Esempio n. 1
0
def prepare_ocp(model_path, phase_time, number_shooting_points):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(model_path)

    torque_min, torque_max, torque_init = -500, 500, 0
    tau_mapping = BidirectionalMapping(Mapping([-1, -1, -1, 0]), Mapping([3]))

    # Add objective functions
    objective_functions = (
        {
            "type": Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
            "weight": -1
        },
        {
            "type": Objective.Lagrange.MINIMIZE_TORQUE,
            "weight": 1 / 100
        },
    )

    # Dynamics
    problem_type = ProblemType.torque_driven_with_contact

    # Constraints
    constraints = ()

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    pose_at_first_node = [0, 0, -0.5, 0.5]

    # Initialize X_bounds
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.min[:, 0] = pose_at_first_node + [0] * nb_qdot
    X_bounds.max[:, 0] = pose_at_first_node + [0] * nb_qdot

    # Initial guess
    X_init = InitialConditions(pose_at_first_node + [0] * nb_qdot)

    # Define control path constraint
    U_bounds = Bounds(min_bound=[torque_min] * tau_mapping.reduce.len,
                      max_bound=[torque_max] * tau_mapping.reduce.len)

    U_init = InitialConditions([torque_init] * tau_mapping.reduce.len)
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        phase_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
        tau_mapping=tau_mapping,
    )
def prepare_ocp(biorbd_model_path="cubeSym.bioMod", show_online_optim=False, ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    number_shooting_points = 30
    final_time = 2
    torque_min, torque_max, torque_init = -100, 100, 0
    all_generalized_mapping = BidirectionalMapping(Mapping([0, 1, 2, 2], [3]), Mapping([0, 1, 2]))

    # Add objective functions
    objective_functions = {"type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 100}

    # Dynamics
    variable_type = ProblemType.torque_driven

    # Constraints
    constraints = (
        {"type": Constraint.ALIGN_MARKERS, "instant": Instant.START, "first_marker": 0, "second_marker": 1,},
        {"type": Constraint.ALIGN_MARKERS, "instant": Instant.END, "first_marker": 0, "second_marker": 2,},
    )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model, all_generalized_mapping)
    for i in range(3, 6):
        X_bounds.first_node_min[i] = 0
        X_bounds.last_node_min[i] = 0
        X_bounds.first_node_max[i] = 0
        X_bounds.last_node_max[i] = 0

    # Initial guess
    X_init = InitialConditions([0] * all_generalized_mapping.reduce.len * 2)

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * all_generalized_mapping.reduce.len, [torque_max] * all_generalized_mapping.reduce.len,
    )
    U_init = InitialConditions([torque_init] * all_generalized_mapping.reduce.len)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        variable_type,
        number_shooting_points,
        final_time,
        objective_functions,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        constraints,
        ode_solver=ode_solver,
        all_generalized_mapping=all_generalized_mapping,
        show_online_optim=show_online_optim,
    )
Esempio n. 3
0
def prepare_ocp(biorbd_model_path, number_shooting_points, final_time, use_actuators=False, ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    if use_actuators:
        torque_min, torque_max, torque_init = -1, 1, 0
    else:
        torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = {"type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 100}

    # Dynamics
    if use_actuators:
        problem_type = ProblemType.torque_activations_driven
    else:
        problem_type = ProblemType.torque_driven

    # Constraints
    constraints = (
        {"type": Constraint.ALIGN_MARKERS, "instant": Instant.START, "first_marker_idx": 0, "second_marker_idx": 1,},
        {"type": Constraint.ALIGN_MARKERS, "instant": Instant.END, "first_marker_idx": 0, "second_marker_idx": 2,},
    )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.min[3:6, [0, -1]] = 0
    X_bounds.max[3:6, [0, -1]] = 0
    X_bounds.min[2, [0, -1]] = [0, 1.57]
    X_bounds.max[2, [0, -1]] = [0, 1.57]

    # Initial guess
    X_init = InitialConditions([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * biorbd_model.nbGeneralizedTorque(), [torque_max] * biorbd_model.nbGeneralizedTorque(),
    )
    U_init = InitialConditions([torque_init] * biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
    )
Esempio n. 4
0
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points,
                nb_threads):
    # --- Options --- #
    biorbd_model = biorbd.Model(biorbd_model_path)
    torque_min, torque_max, torque_init = -1000000, 1000000, 0
    n_q = biorbd_model.nbQ()
    n_qdot = biorbd_model.nbQdot()
    n_tau = biorbd_model.nbGeneralizedTorque()

    # Add objective functions
    objective_functions = {
        "type": Objective.Lagrange.MINIMIZE_TORQUE,
        "weight": 100
    }

    # Dynamics
    problem_type = ProblemType.torque_driven

    # Constraints
    constraints = ()

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.min[:, 0] = 0
    X_bounds.max[:, 0] = 0
    X_bounds.min[:n_q, -1] = 1
    X_bounds.max[:n_q, -1] = 1
    X_bounds.min[n_q:, -1] = 0
    X_bounds.max[n_q:, -1] = 0

    # Initial guess
    X_init = InitialConditions([0] * (n_q + n_qdot))

    # Define control path constraint
    U_bounds = Bounds(min_bound=[torque_min] * n_tau,
                      max_bound=[torque_max] * n_tau)

    # Control initial guess
    U_init = InitialConditions([torque_init] * n_tau)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
        nb_threads=nb_threads,
    )
Esempio n. 5
0
def test_initial_condition_constant():
    nb_elements = 6
    nb_shoot = 10

    init_val = np.random.random(nb_elements, )
    init = InitialConditions(init_val,
                             interpolation=InterpolationType.CONSTANT)
    init.check_and_adjust_dimensions(nb_elements, nb_shoot)
    expected_val = init_val
    for i in range(nb_shoot):
        np.testing.assert_almost_equal(init.init.evaluate_at(i), expected_val)
Esempio n. 6
0
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points,
                time_min, time_max):
    # --- Options --- #
    biorbd_model = biorbd.Model(biorbd_model_path)
    torque_min, torque_max, torque_init = -100, 100, 0
    n_q = biorbd_model.nbQ()
    n_qdot = biorbd_model.nbQdot()
    n_tau = biorbd_model.nbGeneralizedTorque()

    # Add objective functions
    objective_functions = {"type": Objective.Lagrange.MINIMIZE_TORQUE}

    # Dynamics
    problem_type = ProblemType.torque_driven

    # Constraints
    constraints = ({
        "type": Constraint.TIME_CONSTRAINT,
        "minimum": time_min,
        "maximum": time_max,
    }, )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.min[:, [0, -1]] = 0
    X_bounds.max[:, [0, -1]] = 0
    X_bounds.min[n_q - 1, -1] = 3.14
    X_bounds.max[n_q - 1, -1] = 3.14

    # Initial guess
    X_init = InitialConditions([0] * (n_q + n_qdot))

    # Define control path constraint
    U_bounds = Bounds(min_bound=[torque_min] * n_tau,
                      max_bound=[torque_max] * n_tau)
    U_bounds.min[n_tau - 1, :] = 0
    U_bounds.max[n_tau - 1, :] = 0

    U_init = InitialConditions([torque_init] * n_tau)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
    )
Esempio n. 7
0
def test_initial_condition_linear():
    nb_elements = 6
    nb_shoot = 10

    init_val = np.random.random((nb_elements, 2))

    init = InitialConditions(init_val, interpolation=InterpolationType.LINEAR)
    init.check_and_adjust_dimensions(nb_elements, nb_shoot)
    for i in range(nb_shoot + 1):
        expected_val = init_val[:, 0] + (init_val[:, 1] -
                                         init_val[:, 0]) * i / nb_shoot
        np.testing.assert_almost_equal(init.init.evaluate_at(i), expected_val)
Esempio n. 8
0
def test_initial_condition_each_frame():
    nb_elements = 6
    nb_shoot = 10

    init_val = np.random.random((nb_elements, nb_shoot + 1))

    init = InitialConditions(init_val,
                             interpolation=InterpolationType.EACH_FRAME)
    init.check_and_adjust_dimensions(nb_elements, nb_shoot)
    for i in range(nb_shoot + 1):
        expected_val = init_val[:, i]
        np.testing.assert_almost_equal(init.init.evaluate_at(i), expected_val)
Esempio n. 9
0
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    torque_min, torque_max, torque_init = -1, 1, 0
    muscle_min, muscle_max, muscle_init = 0, 1, 0.5

    # Add objective functions
    objective_functions = (
        {"type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 1},
        {"type": Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL, "weight": 1},
        {"type": Objective.Mayer.ALIGN_MARKERS, "first_marker_idx": 0, "second_marker_idx": 5, "weight": 1,},
    )

    # Dynamics
    problem_type = ProblemType.muscle_activations_and_torque_driven

    # Constraints
    constraints = ()

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)

    # Set the initial position
    X_bounds.min[:, 0] = (0.07, 1.4, 0, 0)
    X_bounds.max[:, 0] = (0.07, 1.4, 0, 0)

    # Initial guess
    X_init = InitialConditions([1.57] * biorbd_model.nbQ() + [0] * biorbd_model.nbQdot())

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * biorbd_model.nbGeneralizedTorque() + [muscle_min] * biorbd_model.nbMuscleTotal(),
        [torque_max] * biorbd_model.nbGeneralizedTorque() + [muscle_max] * biorbd_model.nbMuscleTotal(),
    )

    U_init = InitialConditions(
        [torque_init] * biorbd_model.nbGeneralizedTorque() + [muscle_init] * biorbd_model.nbMuscleTotal()
    )
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
    )
Esempio n. 10
0
def test_initial_condition_constant_with_first_and_last_different():
    nb_elements = 6
    nb_shoot = 10

    init_val = np.random.random((nb_elements, 3))

    init = InitialConditions(
        init_val,
        interpolation=InterpolationType.CONSTANT_WITH_FIRST_AND_LAST_DIFFERENT)
    init.check_and_adjust_dimensions(nb_elements, nb_shoot)
    for i in range(nb_shoot + 1):
        if i == 0:
            expected_val = init_val[:, 0]
        elif i == nb_shoot:
            expected_val = init_val[:, 2]
        else:
            expected_val = init_val[:, 1]
        np.testing.assert_almost_equal(init.init.evaluate_at(i), expected_val)
Esempio n. 11
0
def test_simulate_from_initial_single_shoot():
    # Load pendulum
    PROJECT_FOLDER = Path(__file__).parent / ".."
    spec = importlib.util.spec_from_file_location(
        "pendulum",
        str(PROJECT_FOLDER) + "/examples/getting_started/pendulum.py")
    pendulum = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(pendulum)

    ocp = pendulum.prepare_ocp(
        biorbd_model_path=str(PROJECT_FOLDER) +
        "/examples/getting_started/pendulum.bioMod",
        final_time=2,
        number_shooting_points=10,
        nb_threads=4,
    )

    X = InitialConditions([-1, -2, 1, 0.5])
    U = InitialConditions(np.array([[-0.1, 0], [1, 2]]).T,
                          interpolation=InterpolationType.LINEAR)

    sol_simulate_single_shooting = Simulate.from_controls_and_initial_states(
        ocp, X, U, single_shoot=True)

    # Check some of the results
    states, controls = Data.get_data(ocp, sol_simulate_single_shooting["x"])
    q, qdot, tau = states["q"], states["q_dot"], controls["tau"]

    # initial and final position
    np.testing.assert_almost_equal(q[:, 0], np.array((-1.0, -2.0)))
    np.testing.assert_almost_equal(q[:, -1], np.array(
        (-0.59371229, 2.09731719)))

    # initial and final velocities
    np.testing.assert_almost_equal(qdot[:, 0], np.array((1.0, 0.5)))
    np.testing.assert_almost_equal(qdot[:, -1],
                                   np.array((1.38153013, -0.60425128)))

    # initial and final controls
    np.testing.assert_almost_equal(tau[:, 0], np.array((-0.1, 0.0)))
    np.testing.assert_almost_equal(tau[:, -1], np.array((1.0, 2.0)))
Esempio n. 12
0
def test_initial_condition_custom():
    nb_elements = 6
    nb_shoot = 10

    def custom_bound_func(current_shooting, val, total_shooting):
        # Linear interpolation created with custom bound function
        return val[:, 0] + (val[:, 1] -
                            val[:, 0]) * current_shooting / total_shooting

    init_val = np.random.random((nb_elements, 2))

    init = InitialConditions(
        custom_bound_func,
        interpolation=InterpolationType.CUSTOM,
        val=init_val,
        total_shooting=nb_shoot,
    )
    init.check_and_adjust_dimensions(nb_elements, nb_shoot)
    for i in range(nb_shoot + 1):
        expected_val = init_val[:, 0] + (init_val[:, 1] -
                                         init_val[:, 0]) * i / nb_shoot
        np.testing.assert_almost_equal(init.init.evaluate_at(i), expected_val)
Esempio n. 13
0
def test_initial_condition_spline():
    nb_shoot = 10
    spline_time = np.hstack((0.0, 1.0, 2.2, 6.0))
    init_val = np.array([
        [0.5, 0.6, 0.2, 0.8],
        [0.4, 0.6, 0.8, 0.2],
        [0.0, 0.3, 0.2, 0.5],
        [0.5, 0.2, 0.9, 0.4],
        [0.5, 0.6, 0.2, 0.8],
        [0.5, 0.6, 0.2, 0.8],
    ])
    nb_elements = init_val.shape[0]

    # Raise if time is not sent
    with pytest.raises(RuntimeError):
        InitialConditions(init_val, interpolation=InterpolationType.SPLINE)

    init = InitialConditions(init_val,
                             t=spline_time,
                             interpolation=InterpolationType.SPLINE)
    init.check_and_adjust_dimensions(nb_elements, nb_shoot)

    time_to_test = [0, nb_shoot // 3, nb_shoot // 2, nb_shoot]
    expected_matrix = np.array([
        [0.5, 0.4, 0.0, 0.5, 0.5, 0.5],
        [
            0.33333333, 0.73333333, 0.23333333, 0.66666667, 0.33333333,
            0.33333333
        ],
        [
            0.32631579, 0.67368421, 0.26315789, 0.79473684, 0.32631579,
            0.32631579
        ],
        [0.8, 0.2, 0.5, 0.4, 0.8, 0.8],
    ]).T
    for i, t in enumerate(time_to_test):
        expected_val = expected_matrix[:, i]
        np.testing.assert_almost_equal(init.init.evaluate_at(t), expected_val)
Esempio n. 14
0
def prepare_ocp(
    biorbd_model,
    final_time,
    nb_shooting,
    markers_ref,
    excitations_ref,
    q_ref,
    kin_data_to_track="markers",
    show_online_optim=False,
):
    # Problem parameters
    torque_min, torque_max, torque_init = -100, 100, 0
    activation_min, activation_max, activation_init = 0, 1, 0.5
    excitation_min, excitation_max, excitation_init = 0, 1, 0.5

    # Add objective functions
    objective_functions = [
        {
            "type": Objective.Lagrange.TRACK_MUSCLES_CONTROL,
            "weight": 1,
            "data_to_track": excitations_ref
        },
        {
            "type": Objective.Lagrange.MINIMIZE_TORQUE,
            "weight": 10000
        },
    ]
    if kin_data_to_track == "markers":
        objective_functions.append(
            {
                "type": Objective.Lagrange.TRACK_MARKERS,
                "weight": 100,
                "data_to_track": markers_ref
            }, )
    elif kin_data_to_track == "q":
        objective_functions.append(
            {
                "type": Objective.Lagrange.TRACK_STATE,
                "weight": 100,
                "data_to_track": q_ref,
                "states_idx": range(biorbd_model.nbQ()),
            }, )
    else:
        raise RuntimeError("Wrong choice of kin_data_to_track")

    # Dynamics
    variable_type = ProblemType.muscle_excitations_and_torque_driven

    # Constraints
    constraints = ()

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.first_node_min += [activation_min] * biorbd_model.nbMuscleTotal()
    X_bounds.first_node_max += [activation_max] * biorbd_model.nbMuscleTotal()
    X_bounds.min += [activation_min] * biorbd_model.nbMuscleTotal()
    X_bounds.max += [activation_max] * biorbd_model.nbMuscleTotal()
    X_bounds.last_node_min += [activation_min] * biorbd_model.nbMuscleTotal()
    X_bounds.last_node_max += [activation_max] * biorbd_model.nbMuscleTotal()

    # Initial guess
    X_init = InitialConditions([0] *
                               (biorbd_model.nbQ() + biorbd_model.nbQdot()) +
                               [activation_init] *
                               biorbd_model.nbMuscleTotal())

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * biorbd_model.nbGeneralizedTorque() +
        [excitation_min] * biorbd_model.nbMuscleTotal(),
        [torque_max] * biorbd_model.nbGeneralizedTorque() +
        [excitation_max] * biorbd_model.nbMuscleTotal(),
    )
    U_init = InitialConditions(
        [torque_init] * biorbd_model.nbGeneralizedTorque() +
        [excitation_init] * biorbd_model.nbMuscleTotal())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        variable_type,
        nb_shooting,
        final_time,
        objective_functions,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        constraints,
        show_online_optim=show_online_optim,
    )
Esempio n. 15
0
def prepare_ocp(
    biorbd_model,
    final_time,
    number_shooting_points,
    marker_ref,
    excitations_ref,
    q_ref,
    state_ekf,
    use_residual_torque,
    kin_data_to_track,
    nb_threads,
    use_SX=True,
):

    # --- Options --- #
    nb_mus = biorbd_model.nbMuscleTotal()
    activation_min, activation_max, activation_init = 0, 1, 0.5
    excitation_min, excitation_max, excitation_init = 0, 1, 0.1
    torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()

    objective_functions.add(Objective.Lagrange.TRACK_MUSCLES_CONTROL,
                            weight=0.001,
                            target=excitations_ref)

    if use_residual_torque:
        objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=10)

    if kin_data_to_track == "markers":
        objective_functions.add(Objective.Lagrange.TRACK_MARKERS,
                                weight=1,
                                target=marker_ref)

    elif kin_data_to_track == "q":
        objective_functions.add(Objective.Lagrange.TRACK_STATE,
                                weight=100,
                                target=q_ref,
                                states_idx=range(biorbd_model.nbQ()))
    else:
        raise RuntimeError("Wrong choice of kin_data_to_track")

    # Dynamics
    dynamics = DynamicsTypeList()
    if use_residual_torque:
        dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_AND_TORQUE_DRIVEN)
    else:
        dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))

    # Add muscle to the bounds
    x_bounds[0].concatenate(
        Bounds([activation_min] * biorbd_model.nbMuscles(),
               [activation_max] * biorbd_model.nbMuscles()))

    x_bounds[0].min[:, 0] = 0  # state_ekf[:, 0]
    x_bounds[0].max[:, 0] = 0  # state_ekf[:, 0]

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) +
               [0] * biorbd_model.nbMuscles())
    # x_init.add(state_ekf, interpolation=InterpolationType.EACH_FRAME)

    # Add muscle to the bounds
    u_bounds = BoundsList()
    u_init = InitialConditionsList()
    init_residual_torque = np.concatenate((np.ones(
        (biorbd_model.nbGeneralizedTorque(), n_shooting_points)) * 0.5,
                                           excitations_ref))
    if use_residual_torque:
        u_bounds.add([
            [torque_min] * biorbd_model.nbGeneralizedTorque() +
            [excitation_min] * biorbd_model.nbMuscleTotal(),
            [torque_max] * biorbd_model.nbGeneralizedTorque() +
            [excitation_max] * biorbd_model.nbMuscleTotal(),
        ])
        # u_init.add([torque_init] * biorbd_model.nbGeneralizedTorque() + [excitation_init] * biorbd_model.nbMuscleTotal())
        u_init.add(init_residual_torque,
                   interpolation=InterpolationType.EACH_FRAME)
    else:
        u_bounds.add([[excitation_min] * biorbd_model.nbMuscleTotal(),
                      [excitation_max] * biorbd_model.nbMuscleTotal()])
        u_init.add([0] * biorbd_model.nbMuscleTotal())
        # u_init.add(excitations_ref, interpolation=InterpolationType.EACH_FRAME)

    # Get initial isometric forces
    fiso = []
    for k in range(nb_mus):
        fiso.append(
            biorbd_model.muscle(k).characteristics().forceIsoMax().to_mx())

    # Define the parameter to optimize
    bound_p_iso = Bounds(min_bound=np.repeat(0.5, nb_mus + 1),
                         max_bound=np.repeat(3.5, nb_mus + 1),
                         interpolation=InterpolationType.CONSTANT)
    bound_shape_factor = Bounds(min_bound=np.repeat(-3, nb_mus),
                                max_bound=np.repeat(0, nb_mus),
                                interpolation=InterpolationType.CONSTANT)

    p_iso_init = InitialConditions(np.repeat(1, nb_mus + 1))
    initial_guess_A = InitialConditions([-3] * nb_mus)

    parameters = ParameterList()
    parameters.add(
        "p_iso",  # The name of the parameter
        modify_isometric_force,  # The function that modifies the biorbd model
        p_iso_init,
        bound_p_iso,  # The bounds
        size=nb_mus +
        1,  # The number of elements this particular parameter vector has
        fiso_init=fiso,
    )
    # parameters.add(
    #         "shape_factor",  # The name of the parameter
    #         modify_shape_factor,
    #         initial_guess_A,
    #         bound_shape_factor,  # The bounds
    #         size=nb_mus,  # The number of elements this particular parameter vector has
    # )

    # ------------- #
    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        nb_threads=nb_threads,
        use_SX=use_SX,
        # parameters=parameters,
    )
def prepare_ocp(
    biorbd_model_path,
    final_time,
    number_shooting_points,
    ode_solver,
    marker_velocity_or_displacement,
    marker_in_first_coordinates_system,
):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    nq = biorbd_model.nbQ()
    biorbd_model.markerNames()
    # Problem parameters
    torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    if marker_in_first_coordinates_system:
        coordinates_system_idx = 0
    else:
        coordinates_system_idx = -1

    if marker_velocity_or_displacement == "disp":
        objective_functions = (
            {
                "type": Objective.Lagrange.MINIMIZE_MARKERS_DISPLACEMENT,
                "coordinates_system_idx": coordinates_system_idx,
                "markers_idx": 6,
                "weight": 1000,
            },
            {
                "type": Objective.Lagrange.MINIMIZE_STATE,
                "states_idx": 6,
                "weight": -1
            },
            {
                "type": Objective.Lagrange.MINIMIZE_STATE,
                "states_idx": 7,
                "weight": -1
            },
        )
    elif marker_velocity_or_displacement == "velo":
        objective_functions = (
            {
                "type": Objective.Lagrange.MINIMIZE_MARKERS_VELOCITY,
                "markers_idx": 6,
                "weight": 1000
            },
            {
                "type": Objective.Lagrange.MINIMIZE_STATE,
                "states_idx": 6,
                "weight": -1
            },
            {
                "type": Objective.Lagrange.MINIMIZE_STATE,
                "states_idx": 7,
                "weight": -1
            },
        )
    else:
        raise RuntimeError(
            "Wrong choice of marker_velocity_or_displacement, actual value is "
            "{marker_velocity_or_displacement}, should be 'velo' or 'disp'.")

    # Dynamics
    problem_type = ProblemType.torque_driven

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)

    for i in range(nq, 2 * nq):
        X_bounds.min[i, :] = -10
        X_bounds.max[i, :] = 10

    # Initial guess
    X_init = InitialConditions([0] *
                               (biorbd_model.nbQ() + biorbd_model.nbQdot()))
    for i in range(2):
        X_init.init[i] = 1.5
    for i in range(4, 6):
        X_init.init[i] = 0.7
    for i in range(6, 8):
        X_init.init[i] = 0.6

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * biorbd_model.nbGeneralizedTorque(),
        [torque_max] * biorbd_model.nbGeneralizedTorque(),
    )
    U_init = InitialConditions([torque_init] *
                               biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        ode_solver=ode_solver,
    )
Esempio n. 17
0
def prepare_ocp(
    show_online_optim=False,
    use_symmetry=True,
):
    # --- Options --- #
    # Model path
    biorbd_model = (
        biorbd.Model("jumper2contacts.bioMod"),
        biorbd.Model("jumper1contacts.bioMod"),
    )
    nb_phases = len(biorbd_model)
    torque_min, torque_max, torque_init = -1000, 1000, 0

    # Problem parameters
    number_shooting_points = [8, 8]
    phase_time = [0.4, 0.2]

    if use_symmetry:
        q_mapping = BidirectionalMapping(
            Mapping([0, 1, 2, -1, 3, -1, 3, 4, 5, 6, 4, 5, 6], [5]),
            Mapping([0, 1, 2, 4, 7, 8, 9]))
        q_mapping = q_mapping, q_mapping
        tau_mapping = BidirectionalMapping(
            Mapping([-1, -1, -1, -1, 0, -1, 0, 1, 2, 3, 1, 2, 3], [5]),
            Mapping([4, 7, 8, 9]))
        tau_mapping = tau_mapping, tau_mapping

    else:
        q_mapping = BidirectionalMapping(
            Mapping([i for i in range(biorbd_model[0].nbQ())]),
            Mapping([i for i in range(biorbd_model[0].nbQ())]),
        )
        q_mapping = q_mapping, q_mapping
        tau_mapping = q_mapping

    # Add objective functions
    objective_functions = (
        (),
        (
            {
                "type": Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
                "weight": -1
            },
            {
                "type": Objective.Lagrange.MINIMIZE_ALL_CONTROLS,
                "weight": 1 / 100
            },
        ),
    )

    # Dynamics
    problem_type = (
        ProblemType.torque_driven_with_contact,
        ProblemType.torque_driven_with_contact,
    )

    constraints_first_phase = []
    constraints_second_phase = []

    contact_axes = (1, 2, 4, 5)
    for i in contact_axes:
        constraints_first_phase.append({
            "type": Constraint.CONTACT_FORCE_GREATER_THAN,
            "instant": Instant.ALL,
            "idx": i,
            "boundary": 0,
        })
    contact_axes = (1, 3)
    for i in contact_axes:
        constraints_second_phase.append({
            "type": Constraint.CONTACT_FORCE_GREATER_THAN,
            "instant": Instant.ALL,
            "idx": i,
            "boundary": 0,
        })
    constraints_first_phase.append({
        "type": Constraint.NON_SLIPPING,
        "instant": Instant.ALL,
        "normal_component_idx": (1, 2, 4, 5),
        "tangential_component_idx": (0, 3),
        "static_friction_coefficient": 0.5,
    })
    constraints_second_phase.append({
        "type": Constraint.NON_SLIPPING,
        "instant": Instant.ALL,
        "normal_component_idx": (1, 3),
        "tangential_component_idx": (0, 2),
        "static_friction_coefficient": 0.5,
    })
    if not use_symmetry:
        first_dof = (3, 4, 7, 8, 9)
        second_dof = (5, 6, 10, 11, 12)
        coeff = (-1, 1, 1, 1, 1)
        for i in range(len(first_dof)):
            constraints_first_phase.append({
                "type": Constraint.PROPORTIONAL_STATE,
                "instant": Instant.ALL,
                "first_dof": first_dof[i],
                "second_dof": second_dof[i],
                "coef": coeff[i],
            })

        for i in range(len(first_dof)):
            constraints_second_phase.append({
                "type": Constraint.PROPORTIONAL_STATE,
                "instant": Instant.ALL,
                "first_dof": first_dof[i],
                "second_dof": second_dof[i],
                "coef": coeff[i],
            })
    constraints = (constraints_first_phase, constraints_second_phase)

    # Path constraint
    if use_symmetry:
        nb_q = q_mapping[0].reduce.len
        nb_qdot = nb_q
        pose_at_first_node = [0, 0, -0.5336, 1.4, 0.8, -0.9, 0.47]
    else:
        nb_q = q_mapping[0].reduce.len
        nb_qdot = nb_q
        pose_at_first_node = [
            0,
            0,
            -0.5336,
            0,
            1.4,
            0,
            1.4,
            0.8,
            -0.9,
            0.47,
            0.8,
            -0.9,
            0.47,
        ]

    # Initialize X_bounds
    X_bounds = [
        QAndQDotBounds(biorbd_model[i], all_generalized_mapping=q_mapping[i])
        for i in range(nb_phases)
    ]
    X_bounds[0].first_node_min = pose_at_first_node + [0] * nb_qdot
    X_bounds[0].first_node_max = pose_at_first_node + [0] * nb_qdot

    # Initial guess
    X_init = [
        InitialConditions(pose_at_first_node + [0] * nb_qdot),
        InitialConditions(pose_at_first_node + [0] * nb_qdot),
    ]

    # Define control path constraint
    U_bounds = [
        Bounds(min_bound=[torque_min] * tau_m.reduce.len,
               max_bound=[torque_max] * tau_m.reduce.len)
        for tau_m in tau_mapping
    ]

    U_init = [
        InitialConditions([torque_init] * tau_m.reduce.len)
        for tau_m in tau_mapping
    ]
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        phase_time,
        objective_functions,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        constraints,
        q_mapping=q_mapping,
        q_dot_mapping=q_mapping,
        tau_mapping=tau_mapping,
        show_online_optim=show_online_optim,
    )
Esempio n. 18
0
def prepare_ocp(
    biorbd_model,
    final_time,
    nb_shooting,
    markers_ref,
    excitations_ref,
    q_ref,
    with_residual_torque,
    kin_data_to_track="markers",
):
    # Problem parameters
    torque_min, torque_max, torque_init = -100, 100, 0
    activation_min, activation_max, activation_init = 0, 1, 0.5
    excitation_min, excitation_max, excitation_init = 0, 1, 0.5

    # Add objective functions
    objective_functions = [
        {"type": Objective.Lagrange.TRACK_MUSCLES_CONTROL, "weight": 1, "data_to_track": excitations_ref},
    ]
    if with_residual_torque:
        objective_functions.append({"type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 1})
    if kin_data_to_track == "markers":
        objective_functions.append(
            {"type": Objective.Lagrange.TRACK_MARKERS, "weight": 100, "data_to_track": markers_ref},
        )
    elif kin_data_to_track == "q":
        objective_functions.append(
            {
                "type": Objective.Lagrange.TRACK_STATE,
                "weight": 100,
                "data_to_track": q_ref,
                "states_idx": range(biorbd_model.nbQ()),
            },
        )
    else:
        raise RuntimeError("Wrong choice of kin_data_to_track")

    # Dynamics
    if with_residual_torque:
        variable_type = ProblemType.muscle_excitations_and_torque_driven
    else:
        variable_type = ProblemType.muscle_excitations_driven

    # Constraints
    constraints = ()

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)
    # Due to unpredictable movement of the forward dynamics that generated the movement, the bound must be larger
    X_bounds.min[[0, 1], :] = -2 * np.pi
    X_bounds.max[[0, 1], :] = 2 * np.pi

    # Add muscle to the bounds
    X_bounds.concatenate(
        Bounds([activation_min] * biorbd_model.nbMuscles(), [activation_max] * biorbd_model.nbMuscles())
    )

    # Initial guess
    X_init = InitialConditions([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) + [0] * biorbd_model.nbMuscles())

    # Define control path constraint
    if with_residual_torque:
        U_bounds = Bounds(
            [torque_min] * biorbd_model.nbGeneralizedTorque() + [excitation_min] * biorbd_model.nbMuscles(),
            [torque_max] * biorbd_model.nbGeneralizedTorque() + [excitation_max] * biorbd_model.nbMuscles(),
        )
        U_init = InitialConditions(
            [torque_init] * biorbd_model.nbGeneralizedTorque() + [excitation_init] * biorbd_model.nbMuscles()
        )
    else:
        U_bounds = Bounds([excitation_min] * biorbd_model.nbMuscles(), [excitation_max] * biorbd_model.nbMuscles(),)
        U_init = InitialConditions([excitation_init] * biorbd_model.nbMuscles())
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        variable_type,
        nb_shooting,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
    )
def prepare_ocp(biorbd_model_path="cubeSym.bioMod",
                show_online_optim=False,
                ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    number_shooting_points = 30
    final_time = 2
    torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = {
        "type": Objective.Lagrange.MINIMIZE_TORQUE,
        "weight": 100
    }

    # Dynamics
    variable_type = ProblemType.torque_driven

    # Constraints
    constraints = (
        {
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.START,
            "first_marker": 0,
            "second_marker": 1,
        },
        {
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.END,
            "first_marker": 0,
            "second_marker": 2,
        },
        {
            "type": Constraint.PROPORTIONAL_STATE,
            "instant": Instant.ALL,
            "first_dof": 2,
            "second_dof": 3,
            "coef": -1,
        },
    )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)
    for i in range(4, 8):
        X_bounds.first_node_min[i] = 0
        X_bounds.last_node_min[i] = 0
        X_bounds.first_node_max[i] = 0
        X_bounds.last_node_max[i] = 0

    # Initial guess
    X_init = InitialConditions([0] *
                               (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * biorbd_model.nbQ(),
        [torque_max] * biorbd_model.nbQ(),
    )
    U_init = InitialConditions([torque_init] * biorbd_model.nbQ())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        variable_type,
        number_shooting_points,
        final_time,
        objective_functions,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        constraints,
        ode_solver=ode_solver,
        show_online_optim=show_online_optim,
    )
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points,
                ode_solver, initialize_near_solution):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = {
        "type": Objective.Lagrange.MINIMIZE_TORQUE,
        "weight": 100
    }

    # Dynamics
    problem_type = ProblemType.torque_driven

    # Constraints
    constraints = (
        {
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.START,
            "first_marker_idx": 0,
            "second_marker_idx": 4,
        },
        {
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.END,
            "first_marker_idx": 0,
            "second_marker_idx": 5,
        },
        {
            "type": Constraint.ALIGN_MARKER_WITH_SEGMENT_AXIS,
            "instant": Instant.ALL,
            "marker_idx": 1,
            "segment_idx": 2,
            "axis": (Axe.X),
        },
    )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)

    for i in range(1, 8):
        if i != 3:
            X_bounds.min[i, [0, -1]] = 0
            X_bounds.max[i, [0, -1]] = 0
    X_bounds.min[2, -1] = 1.57
    X_bounds.max[2, -1] = 1.57

    # Initial guess
    X_init = InitialConditions([0] *
                               (biorbd_model.nbQ() + biorbd_model.nbQdot()))
    if initialize_near_solution:
        for i in range(2):
            X_init.init[i] = 1.5
        for i in range(4, 6):
            X_init.init[i] = 0.7
        for i in range(6, 8):
            X_init.init[i] = 0.6

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * biorbd_model.nbGeneralizedTorque(),
        [torque_max] * biorbd_model.nbGeneralizedTorque(),
    )
    U_init = InitialConditions([torque_init] *
                               biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
    )
def prepare_ocp(biorbd_model_path="../models/BrasViolon.bioMod"):
    """
    Mix .bioMod and users data to call OptimalControlProgram constructor.
    :param biorbd_model_path: path to the .bioMod file.
    :param show_online_optim: bool which active live plot function.
    :return: OptimalControlProgram object.
    """
    optimal_initial_values = False
    nb_phases = 2

    biorbd_model = []
    objective_functions = ObjectiveList()
    dynamics = DynamicsTypeList()
    constraints = ConstraintList()
    x_bounds = BoundsList()
    u_bounds = BoundsList()
    x_init = InitialConditionsList()
    u_init = InitialConditionsList()

    # --- Options --- #
    number_shooting_points = [20] * nb_phases
    final_time = [1] * nb_phases

    muscle_activated_init, muscle_fatigued_init, muscle_resting_init = 0, 0, 1
    torque_min, torque_max, torque_init = -10, 10, 0
    muscle_states_min, muscle_states_max = 0, 1

    # --- Aliasing --- #
    model_tp = biorbd.Model(biorbd_model_path)
    n_q = model_tp.nbQ()
    n_qdot = model_tp.nbQdot()
    n_tau = model_tp.nbGeneralizedTorque()
    n_mus = model_tp.nbMuscles()
    violon_string = Violin("G")
    inital_bow_side = Bow("frog")

    # --- External forces --- #
    external_forces = [
        np.repeat(violon_string.external_force[:, np.newaxis], number_shooting_points[0], axis=1)
    ] * nb_phases

    for idx_phase in range(nb_phases):

        biorbd_model.append(biorbd.Model(biorbd_model_path))

        # --- Objective --- #
        objective_functions.add(Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL, weight=1, phase=idx_phase)
        objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=1, phase=idx_phase)
        objective_functions.add(
            Objective.Lagrange.ALIGN_SEGMENT_WITH_CUSTOM_RT,
            weight=1,
            segment_idx=Bow.segment_idx,
            rt_idx=violon_string.rt_on_string,
            phase=idx_phase,
        )
        objective_functions.add(
            Objective.Lagrange.MINIMIZE_TORQUE, controls_idx=[0, 1, 2, 3], weight=10, phase=idx_phase
        )

        # --- Dynamics --- #
        dynamics.add(xia.xia_model_configuration, dynamic_function=xia.xia_model_dynamic)

        # --- Constraints --- #
        if idx_phase == 0:
            constraints.add(
                Constraint.ALIGN_MARKERS,
                instant=Instant.START,
                min_bound=-0.00001,
                max_bound=0.00001,
                first_marker_idx=Bow.frog_marker,
                second_marker_idx=violon_string.bridge_marker,
                phase=idx_phase,
            )
        constraints.add(
            Constraint.ALIGN_MARKERS,
            instant=Instant.MID,
            min_bound=-0.00001,
            max_bound=0.00001,
            first_marker_idx=Bow.tip_marker,
            second_marker_idx=violon_string.bridge_marker,
            phase=idx_phase,
        )
        constraints.add(
            Constraint.ALIGN_MARKERS,
            instant=Instant.END,
            min_bound=-0.00001,
            max_bound=0.00001,
            first_marker_idx=Bow.frog_marker,
            second_marker_idx=violon_string.bridge_marker,
            phase=idx_phase,
        )
        # constraints.add(
        #     Constraint.ALIGN_SEGMENT_WITH_CUSTOM_RT,
        #     instant=Instant.ALL,
        #     min_bound=-0.00001,
        #     max_bound=0.00001,
        #     segment_idx=Bow.segment_idx,
        #     rt_idx=violon_string.rt_on_string,
        #     phase=idx_phase,
        # )
        # constraints.add(
        #     Constraint.ALIGN_MARKER_WITH_SEGMENT_AXIS,
        #     instant=Instant.ALL,
        #     min_bound=-0.00001,
        #     max_bound=0.00001,
        #     marker_idx=violon_string.bridge_marker,
        #     segment_idx=Bow.segment_idx,
        #     axis=(Axe.Y),
        #     phase=idx_phase,
        # )
        constraints.add(
            Constraint.ALIGN_MARKERS,
            instant=Instant.ALL,
            first_marker_idx=Bow.contact_marker,
            second_marker_idx=violon_string.bridge_marker,
            phase=idx_phase,
            # TODO: add constraint about velocity in a marker of bow (start and end instant)
        )

        # --- Path constraints --- #
        x_bounds.add(QAndQDotBounds(biorbd_model[0]), phase=idx_phase)

        # Start and finish with zero velocity
        if idx_phase == 0:
            x_bounds[idx_phase][n_q :, 0] = 0
        if idx_phase == nb_phases - 1:
            x_bounds[idx_phase][n_q :, -1] = 0

        muscle_states_bounds = Bounds(
            [muscle_states_min] * n_mus * 3,
            [muscle_states_max] * n_mus * 3,
        )
        if idx_phase == 0:
            # fatigued_fibers = activated_fibers = 0 and resting_fibers = 1 at start
            muscle_states_bounds[:2 * n_mus, 0] = 0
            muscle_states_bounds[2 * n_mus:, 0] = 1
        x_bounds[idx_phase].concatenate(muscle_states_bounds)

        u_bounds.add(
            [[torque_min] * n_tau + [muscle_states_min] * n_mus, [torque_max] * n_tau + [muscle_states_max] * n_mus],
            phase=idx_phase,
        )

        # --- Initial guess --- #
        if optimal_initial_values:
            # TODO: Fix this part (avoid using .bio)
            raise NotImplementedError("optimal_initial_values = True should be reviewed")
            if idx_phase == 0:
                with open(f"utils/optimal_init_{number_shooting_points[0]}_nodes_constr_first.bio", "rb") as file:
                    dict = pickle.load(file)
            else:
                with open(f"utils/optimal_init_{number_shooting_points[0]}_nodes_constr_first.bio", "rb") as file:
                    dict = pickle.load(file)

            x_init.add(dict["states"], interpolation=InterpolationType.EACH_FRAME, phase=idx_phase)
            u_init.add(dict["controls"], interpolation=InterpolationType.EACH_FRAME, phase=idx_phase)

        else:
            # TODO: x_init could be a LINEAR from frog to tip
            x_init.add(
                violon_string.initial_position()[inital_bow_side.side] + [0] * n_qdot,
                interpolation=InterpolationType.CONSTANT,
                phase=idx_phase,
            )
            muscle_states_init = InitialConditions(
                [muscle_activated_init] * n_mus + [muscle_fatigued_init] * n_mus + [muscle_resting_init] * n_mus,
                interpolation=InterpolationType.CONSTANT,
            )
            x_init[idx_phase].concatenate(muscle_states_init)

            u_init.add(
                [torque_init] * n_tau + [muscle_activated_init] * n_mus,
                interpolation=InterpolationType.CONSTANT,
                phase=idx_phase,
            )
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        external_forces=external_forces,
        ode_solver=OdeSolver.RK,
        nb_threads=4,
    )
Esempio n. 22
0
def prepare_ocp(
    model_path,
    phase_time,
    number_shooting_points,
    muscle_activations_ref,
    contact_forces_ref,
):
    # Model path
    biorbd_model = biorbd.Model(model_path)
    torque_min, torque_max, torque_init = -500, 500, 0
    activation_min, activation_max, activation_init = 0, 1, 0.5

    # Add objective functions
    objective_functions = (
        {
            "type": Objective.Lagrange.TRACK_MUSCLES_CONTROL,
            "weight": 1,
            "data_to_track": muscle_activations_ref
        },
        {
            "type": Objective.Lagrange.TRACK_CONTACT_FORCES,
            "weight": 1,
            "data_to_track": contact_forces_ref
        },
    )

    # Dynamics
    problem_type = ProblemType.muscles_activations_and_torque_driven_with_contact

    # Constraints
    constraints = ()

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    pose_at_first_node = [0, 0, -0.75, 0.75]

    # Initialize X_bounds
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.min[:, 0] = pose_at_first_node + [0] * nb_qdot
    X_bounds.max[:, 0] = pose_at_first_node + [0] * nb_qdot

    # Initial guess
    X_init = [InitialConditions(pose_at_first_node + [0] * nb_qdot)]

    # Define control path constraint
    U_bounds = [
        Bounds(
            min_bound=[torque_min] * biorbd_model.nbGeneralizedTorque() +
            [activation_min] * biorbd_model.nbMuscleTotal(),
            max_bound=[torque_max] * biorbd_model.nbGeneralizedTorque() +
            [activation_max] * biorbd_model.nbMuscleTotal(),
        )
    ]
    U_init = [
        InitialConditions([torque_init] * biorbd_model.nbGeneralizedTorque() +
                          [activation_init] * biorbd_model.nbMuscleTotal())
    ]

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        phase_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions=objective_functions,
        constraints=constraints,
    )
    def prepare_ocp(biorbd_model,
                    final_time,
                    number_shooting_points,
                    marker_ref,
                    excitations_ref,
                    q_ref,
                    state_init,
                    use_residual_torque,
                    activation_driven,
                    kin_data_to_track,
                    nb_threads,
                    use_SX=True,
                    param=False):

        # --- Options --- #
        nb_mus = biorbd_model.nbMuscleTotal()
        activation_min, activation_max, activation_init = 0, 1, 0.3
        excitation_min, excitation_max, excitation_init = 0, 1, 0.1
        torque_min, torque_max, torque_init = -100, 100, 0

        # -- Force iso ipopt pour acados
        # if param is not True:
        #     fiso = []
        #     for k in range(nb_mus):
        #         fiso.append(biorbd_model.muscle(k).characteristics().forceIsoMax().to_mx())
        #     mat_content = sio.loadmat("./results/param_f_iso_flex.mat")
        #     f_iso = mat_content["f_iso"] * mat_content["f_iso_global"]
        #     for k in range(biorbd_model.nbMuscles()):
        #         biorbd_model.muscle(k).characteristics().setForceIsoMax(
        #             f_iso[k] * fiso[k]
        #         )

        # Add objective functions
        objective_functions = ObjectiveList()

        objective_functions.add(Objective.Lagrange.TRACK_MUSCLES_CONTROL,
                                weight=10,
                                target=excitations_ref)

        objective_functions.add(Objective.Lagrange.MINIMIZE_STATE, weight=0.01)

        if use_residual_torque:
            objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE,
                                    weight=1)

        if kin_data_to_track == "markers":
            objective_functions.add(
                Objective.Lagrange.TRACK_MARKERS,
                weight=1000,
                target=marker_ref[:, -biorbd_model.nbMarkers():, :])

        elif kin_data_to_track == "q":
            objective_functions.add(
                Objective.Lagrange.TRACK_STATE,
                weight=100,
                # target=q_ref,
                # states_idx=range(biorbd_model.nbQ())
            )
        else:
            raise RuntimeError("Wrong choice of kin_data_to_track")

        # Dynamics
        dynamics = DynamicsTypeList()
        if use_residual_torque:
            dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN)
        elif activation_driven:
            dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_DRIVEN)
        else:
            dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_DRIVEN)

        # Constraints
        constraints = ()

        # Path constraint
        x_bounds = BoundsList()
        x_bounds.add(QAndQDotBounds(biorbd_model))
        if use_SX:
            x_bounds[0].min[:, 0] = np.concatenate(
                (state_init[6:biorbd_model.nbQ() + 6,
                            0], state_init[biorbd_model.nbQ() + 12:-nb_mus,
                                           0]))
            x_bounds[0].max[:, 0] = np.concatenate(
                (state_init[6:biorbd_model.nbQ() + 6,
                            0], state_init[biorbd_model.nbQ() + 12:-nb_mus,
                                           0]))

        # Add muscle to the bounds
        if activation_driven is not True:
            x_bounds[0].concatenate(
                Bounds([activation_min] * biorbd_model.nbMuscles(),
                       [activation_max] * biorbd_model.nbMuscles()))

        # Initial guess
        x_init = InitialConditionsList()
        if activation_driven:
            # state_base = np.ndarray((12, n_shooting_points+1))
            # for i in range(n_shooting_points+1):
            #     state_base[:, i] = np.concatenate((state_init[:6, 0], np.zeros((6))))
            x_init.add(np.concatenate(
                (state_init[6:biorbd_model.nbQ() + 6, :],
                 state_init[biorbd_model.nbQ() + 12:-nb_mus, :])),
                       interpolation=InterpolationType.EACH_FRAME)
            # x_init.add(state_init[:-nb_mus, :], interpolation=InterpolationType.EACH_FRAME)
        else:
            # x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) + [0] * biorbd_model.nbMuscles())
            x_init.add(state_init[biorbd_model.nbQ():, :],
                       interpolation=InterpolationType.EACH_FRAME)

        # Add muscle to the bounds
        u_bounds = BoundsList()
        u_init = InitialConditionsList()
        nb_tau = 6
        # init_residual_torque = np.concatenate((np.ones((biorbd_model.nbGeneralizedTorque(), n_shooting_points))*0.5,
        #                                        excitations_ref))
        if use_residual_torque:
            u_bounds.add([
                [torque_min] * biorbd_model.nbGeneralizedTorque() +
                [excitation_min] * biorbd_model.nbMuscleTotal(),
                [torque_max] * biorbd_model.nbGeneralizedTorque() +
                [excitation_max] * biorbd_model.nbMuscleTotal(),
            ])
            u_init.add([torque_init] * biorbd_model.nbGeneralizedTorque() +
                       [excitation_init] * biorbd_model.nbMuscleTotal())
            # u_init.add(init_residual_torque, interpolation=InterpolationType.EACH_FRAME)

        else:
            u_bounds.add([[excitation_min] * biorbd_model.nbMuscleTotal(),
                          [excitation_max] * biorbd_model.nbMuscleTotal()])
            if activation_driven:
                # u_init.add([activation_init] * biorbd_model.nbMuscleTotal())
                u_init.add(excitations_ref,
                           interpolation=InterpolationType.EACH_FRAME)
            else:
                # u_init.add([excitation_init] * biorbd_model.nbMuscleTotal())
                u_init.add(excitations_ref,
                           interpolation=InterpolationType.EACH_FRAME)

        # Get initial isometric forces
        fiso = []
        for k in range(nb_mus):
            fiso.append(
                biorbd_model.muscle(k).characteristics().forceIsoMax().to_mx())

        # Define the parameter to optimize
        bound_p_iso = Bounds(
            # min_bound=np.repeat(0.75, nb_mus), max_bound=np.repeat(3, nb_mus), interpolation=InterpolationType.CONSTANT)
            min_bound=[0.5] * nb_mus + [0.75],
            max_bound=[3.5] * nb_mus + [3],
            interpolation=InterpolationType.CONSTANT)
        bound_shape_factor = Bounds(min_bound=np.repeat(-3, nb_mus),
                                    max_bound=np.repeat(0, nb_mus),
                                    interpolation=InterpolationType.CONSTANT)

        p_iso_init = InitialConditions([1] * nb_mus + [2])
        initial_guess_A = InitialConditions([-3] * nb_mus)

        parameters = ParameterList()
        parameters.add(
            "p_iso",  # The name of the parameter
            modify_isometric_force,  # The function that modifies the biorbd model
            p_iso_init,
            bound_p_iso,  # The bounds
            size=nb_mus +
            1,  # The number of elements this particular parameter vector has
            fiso_init=fiso,
        )
        # parameters.add(
        #         "shape_factor",  # The name of the parameter
        #         modify_shape_factor,
        #         initial_guess_A,
        #         bound_shape_factor,  # The bounds
        #         size=nb_mus,  # The number of elements this particular parameter vector has
        # )

        # ------------- #
        return OptimalControlProgram(
            biorbd_model,
            dynamics,
            number_shooting_points,
            final_time,
            x_init,
            u_init,
            x_bounds,
            u_bounds,
            objective_functions,
            nb_threads=nb_threads,
            use_SX=use_SX,
            # parameters=parameters
        )
def prepare_ocp(model_path, phase_time, number_shooting_points, mu):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(model_path)
    torque_min, torque_max, torque_init = -500, 500, 0
    tau_mapping = BidirectionalMapping(Mapping([-1, -1, -1, 0]), Mapping([3]))

    # Add objective functions
    objective_functions = ({"type": Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT, "weight": -1},)

    # Dynamics
    problem_type = ProblemType.torque_driven_with_contact

    # Constraints
    constraints = (
        {
            "type": Constraint.CONTACT_FORCE_INEQUALITY,
            "direction": "GREATER_THAN",
            "instant": Instant.ALL,
            "contact_force_idx": 1,
            "boundary": 0,
        },
        {
            "type": Constraint.CONTACT_FORCE_INEQUALITY,
            "direction": "GREATER_THAN",
            "instant": Instant.ALL,
            "contact_force_idx": 2,
            "boundary": 0,
        },
        {
            "type": Constraint.NON_SLIPPING,
            "instant": Instant.ALL,
            "normal_component_idx": (1, 2),
            "tangential_component_idx": 0,
            "static_friction_coefficient": mu,
        },
    )

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    pose_at_first_node = [0, 0, -0.5, 0.5]

    # Initialize X_bounds
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.min[:, 0] = pose_at_first_node + [0] * nb_qdot
    X_bounds.max[:, 0] = pose_at_first_node + [0] * nb_qdot

    # Initial guess
    X_init = InitialConditions(pose_at_first_node + [0] * nb_qdot)

    # Define control path constraint
    U_bounds = Bounds(min_bound=[torque_min] * tau_mapping.reduce.len, max_bound=[torque_max] * tau_mapping.reduce.len)

    U_init = InitialConditions([torque_init] * tau_mapping.reduce.len)
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        phase_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
        tau_mapping=tau_mapping,
    )
def prepare_ocp(model_path, phase_time, number_shooting_points, direction,
                boundary):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(model_path)
    torque_min, torque_max, torque_init = -500, 500, 0
    activation_min, activation_max, activation_init = 0, 1, 0.5
    tau_mapping = BidirectionalMapping(Mapping([-1, -1, -1, 0]), Mapping([3]))

    # Add objective functions
    objective_functions = ({
        "type": Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
        "weight": -1
    }, )

    # Dynamics
    problem_type = ProblemType.muscle_excitations_and_torque_driven_with_contact

    # Constraints
    constraints = (
        {
            "type": Constraint.CONTACT_FORCE_INEQUALITY,
            "direction": direction,
            "instant": Instant.ALL,
            "contact_force_idx": 1,
            "boundary": boundary,
        },
        {
            "type": Constraint.CONTACT_FORCE_INEQUALITY,
            "direction": direction,
            "instant": Instant.ALL,
            "contact_force_idx": 2,
            "boundary": boundary,
        },
    )

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    nb_mus = biorbd_model.nbMuscleTotal()
    pose_at_first_node = [0, 0, -0.75, 0.75]

    # Initialize X_bounds
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.concatenate(
        Bounds([activation_min] * nb_mus, [activation_max] * nb_mus))
    X_bounds.min[:, 0] = pose_at_first_node + [0] * nb_qdot + [0.5] * nb_mus
    X_bounds.max[:, 0] = pose_at_first_node + [0] * nb_qdot + [0.5] * nb_mus

    # Initial guess
    X_init = [
        InitialConditions(pose_at_first_node + [0] * nb_qdot + [0.5] * nb_mus)
    ]

    # Define control path constraint
    U_bounds = [
        Bounds(
            min_bound=[torque_min] * tau_mapping.reduce.len +
            [activation_min] * biorbd_model.nbMuscleTotal(),
            max_bound=[torque_max] * tau_mapping.reduce.len +
            [activation_max] * biorbd_model.nbMuscleTotal(),
        )
    ]

    U_init = [
        InitialConditions([torque_init] * tau_mapping.reduce.len +
                          [activation_init] * biorbd_model.nbMuscleTotal())
    ]
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        phase_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions=objective_functions,
        constraints=constraints,
        tau_mapping=tau_mapping,
    )
Esempio n. 26
0
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points, min_g,
                max_g, target_g):
    # --- Options --- #
    biorbd_model = biorbd.Model(biorbd_model_path)
    tau_min, tau_max, tau_init = -30, 30, 0
    n_q = biorbd_model.nbQ()
    n_qdot = biorbd_model.nbQdot()
    n_tau = biorbd_model.nbGeneralizedTorque()

    # Add objective functions
    objective_functions = ObjectiveOption(Objective.Lagrange.MINIMIZE_TORQUE,
                                          weight=10)

    # Dynamics
    dynamics = DynamicsTypeOption(DynamicsType.TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsOption(QAndQDotBounds(biorbd_model))
    x_bounds.min[:, [0, -1]] = 0
    x_bounds.max[:, [0, -1]] = 0
    x_bounds.min[1, -1] = 3.14
    x_bounds.max[1, -1] = 3.14

    # Initial guess
    x_init = InitialConditionsOption([0] * (n_q + n_qdot))

    # Define control path constraint
    u_bounds = BoundsOption([[tau_min] * n_tau, [tau_max] * n_tau])
    u_bounds.min[1, :] = 0
    u_bounds.max[1, :] = 0

    u_init = InitialConditionsOption([tau_init] * n_tau)

    # Define the parameter to optimize
    # Give the parameter some min and max bounds
    parameters = ParameterList()
    bound_gravity = Bounds(min_bound=min_g,
                           max_bound=max_g,
                           interpolation=InterpolationType.CONSTANT)
    # and an initial condition
    initial_gravity = InitialConditions((min_g + max_g) / 2)
    parameter_objective_functions = ObjectiveOption(
        my_target_function,
        weight=10,
        quadratic=True,
        custom_type=Objective.Parameter,
        target_value=target_g)
    parameters.add(
        "gravity_z",  # The name of the parameter
        my_parameter_function,  # The function that modifies the biorbd model
        initial_gravity,  # The initial guess
        bound_gravity,  # The bounds
        size=1,  # The number of elements this particular parameter vector has
        penalty_list=
        parameter_objective_functions,  # Objective of constraint for this particular parameter
        extra_value=1,  # You can define as many extra arguments as you want
    )

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        parameters=parameters,
    )
Esempio n. 27
0
def prepare_ocp(biorbd_model_path="HandSpinner.bioMod"):
    end_crank_idx = 0
    hand_marker_idx = 18

    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    torque_min, torque_max, torque_init = -100, 100, 0
    muscle_min, muscle_max, muscle_init = 0, 1, 0.5

    # Problem parameters
    number_shooting_points = 30
    final_time = 1.5

    # Add objective functions
    objective_functions = (
        {
            "type": Objective.Lagrange.MINIMIZE_MARKERS_DISPLACEMENT,
            "weight": 1,
            "markers_idx": hand_marker_idx
        },
        {
            "type": Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL,
            "weight": 1
        },
        {
            "type": Objective.Lagrange.MINIMIZE_TORQUE,
            "weight": 1
        },
    )

    # Dynamics
    problem_type = ProblemType.muscle_activations_and_torque_driven

    # Constraints
    constraints = (
        {
            "type": Constraint.ALIGN_MARKERS,
            "first_marker_idx": hand_marker_idx,
            "second_marker_idx": end_crank_idx,
            "instant": Instant.ALL,
        },
        {
            "type": Constraint.TRACK_STATE,
            "instant": Instant.ALL,
            "states_idx": 0,
            "data_to_track": np.linspace(0, 2 * np.pi,
                                         number_shooting_points + 1),
        },
    )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)

    # Initial guess
    X_init = InitialConditions([0, -0.9, 1.7, 0.9, 2.0, -1.3] +
                               [0] * biorbd_model.nbQdot())

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * biorbd_model.nbGeneralizedTorque() +
        [muscle_min] * biorbd_model.nbMuscleTotal(),
        [torque_max] * biorbd_model.nbGeneralizedTorque() +
        [muscle_max] * biorbd_model.nbMuscleTotal(),
    )

    U_init = InitialConditions([torque_init] *
                               biorbd_model.nbGeneralizedTorque() +
                               [muscle_init] * biorbd_model.nbMuscleTotal())
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
        is_cyclic_objective=True,
    )
Esempio n. 28
0
def prepare_ocp(biorbd_model_path,
                number_shooting_points,
                final_time,
                loop_from_constraint,
                ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = [{
        "type": Objective.Lagrange.MINIMIZE_TORQUE,
        "weight": 100
    }]

    # Dynamics
    problem_type = ProblemType.torque_driven

    # Constraints
    constraints = (
        {
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.MID,
            "first_marker_idx": 0,
            "second_marker_idx": 2,
        },
        {
            "type": Constraint.TRACK_STATE,
            "instant": Instant.MID,
            "states_idx": 2,
        },
        {
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.END,
            "first_marker_idx": 0,
            "second_marker_idx": 1,
        },
    )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.min[2:6, -1] = [1.57, 0, 0, 0]
    X_bounds.max[2:6, -1] = [1.57, 0, 0, 0]

    # Initial guess
    X_init = InitialConditions([0] *
                               (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * biorbd_model.nbGeneralizedTorque(),
        [torque_max] * biorbd_model.nbGeneralizedTorque(),
    )
    U_init = InitialConditions([torque_init] *
                               biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
        is_cyclic_objective=not loop_from_constraint,
        is_cyclic_constraint=loop_from_constraint,
    )
def prepare_ocp(biorbd_model_path="cube.bioMod",
                show_online_optim=False,
                ode_solver=OdeSolver.RK,
                long_optim=False):
    # --- Options --- #
    # Model path
    biorbd_model = (biorbd.Model(biorbd_model_path),
                    biorbd.Model(biorbd_model_path))

    # Problem parameters
    if long_optim:
        number_shooting_points = (100, 1000)
    else:
        number_shooting_points = (20, 30)
    final_time = (2, 5)
    torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = (
        ({
            "type": Objective.Lagrange.MINIMIZE_TORQUE,
            "weight": 100
        }, ),
        ({
            "type": Objective.Lagrange.MINIMIZE_TORQUE,
            "weight": 100
        }, ),
    )

    # Dynamics
    variable_type = (ProblemType.torque_driven, ProblemType.torque_driven)

    # Constraints
    constraints = (
        (
            {
                "type": Constraint.ALIGN_MARKERS,
                "instant": Instant.START,
                "first_marker": 0,
                "second_marker": 1,
            },
            {
                "type": Constraint.ALIGN_MARKERS,
                "instant": Instant.END,
                "first_marker": 0,
                "second_marker": 2,
            },
        ),
        ({
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.END,
            "first_marker": 0,
            "second_marker": 1,
        }, ),
    )

    # Path constraint
    X_bounds = [
        QAndQDotBounds(biorbd_model[0]),
        QAndQDotBounds(biorbd_model[0])
    ]

    for bounds in X_bounds:
        for i in range(6):
            if i != 0 and i != 2:
                bounds.first_node_min[i] = 0
                bounds.last_node_min[i] = 0
                bounds.first_node_max[i] = 0
                bounds.last_node_max[i] = 0
    X_bounds[0].first_node_min[2] = 0.0
    X_bounds[0].first_node_max[2] = 0.0
    X_bounds[1].first_node_min[2] = 0.0
    X_bounds[1].first_node_max[2] = 0.0
    X_bounds[1].last_node_min[2] = 1.57
    X_bounds[1].last_node_max[2] = 1.57

    # Initial guess
    X_init = InitialConditions(
        [0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))

    # Define control path constraint
    U_bounds = [
        Bounds(
            [torque_min] * biorbd_model[0].nbGeneralizedTorque(),
            [torque_max] * biorbd_model[0].nbGeneralizedTorque(),
        ),
        Bounds(
            [torque_min] * biorbd_model[0].nbGeneralizedTorque(),
            [torque_max] * biorbd_model[0].nbGeneralizedTorque(),
        ),
    ]
    U_init = InitialConditions([torque_init] *
                               biorbd_model[0].nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        variable_type,
        number_shooting_points,
        final_time,
        objective_functions,
        (X_init, X_init),
        (U_init, U_init),
        X_bounds,
        U_bounds,
        constraints,
        ode_solver=ode_solver,
        show_online_optim=show_online_optim,
    )
Esempio n. 30
0
def prepare_ocp(biorbd_model_path,
                number_shooting_points,
                final_time,
                initial_guess=InterpolationType.CONSTANT):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    nq = biorbd_model.nbQ()
    nqdot = biorbd_model.nbQdot()
    ntau = biorbd_model.nbGeneralizedTorque()
    torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = {
        "type": Objective.Lagrange.MINIMIZE_TORQUE,
        "weight": 100
    }

    # Dynamics
    problem_type = ProblemType.torque_driven

    # Constraints
    constraints = (
        {
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.START,
            "first_marker_idx": 0,
            "second_marker_idx": 1,
        },
        {
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.END,
            "first_marker_idx": 0,
            "second_marker_idx": 2,
        },
    )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.min[1:6, [0, -1]] = 0
    X_bounds.max[1:6, [0, -1]] = 0
    X_bounds.min[2, -1] = 1.57
    X_bounds.max[2, -1] = 1.57

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * ntau,
        [torque_max] * ntau,
    )

    # Initial guesses
    if initial_guess == InterpolationType.CONSTANT:
        x = [0] * (nq + nqdot)
        u = [torque_init] * ntau
    elif initial_guess == InterpolationType.CONSTANT_WITH_FIRST_AND_LAST_DIFFERENT:
        x = np.array([[1.0, 0.0, 0.0, 0, 0, 0], [1.5, 0.0, 0.785, 0, 0, 0],
                      [2.0, 0.0, 1.57, 0, 0, 0]]).T
        u = np.array([[1.45, 9.81, 2.28], [0, 9.81, 0], [-1.45, 9.81,
                                                         -2.28]]).T
    elif initial_guess == InterpolationType.LINEAR:
        x = np.array([[1.0, 0.0, 0.0, 0, 0, 0], [2.0, 0.0, 1.57, 0, 0, 0]]).T
        u = np.array([[1.45, 9.81, 2.28], [-1.45, 9.81, -2.28]]).T
    elif initial_guess == InterpolationType.EACH_FRAME:
        x = np.random.random((nq + nqdot, number_shooting_points + 1))
        u = np.random.random((ntau, number_shooting_points))
    else:
        raise RuntimeError("Initial guess not implemented yet")
    X_init = InitialConditions(x, interpolation_type=initial_guess)
    U_init = InitialConditions(u, interpolation_type=initial_guess)
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
    )