd_model.nbGeneralizedTorque()
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = Objective(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL,
                                    key="tau")

    # Dynamics
    dynamics = Dynamics(DynamicsFcn.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                    node=Node.START,
                    first_marker="m0",
                    second_marker="m1")
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                    node=Node.END,
                    first_marker="m0",
                    second_marker="m2")

    # Path constraints
    if interpolation_type == InterpolationType.CONSTANT:
        x_min = [-100] * (nq + nqdot)
        x_max = [100] * (nq + nqdot)
        x_bounds = Bounds(x_min,
                          x_max,
                          interpolation=InterpolationType.CONSTANT)
        u_min = [tau_min] * ntau
        u_max = [tau_max] * ntau
        u_bounds = Bounds(u_min,
                          u_max,
                          interpolation=InterpolationType.CONSTANT)
    elif interpolation_type == InterpolationType.CONSTANT_WITH_FIRST_AND_LAST_DIFFERENT:
        x_min = np.random.random((6, 3)) * (-10) - 5
        x_max = np.random.random((6, 3)) * 10 + 5
        x_bounds = Bounds(x_min,
                          x_max,
                          interpolation=InterpolationType.
                          CONSTANT_WITH_FIRST_AND_LAST_DIFFERENT)
        u_min = np.random.random((3, 3)) * tau_min + tau_min / 2
        u_max = np.random.random((3, 3)) * tau_max + tau_max / 2
        u_bounds = Bounds(u_min,
                          u_max,
                          interpolation=InterpolationType.
                          CONSTANT_WITH_FIRST_AND_LAST_DIFFERENT)
    elif interpolation_type == InterpolationType.LINEAR:
        x_min = np.random.random((6, 2)) * (-10) - 5
        x_max = np.random.random((6, 2)) * 10 + 5
        x_bounds = Bounds(x_min, x_max, interpolation=InterpolationType.LINEAR)
        u_min = np.random.random((3, 2)) * tau_min + tau_min / 2
        u_max = np.random.random((3, 2)) * tau_max + tau_max / 2
        u_bounds = Bounds(u_min, u_max, interpolation=InterpolationType.LINEAR)
    elif interpolation_type == InterpolationType.EACH_FRAME:
        x_min = np.random.random((nq + nqdot, n_shooting + 1)) * (-10) - 5
        x_max = np.random.random((nq + nqdot, n_shooting + 1)) * 10 + 5
        x_bounds = Bounds(x_min,
                          x_max,
                          interpolation=InterpolationType.EACH_FRAME)
        u_min = np.random.random((ntau, n_shooting)) * tau_min + tau_min / 2
        u_max = np.random.random((ntau, n_shooting)) * tau_max + tau_max / 2
        u_bounds = Bounds(u_min,
                          u_max,
                          interpolation=InterpolationType.EACH_FRAME)
    elif interpolation_type == InterpolationType.SPLINE:
        spline_time = np.hstack(
            (0, np.sort(np.random.random((3, )) * final_time), final_time))
        x_min = np.random.random((nq + nqdot, 5)) * (-10) - 5
        x_max = np.random.random((nq + nqdot, 5)) * 10 + 5
        u_min = np.random.random((ntau, 5)) * tau_min + tau_min / 2
        u_max = np.random.random((ntau, 5)) * tau_max + tau_max / 2
        x_bounds = Bounds(x_min,
                          x_max,
                          interpolation=InterpolationType.SPLINE,
                          t=spline_time)
        u_bounds = Bounds(u_min,
                          u_max,
                          interpolation=InterpolationType.SPLINE,
                          t=spline_time)
    elif interpolation_type == InterpolationType.CUSTOM:
        # The custom functions refer to the ones at the beginning of the file.
        # For this particular instance, they emulate a Linear interpolation
        extra_params_x = {"n_elements": nq + nqdot, "n_shooting": n_shooting}
        extra_params_u = {"n_elements": ntau, "n_shooting": n_shooting}
        x_bounds = Bounds(custom_x_bounds_min,
                          custom_x_bounds_max,
                          interpolation=InterpolationType.CUSTOM,
                          **extra_params_x)
        u_bounds = Bounds(custom_u_bounds_min,
                          custom_u_bounds_max,
                          interpolation=InterpolationType.CUSTOM,
                          **extra_params_u)
    else:
        raise NotImplementedError("Not implemented yet")

    # Initial guess
    x_init = InitialGuess([0] * (nq + nqdot))
    u_init = InitialGuess([tau_init] * ntau)

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        n_shooting,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
    )
Esempio n. 20
0
def prepare_ocp(
    biorbd_model_path,
    final_time,
    number_shooting_points,
    initialize_near_solution,
    ode_solver=OdeSolver.RK,
    constr=True,
    use_SX=False,
):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_TORQUE, weight=100)

    # Dynamics
    dynamics = DynamicsList()
    dynamics.add(DynamicsFcn.TORQUE_DRIVEN)

    # Constraints
    if constr is True:
        constraints = ConstraintList()
        constraints.add(ConstraintFcn.ALIGN_MARKERS, node=Node.START, first_marker_idx=0, second_marker_idx=4)
        constraints.add(ConstraintFcn.ALIGN_MARKERS, node=Node.END, first_marker_idx=0, second_marker_idx=5)
        constraints.add(
            ConstraintFcn.ALIGN_MARKER_WITH_SEGMENT_AXIS, node=Node.ALL, marker_idx=1, segment_idx=2, axis=(Axe.X)
        )
    else:
        constraints = ConstraintList()

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model))

    for i in range(1, 8):
        if i != 3:
            x_bounds[0][i, [0, -1]] = 0
    x_bounds[0][2, -1] = 1.57

    # Initial guess
    x_init = InitialGuessList()
    x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))
    if initialize_near_solution:
        for i in range(2):
            x_init[0].init[i] = 1.5
        for i in range(4, 6):
            x_init[0].init[i] = 0.7
        for i in range(6, 8):
            x_init[0].init[i] = 0.6

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([tau_min] * biorbd_model.nbGeneralizedTorque(), [tau_max] * biorbd_model.nbGeneralizedTorque())

    u_init = InitialGuessList()
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
        use_SX=use_SX,
    )
def prepare_ocp(biorbd_model_path,
                phase_time,
                n_shooting,
                min_bound,
                max_bound,
                mu,
                ode_solver=OdeSolver.RK4()):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    tau_min, tau_max, tau_init = -500, 500, 0
    tau_mapping = BiMapping([None, None, None, 0], [3])

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(ObjectiveFcn.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
                            weight=-1)

    # Dynamics
    dynamics = DynamicsList()
    dynamics.add(DynamicsFcn.TORQUE_DRIVEN_WITH_CONTACT)

    # Constraints
    constraints = ConstraintList()
    constraints.add(
        ConstraintFcn.CONTACT_FORCE,
        min_bound=min_bound,
        max_bound=max_bound,
        node=Node.ALL,
        contact_force_idx=1,
    )
    constraints.add(
        ConstraintFcn.CONTACT_FORCE,
        min_bound=min_bound,
        max_bound=max_bound,
        node=Node.ALL,
        contact_force_idx=2,
    )
    constraints.add(
        ConstraintFcn.NON_SLIPPING,
        node=Node.ALL,
        normal_component_idx=(1, 2),
        tangential_component_idx=0,
        static_friction_coefficient=mu,
    )

    # Path constraint
    n_q = biorbd_model.nbQ()
    n_qdot = n_q
    pose_at_first_node = [0, 0, -0.75, 0.75]

    # Initialize x_bounds
    x_bounds = BoundsList()
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model))
    x_bounds[0][:, 0] = pose_at_first_node + [0] * n_qdot

    # Initial guess
    x_init = InitialGuessList()
    x_init.add(pose_at_first_node + [0] * n_qdot)

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([tau_min] * tau_mapping.to_first.len,
                 [tau_max] * tau_mapping.to_first.len)

    u_init = InitialGuessList()
    u_init.add([tau_init] * tau_mapping.to_first.len)

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        n_shooting,
        phase_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        tau_mapping=tau_mapping,
        ode_solver=ode_solver,
    )
Esempio n. 22
0
def prepare_ocp(biorbd_model_path,
                number_shooting_points,
                final_time,
                use_actuators=False,
                ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    if use_actuators:
        tau_min, tau_max, tau_init = -1, 1, 0
    else:
        tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100)

    # Dynamics
    dynamics = DynamicsTypeList()
    if use_actuators:
        dynamics.add(DynamicsType.TORQUE_ACTIVATIONS_DRIVEN)
    else:
        dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS,
                    node=Node.START,
                    first_marker_idx=0,
                    second_marker_idx=1)
    constraints.add(Constraint.ALIGN_MARKERS,
                    node=Node.END,
                    first_marker_idx=0,
                    second_marker_idx=2)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0][3:6, [0, -1]] = 0
    x_bounds[0][2, [0, -1]] = [0, 1.57]

    # Initial guess
    x_init = InitialGuessList()
    x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * biorbd_model.nbGeneralizedTorque(),
                  [tau_max] * biorbd_model.nbGeneralizedTorque()])

    u_init = InitialGuessList()
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
    )
Esempio n. 23
0
def prepare_ocp_phase_transitions(
    biorbd_model_path: str,
    with_constraints: bool,
    with_mayer: bool,
    with_lagrange: bool,
) -> OptimalControlProgram:
    """
    Parameters
    ----------
    biorbd_model_path: str
        The path to the bioMod

    Returns
    -------
    The ocp ready to be solved
    """

    # Model path
    biorbd_model = (
        biorbd.Model(biorbd_model_path),
        biorbd.Model(biorbd_model_path),
        biorbd.Model(biorbd_model_path),
        biorbd.Model(biorbd_model_path),
    )

    # Problem parameters
    n_shooting = (20, 20, 20, 20)
    final_time = (2, 5, 4, 2)
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    if with_lagrange:
        objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_TORQUE,
                                weight=100,
                                phase=0)
        objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_TORQUE,
                                weight=100,
                                phase=1)
        objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_TORQUE,
                                weight=100,
                                phase=2)
        objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_TORQUE,
                                weight=100,
                                phase=3)
        objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_COM_VELOCITY,
                                weight=0,
                                phase=3,
                                axis=None)

    if with_mayer:
        objective_functions.add(ObjectiveFcn.Mayer.MINIMIZE_TIME)
        objective_functions.add(ObjectiveFcn.Mayer.MINIMIZE_COM_POSITION,
                                phase=0,
                                node=1)
        objective_functions.add(
            minimize_difference,
            custom_type=ObjectiveFcn.Mayer,
            node=Node.TRANSITION,
            weight=100,
            phase=1,
            get_all_nodes_at_once=True,
            quadratic=True,
        )

    # Dynamics
    dynamics = DynamicsList()
    dynamics.add(DynamicsFcn.TORQUE_DRIVEN)
    dynamics.add(DynamicsFcn.TORQUE_DRIVEN)
    dynamics.add(DynamicsFcn.TORQUE_DRIVEN)
    dynamics.add(DynamicsFcn.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    if with_constraints:
        constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                        node=Node.START,
                        first_marker="m0",
                        second_marker="m1",
                        phase=0)
        constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                        node=2,
                        first_marker="m0",
                        second_marker="m1",
                        phase=0)
        constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                        node=Node.END,
                        first_marker="m0",
                        second_marker="m2",
                        phase=0)
        constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                        node=Node.END,
                        first_marker="m0",
                        second_marker="m1",
                        phase=1)
        constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                        node=Node.END,
                        first_marker="m0",
                        second_marker="m2",
                        phase=2)
        constraints.add(custom_func_track_markers,
                        node=Node.ALL,
                        first_marker="m0",
                        second_marker="m1",
                        phase=3)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model[0]))
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model[0]))
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model[0]))
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model[0]))

    x_bounds[0][[1, 3, 4, 5], 0] = 0
    x_bounds[-1][[1, 3, 4, 5], -1] = 0

    x_bounds[0][2, 0] = 0.0
    x_bounds[2][2, [0, -1]] = [0.0, 1.57]

    # Initial guess
    x_init = InitialGuessList()
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([tau_min] * biorbd_model[0].nbGeneralizedTorque(),
                 [tau_max] * biorbd_model[0].nbGeneralizedTorque())
    u_bounds.add([tau_min] * biorbd_model[0].nbGeneralizedTorque(),
                 [tau_max] * biorbd_model[0].nbGeneralizedTorque())
    u_bounds.add([tau_min] * biorbd_model[0].nbGeneralizedTorque(),
                 [tau_max] * biorbd_model[0].nbGeneralizedTorque())
    u_bounds.add([tau_min] * biorbd_model[0].nbGeneralizedTorque(),
                 [tau_max] * biorbd_model[0].nbGeneralizedTorque())

    u_init = InitialGuessList()
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())

    # Define phase transitions
    phase_transitions = PhaseTransitionList()
    phase_transitions.add(PhaseTransitionFcn.IMPACT, phase_pre_idx=1)
    phase_transitions.add(PhaseTransitionFcn.CONTINUOUS,
                          phase_pre_idx=2,
                          idx_1=1,
                          idx_2=3)
    phase_transitions.add(PhaseTransitionFcn.CYCLIC)

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        n_shooting,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        phase_transitions=phase_transitions,
    )
Esempio n. 24
0
def prepare_ocp(model_path,
                phase_time,
                number_shooting_points,
                min_bound,
                ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(model_path)
    torque_min, torque_max, torque_init = -500, 500, 0
    activation_min, activation_max, activation_init = 0, 1, 0.5
    tau_mapping = BidirectionalMapping(Mapping([-1, -1, -1, 0]), Mapping([3]))

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(ObjectiveFcn.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
                            weight=-1)

    # Dynamics
    dynamics = DynamicsList()
    dynamics.add(DynamicsFcn.MUSCLE_EXCITATIONS_AND_TORQUE_DRIVEN_WITH_CONTACT)

    # Constraints
    constraints = ConstraintList()
    constraints.add(
        ConstraintFcn.CONTACT_FORCE,
        min_bound=min_bound,
        max_bound=np.inf,
        node=Node.ALL,
        contact_force_idx=1,
    )
    constraints.add(
        ConstraintFcn.CONTACT_FORCE,
        min_bound=min_bound,
        max_bound=np.inf,
        node=Node.ALL,
        contact_force_idx=2,
    )

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    nb_mus = biorbd_model.nbMuscleTotal()
    pose_at_first_node = [0, 0, -0.75, 0.75]

    # Initialize x_bounds
    x_bounds = BoundsList()
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model))
    x_bounds[0].concatenate(
        Bounds([activation_min] * nb_mus, [activation_max] * nb_mus))
    x_bounds[0][:, 0] = pose_at_first_node + [0] * nb_qdot + [0.5] * nb_mus

    # Initial guess
    x_init = InitialGuessList()
    x_init.add(pose_at_first_node + [0] * nb_qdot + [0.5] * nb_mus)

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add(
        [torque_min] * tau_mapping.reduce.len +
        [activation_min] * biorbd_model.nbMuscleTotal(),
        [torque_max] * tau_mapping.reduce.len +
        [activation_max] * biorbd_model.nbMuscleTotal(),
    )

    u_init = InitialGuessList()
    u_init.add([torque_init] * tau_mapping.reduce.len +
               [activation_init] * biorbd_model.nbMuscleTotal())
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        phase_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions=objective_functions,
        constraints=constraints,
        tau_mapping=tau_mapping,
        ode_solver=ode_solver,
    )
Esempio n. 25
0
def prepare_ocp(
    biorbd_model_path: str,
    phase_time: float,
    n_shooting: int,
    use_actuators: bool = False,
    ode_solver: OdeSolver = OdeSolver.RK4(),
    objective_name: str = "MINIMIZE_PREDICTED_COM_HEIGHT",
    com_constraints: bool = False,
) -> OptimalControlProgram:
    """
    Prepare the ocp

    Parameters
    ----------
    biorbd_model_path: str
        The path to the bioMod file
    phase_time: float
        The time at the final node
    n_shooting: int
        The number of shooting points
    use_actuators: bool
        If torque or torque activation should be used for the dynamics
    ode_solver: OdeSolver
        The ode solver to use
    objective_name: str
        The objective function to run ('MINIMIZE_PREDICTED_COM_HEIGHT',
        'MINIMIZE_COM_POSITION' or 'MINIMIZE_COM_VELOCITY')
    com_constraints: bool
        If a constraint on the COM should be applied

    Returns
    -------
    The OptimalControlProgram ready to be solved
    """

    biorbd_model = biorbd.Model(biorbd_model_path)

    if use_actuators:
        tau_min, tau_max, tau_init = -1, 1, 0
    else:
        tau_min, tau_max, tau_init = -500, 500, 0

    dof_mapping = BiMappingList()
    dof_mapping.add("tau", [None, None, None, 0], [3])

    # Add objective functions
    objective_functions = ObjectiveList()
    if objective_name == "MINIMIZE_PREDICTED_COM_HEIGHT":
        objective_functions.add(ObjectiveFcn.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT, weight=-1)
    elif objective_name == "MINIMIZE_COM_POSITION":
        objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_COM_POSITION, node=Node.ALL, axes=Axis.Z, weight=-1)
    elif objective_name == "MINIMIZE_COM_VELOCITY":
        objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_COM_VELOCITY, node=Node.ALL, axes=Axis.Z, weight=-1)
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau", weight=1 / 100)

    # Dynamics
    dynamics = DynamicsList()
    if use_actuators:
        dynamics.add(DynamicsFcn.TORQUE_ACTIVATIONS_DRIVEN, with_contact=True)
    else:
        dynamics.add(DynamicsFcn.TORQUE_DRIVEN, with_contact=True)

    # Constraints
    constraints = ConstraintList()
    if com_constraints:
        constraints.add(
            ConstraintFcn.TRACK_COM_VELOCITY,
            node=Node.ALL,
            min_bound=np.array([-100, -100, -100]),
            max_bound=np.array([100, 100, 100]),
        )
        constraints.add(
            ConstraintFcn.TRACK_COM_POSITION,
            node=Node.ALL,
            min_bound=np.array([-1, -1, -1]),
            max_bound=np.array([1, 1, 1]),
        )

    # Path constraint
    n_q = biorbd_model.nbQ()
    n_qdot = n_q
    pose_at_first_node = [0, 0, -0.5, 0.5]

    # Initialize x_bounds
    x_bounds = BoundsList()
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model))
    x_bounds[0][:, 0] = pose_at_first_node + [0] * n_qdot

    # Initial guess
    x_init = InitialGuessList()
    x_init.add(pose_at_first_node + [0] * n_qdot)

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([tau_min] * len(dof_mapping["tau"].to_first), [tau_max] * len(dof_mapping["tau"].to_first))

    u_init = InitialGuessList()
    u_init.add([tau_init] * len(dof_mapping["tau"].to_first))

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        n_shooting,
        phase_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints=constraints,
        variable_mappings=dof_mapping,
        ode_solver=ode_solver,
    )
def prepare_ocp(
        biorbd_model_path: str,
        n_shooting: int,
        final_time: float,
        actuator_type: int = None,
        ode_solver: OdeSolver = OdeSolver.RK4(),
) -> OptimalControlProgram:
    """
    Prepare the ocp

    Parameters
    ----------
    biorbd_model_path: str
        Path to the bioMod
    n_shooting: int
        The number of shooting points
    final_time: float
        The time at final node
    actuator_type: int
        The type of actuator to use: 1 (torque activations) or 2 (torque max constraints)
    ode_solver: OdeSolver
        The ode solver to use

    Returns
    -------
    The OptimalControlProgram ready to be solved
    """

    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    if actuator_type and actuator_type == 1:
        tau_min, tau_max, tau_init = -1, 1, 0
    else:
        tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL,
                            key="tau",
                            weight=100)

    # Dynamics
    dynamics = DynamicsList()
    if actuator_type:
        if actuator_type == 1:
            dynamics.add(DynamicsFcn.TORQUE_ACTIVATIONS_DRIVEN)
        elif actuator_type == 2:
            dynamics.add(DynamicsFcn.TORQUE_DRIVEN)
        else:
            raise ValueError(
                "actuator_type is 1 (torque activations) or 2 (torque max constraints)"
            )
    else:
        expand = False if isinstance(ode_solver, OdeSolver.IRK) else True
        dynamics.add(DynamicsFcn.TORQUE_DRIVEN, expand=expand)

    # Constraints
    constraints = ConstraintList()
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                    node=Node.START,
                    first_marker="m0",
                    second_marker="m1")
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                    node=Node.END,
                    first_marker="m0",
                    second_marker="m2")
    if actuator_type == 2:
        constraints.add(ConstraintFcn.TORQUE_MAX_FROM_Q_AND_QDOT,
                        node=Node.ALL_SHOOTING,
                        min_torque=7.5)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model))
    x_bounds[0][3:6, [0, -1]] = 0
    x_bounds[0][2, [0, -1]] = [0, 1.57]

    # Initial guess
    x_init = InitialGuessList()
    x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([tau_min] * biorbd_model.nbGeneralizedTorque(),
                 [tau_max] * biorbd_model.nbGeneralizedTorque())

    u_init = InitialGuessList()
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        n_shooting,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
    )
Esempio n. 27
0
def prepare_ocp(phase_time_constraint, use_parameter):
    # --- Inputs --- #
    final_time = (2, 5, 4)
    time_min = [1, 3, 0.1]
    time_max = [2, 4, 0.8]
    ns = (20, 30, 20)
    biorbd_model_path = TestUtils.bioptim_folder(
    ) + "/examples/optimal_time_ocp/cube.bioMod"
    ode_solver = OdeSolver.RK4()

    # --- Options --- #
    n_phases = len(ns)

    # Model path
    biorbd_model = (biorbd.Model(biorbd_model_path),
                    biorbd.Model(biorbd_model_path),
                    biorbd.Model(biorbd_model_path))

    # Problem parameters
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_TORQUE,
                            weight=100,
                            phase=0)
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_TORQUE,
                            weight=100,
                            phase=1)
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_TORQUE,
                            weight=100,
                            phase=2)

    # Dynamics
    dynamics = DynamicsList()
    dynamics.add(DynamicsFcn.TORQUE_DRIVEN, phase=0)
    dynamics.add(DynamicsFcn.TORQUE_DRIVEN, phase=1)
    dynamics.add(DynamicsFcn.TORQUE_DRIVEN, phase=2)

    # Constraints
    constraints = ConstraintList()
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                    node=Node.START,
                    first_marker="m0",
                    second_marker="m1",
                    phase=0)
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                    node=Node.END,
                    first_marker="m0",
                    second_marker="m2",
                    phase=0)
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                    node=Node.END,
                    first_marker="m0",
                    second_marker="m1",
                    phase=1)
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                    node=Node.END,
                    first_marker="m0",
                    second_marker="m2",
                    phase=2)

    constraints.add(
        ConstraintFcn.TIME_CONSTRAINT,
        node=Node.END,
        minimum=time_min[0],
        maximum=time_max[0],
        phase=phase_time_constraint,
    )

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model[0]))  # Phase 0
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model[0]))  # Phase 1
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model[0]))  # Phase 2

    for bounds in x_bounds:
        for i in [1, 3, 4, 5]:
            bounds[i, [0, -1]] = 0
    x_bounds[0][2, 0] = 0.0
    x_bounds[2][2, [0, -1]] = [0.0, 1.57]

    # Initial guess
    x_init = InitialGuessList()
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([tau_min] * biorbd_model[0].nbGeneralizedTorque(),
                 [tau_max] * biorbd_model[0].nbGeneralizedTorque())
    u_bounds.add([tau_min] * biorbd_model[0].nbGeneralizedTorque(),
                 [tau_max] * biorbd_model[0].nbGeneralizedTorque())
    u_bounds.add([tau_min] * biorbd_model[0].nbGeneralizedTorque(),
                 [tau_max] * biorbd_model[0].nbGeneralizedTorque())

    u_init = InitialGuessList()
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())

    parameters = ParameterList()
    if use_parameter:

        def my_target_function(ocp, value, target_value):
            return value - target_value

        def my_parameter_function(biorbd_model, value, extra_value):
            new_gravity = MX.zeros(3, 1)
            new_gravity[2] = value + extra_value
            biorbd_model.setGravity(new_gravity)

        min_g = -10
        max_g = -6
        target_g = -8
        bound_gravity = Bounds(min_g,
                               max_g,
                               interpolation=InterpolationType.CONSTANT)
        initial_gravity = InitialGuess((min_g + max_g) / 2)
        parameter_objective_functions = Objective(
            my_target_function,
            weight=10,
            quadratic=True,
            custom_type=ObjectiveFcn.Parameter,
            target_value=target_g)
        parameters.add(
            "gravity_z",
            my_parameter_function,
            initial_gravity,
            bound_gravity,
            size=1,
            penalty_list=parameter_objective_functions,
            extra_value=1,
        )

    # ------------- #

    return OptimalControlProgram(
        biorbd_model[:n_phases],
        dynamics,
        ns,
        final_time[:n_phases],
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
        parameters=parameters,
    )
Esempio n. 28
0
def prepare_ocp(
    biorbd_model_path: str = "models/cube.bioMod", ode_solver: OdeSolver = OdeSolver.RK4()
) -> OptimalControlProgram:
    """
    Parameters
    ----------
    biorbd_model_path: str
        The path to the bioMod
    ode_solver: OdeSolver
        The type of ode solver used

    Returns
    -------
    The ocp ready to be solved
    """

    # Model path
    biorbd_model = (
        biorbd.Model(biorbd_model_path),
        biorbd.Model(biorbd_model_path),
        biorbd.Model(biorbd_model_path),
        biorbd.Model(biorbd_model_path),
    )

    # Problem parameters
    n_shooting = (20, 20, 20, 20)
    final_time = (2, 5, 4, 2)
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau", weight=100, phase=0)
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau", weight=100, phase=1)
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau", weight=100, phase=2)
    objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau", weight=100, phase=3)

    # Dynamics
    dynamics = DynamicsList()
    expand = False if isinstance(ode_solver, OdeSolver.IRK) else True
    dynamics.add(DynamicsFcn.TORQUE_DRIVEN, expand=expand)
    dynamics.add(DynamicsFcn.TORQUE_DRIVEN, expand=expand)
    dynamics.add(DynamicsFcn.TORQUE_DRIVEN, expand=expand)
    dynamics.add(DynamicsFcn.TORQUE_DRIVEN, expand=expand)

    # Constraints
    constraints = ConstraintList()
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS, node=Node.START, first_marker="m0", second_marker="m1", phase=0)
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS, node=Node.END, first_marker="m0", second_marker="m2", phase=0)
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS, node=Node.END, first_marker="m0", second_marker="m1", phase=1)
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS, node=Node.END, first_marker="m0", second_marker="m2", phase=2)
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS, node=Node.END, first_marker="m0", second_marker="m1", phase=3)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model[0]))
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model[0]))
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model[0]))
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model[0]))

    x_bounds[0][[1, 3, 4, 5], 0] = 0
    x_bounds[-1][[1, 3, 4, 5], -1] = 0

    x_bounds[0][2, 0] = 0.0
    x_bounds[2][2, [0, -1]] = [0.0, 1.57]

    # Initial guess
    x_init = InitialGuessList()
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([tau_min] * biorbd_model[0].nbGeneralizedTorque(), [tau_max] * biorbd_model[0].nbGeneralizedTorque())
    u_bounds.add([tau_min] * biorbd_model[0].nbGeneralizedTorque(), [tau_max] * biorbd_model[0].nbGeneralizedTorque())
    u_bounds.add([tau_min] * biorbd_model[0].nbGeneralizedTorque(), [tau_max] * biorbd_model[0].nbGeneralizedTorque())
    u_bounds.add([tau_min] * biorbd_model[0].nbGeneralizedTorque(), [tau_max] * biorbd_model[0].nbGeneralizedTorque())

    u_init = InitialGuessList()
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())

    """
    By default, all phase transitions (here phase 0 to phase 1, phase 1 to phase 2 and phase 2 to phase 3)
    are continuous. In the event that one (or more) phase transition(s) is desired to be discontinuous,
    as for example IMPACT or CUSTOM can be used as below.
    "phase_pre_idx" corresponds to the index of the phase preceding the transition.
    IMPACT will cause an impact related discontinuity when defining one or more contact points in the model.
    CUSTOM will allow to call the custom function previously presented in order to have its own phase transition.
    Finally, if you want a phase transition (continuous or not) between the last and the first phase (cyclicity)
    you can use the dedicated PhaseTransitionFcn.Cyclic or use a continuous set at the last phase_pre_idx.

    If for some reason, you don't want the phase transition to be hard constraint, you can specify a weight higher than
    zero. It will thereafter be treated as a Mayer objective function with the specified weight.
    """
    phase_transitions = PhaseTransitionList()
    phase_transitions.add(PhaseTransitionFcn.CONTINUOUS, phase_pre_idx=0, states_mapping=BiMapping(range(3), range(3)))
    phase_transitions.add(PhaseTransitionFcn.IMPACT, phase_pre_idx=1)
    phase_transitions.add(custom_phase_transition, phase_pre_idx=2, coef=0.5)
    phase_transitions.add(PhaseTransitionFcn.CYCLIC)

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        n_shooting,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
        phase_transitions=phase_transitions,
    )
Esempio n. 29
0
def prepare_ocp(
        biorbd_model_path: str,
        n_shooting: int,
        final_time: float,
        loop_from_constraint: bool,
        ode_solver: OdeSolver = OdeSolver.RK4(),
) -> OptimalControlProgram:
    """
    Prepare the program

    Parameters
    ----------
    biorbd_model_path: str
        The path of the biorbd model
    final_time: float
        The time at the final node
    n_shooting: int
        The number of shooting points
    loop_from_constraint: bool
        If the looping cost should be a constraint [True] or an objective [False]
    ode_solver: OdeSolver
        The type of ode solver used

    Returns
    -------
    The ocp ready to be solved
    """

    biorbd_model = biorbd.Model(biorbd_model_path)

    # Add objective functions
    objective_functions = Objective(ObjectiveFcn.Lagrange.MINIMIZE_TORQUE,
                                    weight=100)

    # Dynamics
    dynamics = Dynamics(DynamicsFcn.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                    node=Node.MID,
                    first_marker_idx=0,
                    second_marker_idx=2)
    constraints.add(ConstraintFcn.TRACK_STATE, node=Node.MID, index=2)
    constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS,
                    node=Node.END,
                    first_marker_idx=0,
                    second_marker_idx=1)

    # Path constraint
    x_bounds = QAndQDotBounds(biorbd_model)
    # First node is free but mid and last are constrained to be exactly at a certain point.
    # The cyclic penalty ensures that the first node and the last node are the same.
    x_bounds[2:6, -1] = [1.57, 0, 0, 0]

    # Initial guess
    x_init = InitialGuess([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    tau_min, tau_max, tau_init = -100, 100, 0
    u_bounds = Bounds([tau_min] * biorbd_model.nbGeneralizedTorque(),
                      [tau_max] * biorbd_model.nbGeneralizedTorque())

    u_init = InitialGuess([tau_init] * biorbd_model.nbGeneralizedTorque())

    # ------------- #
    # A phase transition loop constraint is treated as
    # hard penalty (constraint) if weight is <= 0 [or if no weight is provided], or
    # as a soft penalty (objective) otherwise
    phase_transitions = PhaseTransitionList()
    if loop_from_constraint:
        phase_transitions.add(PhaseTransitionFcn.CYCLIC, weight=0)
    else:
        phase_transitions.add(PhaseTransitionFcn.CYCLIC, weight=10000)

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        n_shooting,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
        phase_transitions=phase_transitions,
    )
            Objective.Lagrange.MINIMIZE_TORQUE,
            instant=Instant.ALL,
            state_idx=bow.hair_idx,
            weight=1,
            idx=3
        )  # permet de réduire le nombre d'itérations avant la convergence
        new_objectives.add(
            Objective.Lagrange.MINIMIZE_TORQUE_DERIVATIVE,
            instant=Instant.ALL,
            state_idx=bow.hair_idx,
            # weight=1,
            idx=4
        )  # rajoute des itérations et ne semble riuen changer au mouvement...
        ocp.update_objectives(new_objectives)

        new_constraints = ConstraintList()
        for j in range(1, 5):
            new_constraints.add(Constraint.ALIGN_MARKERS,
                                instant=j,
                                min_bound=0,
                                max_bound=0,
                                first_marker_idx=Bow.contact_marker,
                                second_marker_idx=violin.bridge_marker)
        for j in range(5, nb_shooting_pts_window + 1):
            new_constraints.add(
                Constraint.ALIGN_MARKERS,
                instant=j,
                # min_bound=-1, #-10**(j-14) donne 25 itérations
                # max_bound=1, # (j-4)/10 donne 21 itérations
                first_marker_idx=Bow.contact_marker,
                second_marker_idx=violin.bridge_marker)