def prepare_ocp(model_path, phase_time, number_shooting_points): # --- Options --- # # Model path biorbd_model = biorbd.Model(model_path) torque_min, torque_max, torque_init = -500, 500, 0 tau_mapping = BidirectionalMapping(Mapping([-1, -1, -1, 0]), Mapping([3])) # Add objective functions objective_functions = ( { "type": Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT, "weight": -1 }, { "type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 1 / 100 }, ) # Dynamics problem_type = ProblemType.torque_driven_with_contact # Constraints constraints = () # Path constraint nb_q = biorbd_model.nbQ() nb_qdot = nb_q pose_at_first_node = [0, 0, -0.5, 0.5] # Initialize X_bounds X_bounds = QAndQDotBounds(biorbd_model) X_bounds.min[:, 0] = pose_at_first_node + [0] * nb_qdot X_bounds.max[:, 0] = pose_at_first_node + [0] * nb_qdot # Initial guess X_init = InitialConditions(pose_at_first_node + [0] * nb_qdot) # Define control path constraint U_bounds = Bounds(min_bound=[torque_min] * tau_mapping.reduce.len, max_bound=[torque_max] * tau_mapping.reduce.len) U_init = InitialConditions([torque_init] * tau_mapping.reduce.len) # ------------- # return OptimalControlProgram( biorbd_model, problem_type, number_shooting_points, phase_time, X_init, U_init, X_bounds, U_bounds, objective_functions, constraints, tau_mapping=tau_mapping, )
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points): # --- Options --- # # Model path biorbd_model = biorbd.Model(biorbd_model_path) torque_min, torque_max, torque_init = -1, 1, 0 muscle_min, muscle_max, muscle_init = 0, 1, 0.5 # Add objective functions objective_functions = ( {"type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 1}, {"type": Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL, "weight": 1}, {"type": Objective.Mayer.ALIGN_MARKERS, "first_marker_idx": 0, "second_marker_idx": 5, "weight": 1,}, ) # Dynamics problem_type = ProblemType.muscle_activations_and_torque_driven # Constraints constraints = () # Path constraint X_bounds = QAndQDotBounds(biorbd_model) # Set the initial position X_bounds.min[:, 0] = (0.07, 1.4, 0, 0) X_bounds.max[:, 0] = (0.07, 1.4, 0, 0) # Initial guess X_init = InitialConditions([1.57] * biorbd_model.nbQ() + [0] * biorbd_model.nbQdot()) # Define control path constraint U_bounds = Bounds( [torque_min] * biorbd_model.nbGeneralizedTorque() + [muscle_min] * biorbd_model.nbMuscleTotal(), [torque_max] * biorbd_model.nbGeneralizedTorque() + [muscle_max] * biorbd_model.nbMuscleTotal(), ) U_init = InitialConditions( [torque_init] * biorbd_model.nbGeneralizedTorque() + [muscle_init] * biorbd_model.nbMuscleTotal() ) # ------------- # return OptimalControlProgram( biorbd_model, problem_type, number_shooting_points, final_time, X_init, U_init, X_bounds, U_bounds, objective_functions, constraints, )
def prepare_ocp(model_path, phase_time, number_shooting_points, muscle_activations_ref, contact_forces_ref): # Model path biorbd_model = biorbd.Model(model_path) tau_min, tau_max, tau_init = -500, 500, 0 activation_min, activation_max, activation_init = 0, 1, 0.5 # Add objective functions objective_functions = ObjectiveList() objective_functions.add(Objective.Lagrange.TRACK_MUSCLES_CONTROL, target=muscle_activations_ref) objective_functions.add(Objective.Lagrange.TRACK_CONTACT_FORCES, target=contact_forces_ref) # Dynamics dynamics = DynamicsTypeList() dynamics.add( DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN_WITH_CONTACT) # Path constraint nb_q = biorbd_model.nbQ() nb_qdot = nb_q pose_at_first_node = [0, 0, -0.75, 0.75] # Initialize X_bounds x_bounds = BoundsList() x_bounds.add(QAndQDotBounds(biorbd_model)) x_bounds[0].min[:, 0] = pose_at_first_node + [0] * nb_qdot x_bounds[0].max[:, 0] = pose_at_first_node + [0] * nb_qdot # Initial guess x_init = InitialConditionsList() x_init.add(pose_at_first_node + [0] * nb_qdot) # Define control path constraint u_bounds = BoundsList() u_bounds.add([ [tau_min] * biorbd_model.nbGeneralizedTorque() + [activation_min] * biorbd_model.nbMuscleTotal(), [tau_max] * biorbd_model.nbGeneralizedTorque() + [activation_max] * biorbd_model.nbMuscleTotal(), ]) u_init = InitialConditionsList() u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque() + [activation_init] * biorbd_model.nbMuscleTotal()) # ------------- # return OptimalControlProgram( biorbd_model, dynamics, number_shooting_points, phase_time, x_init, u_init, x_bounds, u_bounds, objective_functions=objective_functions, )
def prepare_ocp(biorbd_model_path, number_shooting_points, final_time, loop_from_constraint, ode_solver=OdeSolver.RK): # --- Options --- # # Model path biorbd_model = biorbd.Model(biorbd_model_path) # Problem parameters tau_min, tau_max, tau_init = -100, 100, 0 # Add objective functions objective_functions = ObjectiveOption(Objective.Lagrange.MINIMIZE_TORQUE, weight=100) # Dynamics dynamics = DynamicsTypeOption(DynamicsType.TORQUE_DRIVEN) # Constraints constraints = ConstraintList() constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.MID, first_marker_idx=0, second_marker_idx=2) constraints.add(Constraint.TRACK_STATE, instant=Instant.MID, states_idx=2) constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.END, first_marker_idx=0, second_marker_idx=1) # Path constraint x_bounds = BoundsOption(QAndQDotBounds(biorbd_model)) x_bounds.min[2:6, -1] = [1.57, 0, 0, 0] x_bounds.max[2:6, -1] = [1.57, 0, 0, 0] # Initial guess x_init = InitialConditionsOption([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot())) # Define control path constraint u_bounds = BoundsOption( [[tau_min] * biorbd_model.nbGeneralizedTorque(), [tau_max] * biorbd_model.nbGeneralizedTorque()] ) u_init = InitialConditionsOption([tau_init] * biorbd_model.nbGeneralizedTorque()) # ------------- # # A state transition loop constraint is treated as # hard penalty (constraint) if weight is <= 0 [or if no weight is provided], or # as a soft penalty (objective) otherwise state_transitions = StateTransitionList() if loop_from_constraint: state_transitions.add(StateTransition.CYCLIC, weight=0) else: state_transitions.add(StateTransition.CYCLIC, weight=10000) return OptimalControlProgram( biorbd_model, dynamics, number_shooting_points, final_time, x_init, u_init, x_bounds, u_bounds, objective_functions, constraints, ode_solver=ode_solver, state_transitions=state_transitions, )
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points, use_SX=False): # --- Options --- # # Model path biorbd_model = biorbd.Model(biorbd_model_path) tau_min, tau_max, tau_init = -1, 1, 0 muscle_min, muscle_max, muscle_init = 0, 1, 0.5 # Add objective functions objective_functions = ObjectiveList() objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE) objective_functions.add(Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL) objective_functions.add(Objective.Mayer.ALIGN_MARKERS, first_marker_idx=0, second_marker_idx=5) # Dynamics dynamics = DynamicsTypeList() dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN) # Path constraint x_bounds = BoundsList() x_bounds.add(QAndQDotBounds(biorbd_model)) x_bounds[0].min[:, 0] = (0.07, 1.4, 0, 0) x_bounds[0].max[:, 0] = (0.07, 1.4, 0, 0) # Initial guess x_init = InitialConditionsList() x_init.add([1.57] * biorbd_model.nbQ() + [0] * biorbd_model.nbQdot()) # Define control path constraint u_bounds = BoundsList() u_bounds.add([ [tau_min] * biorbd_model.nbGeneralizedTorque() + [muscle_min] * biorbd_model.nbMuscleTotal(), [tau_max] * biorbd_model.nbGeneralizedTorque() + [muscle_max] * biorbd_model.nbMuscleTotal(), ]) u_init = InitialConditionsList() u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque() + [muscle_init] * biorbd_model.nbMuscleTotal()) # ------------- # return OptimalControlProgram( biorbd_model, dynamics, number_shooting_points, final_time, x_init, u_init, x_bounds, u_bounds, objective_functions, use_SX=use_SX, )
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points, nb_threads): # --- Options --- # biorbd_model = biorbd.Model(biorbd_model_path) torque_min, torque_max, torque_init = -1000000, 1000000, 0 n_q = biorbd_model.nbQ() n_qdot = biorbd_model.nbQdot() n_tau = biorbd_model.nbGeneralizedTorque() # Add objective functions objective_functions = { "type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 100 } # Dynamics problem_type = ProblemType.torque_driven # Constraints constraints = () # Path constraint X_bounds = QAndQDotBounds(biorbd_model) X_bounds.min[:, 0] = 0 X_bounds.max[:, 0] = 0 X_bounds.min[:n_q, -1] = 1 X_bounds.max[:n_q, -1] = 1 X_bounds.min[n_q:, -1] = 0 X_bounds.max[n_q:, -1] = 0 # Initial guess X_init = InitialConditions([0] * (n_q + n_qdot)) # Define control path constraint U_bounds = Bounds(min_bound=[torque_min] * n_tau, max_bound=[torque_max] * n_tau) # Control initial guess U_init = InitialConditions([torque_init] * n_tau) # ------------- # return OptimalControlProgram( biorbd_model, problem_type, number_shooting_points, final_time, X_init, U_init, X_bounds, U_bounds, objective_functions, constraints, nb_threads=nb_threads, )
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points, nb_threads, use_SX=False): # --- Options --- # biorbd_model = biorbd.Model(biorbd_model_path) torque_min, torque_max, torque_init = -100, 100, 0 n_q = biorbd_model.nbQ() n_qdot = biorbd_model.nbQdot() n_tau = biorbd_model.nbGeneralizedTorque() data_to_track = np.zeros((number_shooting_points + 1, n_q + n_qdot)) data_to_track[:, 1] = 3.14 # Add objective functions objective_functions = ObjectiveList() objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100.0) objective_functions.add(Objective.Lagrange.MINIMIZE_STATE, weight=1.0) objective_functions.add( Objective.Mayer.MINIMIZE_STATE, weight=50000.0, target=data_to_track.T, instant=Instant.END, ) # Dynamics dynamics = DynamicsTypeList() dynamics.add(DynamicsType.TORQUE_DRIVEN) # Path constraint x_bounds = BoundsList() x_bounds.add(QAndQDotBounds(biorbd_model)) x_bounds[0].min[:, 0] = 0 x_bounds[0].max[:, 0] = 0 # Initial guess x_init = InitialConditionsList() x_init.add([0] * (n_q + n_qdot)) # Define control path constraint u_bounds = BoundsList() u_bounds.add( [[torque_min] * n_tau, [torque_max] * n_tau,] ) u_bounds[0].min[n_tau - 1, :] = 0 u_bounds[0].max[n_tau - 1, :] = 0 u_init = InitialConditionsList() u_init.add([torque_init] * n_tau) # ------------- # return OptimalControlProgram( biorbd_model, dynamics, number_shooting_points, final_time, x_init, u_init, x_bounds, u_bounds, objective_functions, nb_threads=nb_threads, use_SX=use_SX, )
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points, time_min, time_max): # --- Options --- # biorbd_model = biorbd.Model(biorbd_model_path) tau_min, tau_max, tau_init = -100, 100, 0 n_q = biorbd_model.nbQ() n_qdot = biorbd_model.nbQdot() n_tau = biorbd_model.nbGeneralizedTorque() # Add objective functions objective_functions = ObjectiveOption(Objective.Lagrange.MINIMIZE_TORQUE) # Dynamics dynamics = DynamicsTypeOption(DynamicsType.TORQUE_DRIVEN) # Constraints constraints = ConstraintOption(Constraint.TIME_CONSTRAINT, instant=Instant.END, minimum=time_min, maximum=time_max) # Path constraint x_bounds = BoundsOption(QAndQDotBounds(biorbd_model)) x_bounds.min[:, [0, -1]] = 0 x_bounds.max[:, [0, -1]] = 0 x_bounds.min[n_q - 1, -1] = 3.14 x_bounds.max[n_q - 1, -1] = 3.14 # Initial guess x_init = InitialConditionsOption([0] * (n_q + n_qdot)) # Define control path constraint u_bounds = BoundsOption([[tau_min] * n_tau, [tau_max] * n_tau]) u_bounds.min[n_tau - 1, :] = 0 u_bounds.max[n_tau - 1, :] = 0 u_init = InitialConditionsOption([tau_init] * n_tau) # ------------- # return OptimalControlProgram( biorbd_model, dynamics, number_shooting_points, final_time, x_init, u_init, x_bounds, u_bounds, objective_functions, constraints, )
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points): # --- Options --- # biorbd_model = biorbd.Model(biorbd_model_path) tau_min, tau_max, tau_init = -100, 100, 0 n_q = biorbd_model.nbQ() n_qdot = biorbd_model.nbQdot() n_tau = biorbd_model.nbGeneralizedTorque() # Add objective functions objective_functions = ObjectiveList() objective_functions.add(Objective.Mayer.MINIMIZE_TIME) # Dynamics dynamics = DynamicsTypeList() dynamics.add(DynamicsType.TORQUE_DRIVEN) # Path constraint x_bounds = BoundsList() x_bounds.add(QAndQDotBounds(biorbd_model)) x_bounds[0].min[:, [0, -1]] = 0 x_bounds[0].max[:, [0, -1]] = 0 x_bounds[0].min[n_q - 1, -1] = 3.14 x_bounds[0].max[n_q - 1, -1] = 3.14 # Initial guess x_init = InitialConditionsList() x_init.add([0] * (n_q + n_qdot)) # Define control path constraint u_bounds = BoundsList() u_bounds.add([[tau_min] * n_tau, [tau_max] * n_tau]) u_bounds[0].min[n_tau - 1, :] = 0 u_bounds[0].max[n_tau - 1, :] = 0 u_init = InitialConditionsList() u_init.add([tau_init] * n_tau) # ------------- # return OptimalControlProgram( biorbd_model, dynamics, number_shooting_points, final_time, x_init, u_init, x_bounds, u_bounds, objective_functions, )
def prepare_ocp(biorbd_model, final_time, number_shooting_points, markers_ref, tau_ref): # --- Options --- # tau_min, tau_max, tau_init = -100, 100, 0 n_q = biorbd_model.nbQ() n_qdot = biorbd_model.nbQdot() n_tau = biorbd_model.nbGeneralizedTorque() # Add objective functions objective_functions = ObjectiveList() objective_functions.add(Objective.Lagrange.TRACK_MARKERS, axis_tot_track=[Axe.Y, Axe.Z], weight=100, target=markers_ref) objective_functions.add(Objective.Lagrange.TRACK_TORQUE, target=tau_ref) # Dynamics dynamics = DynamicsTypeList() dynamics.add(DynamicsType.TORQUE_DRIVEN) # Path constraint x_bounds = BoundsList() x_bounds.add(QAndQDotBounds(biorbd_model)) x_bounds[0].min[:, 0] = 0 x_bounds[0].max[:, 0] = 0 # Initial guess x_init = InitialConditionsList() x_init.add([0] * (n_q + n_qdot)) # Define control path constraint u_bounds = BoundsList() u_bounds.add([[tau_min] * n_tau, [tau_max] * n_tau]) u_init = InitialConditionsList() u_init.add([tau_init] * n_tau) # ------------- # return OptimalControlProgram( biorbd_model, dynamics, number_shooting_points, final_time, x_init, u_init, x_bounds, u_bounds, objective_functions, )
def prepare_ocp(biorbd_model_path="cubeSym.bioMod", show_online_optim=False, ode_solver=OdeSolver.RK): # --- Options --- # # Model path biorbd_model = biorbd.Model(biorbd_model_path) # Problem parameters number_shooting_points = 30 final_time = 2 torque_min, torque_max, torque_init = -100, 100, 0 all_generalized_mapping = BidirectionalMapping(Mapping([0, 1, 2, 2], [3]), Mapping([0, 1, 2])) # Add objective functions objective_functions = {"type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 100} # Dynamics variable_type = ProblemType.torque_driven # Constraints constraints = ( {"type": Constraint.ALIGN_MARKERS, "instant": Instant.START, "first_marker": 0, "second_marker": 1,}, {"type": Constraint.ALIGN_MARKERS, "instant": Instant.END, "first_marker": 0, "second_marker": 2,}, ) # Path constraint X_bounds = QAndQDotBounds(biorbd_model, all_generalized_mapping) for i in range(3, 6): X_bounds.first_node_min[i] = 0 X_bounds.last_node_min[i] = 0 X_bounds.first_node_max[i] = 0 X_bounds.last_node_max[i] = 0 # Initial guess X_init = InitialConditions([0] * all_generalized_mapping.reduce.len * 2) # Define control path constraint U_bounds = Bounds( [torque_min] * all_generalized_mapping.reduce.len, [torque_max] * all_generalized_mapping.reduce.len, ) U_init = InitialConditions([torque_init] * all_generalized_mapping.reduce.len) # ------------- # return OptimalControlProgram( biorbd_model, variable_type, number_shooting_points, final_time, objective_functions, X_init, U_init, X_bounds, U_bounds, constraints, ode_solver=ode_solver, all_generalized_mapping=all_generalized_mapping, show_online_optim=show_online_optim, )
def prepare_ocp(biorbd_model_path, number_shooting_points, final_time, use_actuators=False, ode_solver=OdeSolver.RK): # --- Options --- # # Model path biorbd_model = biorbd.Model(biorbd_model_path) # Problem parameters if use_actuators: torque_min, torque_max, torque_init = -1, 1, 0 else: torque_min, torque_max, torque_init = -100, 100, 0 # Add objective functions objective_functions = {"type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 100} # Dynamics if use_actuators: problem_type = ProblemType.torque_activations_driven else: problem_type = ProblemType.torque_driven # Constraints constraints = ( {"type": Constraint.ALIGN_MARKERS, "instant": Instant.START, "first_marker_idx": 0, "second_marker_idx": 1,}, {"type": Constraint.ALIGN_MARKERS, "instant": Instant.END, "first_marker_idx": 0, "second_marker_idx": 2,}, ) # Path constraint X_bounds = QAndQDotBounds(biorbd_model) X_bounds.min[3:6, [0, -1]] = 0 X_bounds.max[3:6, [0, -1]] = 0 X_bounds.min[2, [0, -1]] = [0, 1.57] X_bounds.max[2, [0, -1]] = [0, 1.57] # Initial guess X_init = InitialConditions([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot())) # Define control path constraint U_bounds = Bounds( [torque_min] * biorbd_model.nbGeneralizedTorque(), [torque_max] * biorbd_model.nbGeneralizedTorque(), ) U_init = InitialConditions([torque_init] * biorbd_model.nbGeneralizedTorque()) # ------------- # return OptimalControlProgram( biorbd_model, problem_type, number_shooting_points, final_time, X_init, U_init, X_bounds, U_bounds, objective_functions, constraints, ode_solver=ode_solver, )
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points, time_min, time_max): # --- Options --- # biorbd_model = biorbd.Model(biorbd_model_path) torque_min, torque_max, torque_init = -100, 100, 0 n_q = biorbd_model.nbQ() n_qdot = biorbd_model.nbQdot() n_tau = biorbd_model.nbGeneralizedTorque() # Add objective functions objective_functions = {"type": Objective.Lagrange.MINIMIZE_TORQUE} # Dynamics problem_type = ProblemType.torque_driven # Constraints constraints = ({ "type": Constraint.TIME_CONSTRAINT, "minimum": time_min, "maximum": time_max, }, ) # Path constraint X_bounds = QAndQDotBounds(biorbd_model) X_bounds.min[:, [0, -1]] = 0 X_bounds.max[:, [0, -1]] = 0 X_bounds.min[n_q - 1, -1] = 3.14 X_bounds.max[n_q - 1, -1] = 3.14 # Initial guess X_init = InitialConditions([0] * (n_q + n_qdot)) # Define control path constraint U_bounds = Bounds(min_bound=[torque_min] * n_tau, max_bound=[torque_max] * n_tau) U_bounds.min[n_tau - 1, :] = 0 U_bounds.max[n_tau - 1, :] = 0 U_init = InitialConditions([torque_init] * n_tau) # ------------- # return OptimalControlProgram( biorbd_model, problem_type, number_shooting_points, final_time, X_init, U_init, X_bounds, U_bounds, objective_functions, constraints, )
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points): # --- Options --- # biorbd_model = biorbd.Model(biorbd_model_path) torque_min, torque_max, torque_init = -100, 100, 0 n_q = biorbd_model.nbQ() n_qdot = biorbd_model.nbQdot() n_tau = biorbd_model.nbGeneralizedTorque() # Dynamics dynamics = DynamicsTypeOption(DynamicsType.TORQUE_DRIVEN) # Path constraint x_bounds = BoundsOption(QAndQDotBounds(biorbd_model)) x_bounds.min[:, [0, -1]] = 0 x_bounds.max[:, [0, -1]] = 0 x_bounds.min[1, -1] = 3.14 x_bounds.max[1, -1] = 3.14 # Initial guess x_init = InitialConditionsOption([0] * (n_q + n_qdot)) # Define control path constraint u_bounds = BoundsOption([[torque_min] * n_tau, [torque_max] * n_tau]) u_bounds.min[n_tau - 1, :] = 0 u_bounds.max[n_tau - 1, :] = 0 u_init = InitialConditionsOption([torque_init] * n_tau) # ------------- # return OptimalControlProgram( biorbd_model, dynamics, number_shooting_points, final_time, x_init, u_init, x_bounds, u_bounds, )
def prepare_ocp(biorbd_model_path="cube.bioMod", show_online_optim=False, ode_solver=OdeSolver.RK, long_optim=False): # --- Options --- # # Model path biorbd_model = (biorbd.Model(biorbd_model_path), biorbd.Model(biorbd_model_path)) # Problem parameters if long_optim: number_shooting_points = (100, 1000) else: number_shooting_points = (20, 30) final_time = (2, 5) torque_min, torque_max, torque_init = -100, 100, 0 # Add objective functions objective_functions = ( ({ "type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 100 }, ), ({ "type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 100 }, ), ) # Dynamics variable_type = (ProblemType.torque_driven, ProblemType.torque_driven) # Constraints constraints = ( ( { "type": Constraint.ALIGN_MARKERS, "instant": Instant.START, "first_marker": 0, "second_marker": 1, }, { "type": Constraint.ALIGN_MARKERS, "instant": Instant.END, "first_marker": 0, "second_marker": 2, }, ), ({ "type": Constraint.ALIGN_MARKERS, "instant": Instant.END, "first_marker": 0, "second_marker": 1, }, ), ) # Path constraint X_bounds = [ QAndQDotBounds(biorbd_model[0]), QAndQDotBounds(biorbd_model[0]) ] for bounds in X_bounds: for i in range(6): if i != 0 and i != 2: bounds.first_node_min[i] = 0 bounds.last_node_min[i] = 0 bounds.first_node_max[i] = 0 bounds.last_node_max[i] = 0 X_bounds[0].first_node_min[2] = 0.0 X_bounds[0].first_node_max[2] = 0.0 X_bounds[1].first_node_min[2] = 0.0 X_bounds[1].first_node_max[2] = 0.0 X_bounds[1].last_node_min[2] = 1.57 X_bounds[1].last_node_max[2] = 1.57 # Initial guess X_init = InitialConditions( [0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot())) # Define control path constraint U_bounds = [ Bounds( [torque_min] * biorbd_model[0].nbGeneralizedTorque(), [torque_max] * biorbd_model[0].nbGeneralizedTorque(), ), Bounds( [torque_min] * biorbd_model[0].nbGeneralizedTorque(), [torque_max] * biorbd_model[0].nbGeneralizedTorque(), ), ] U_init = InitialConditions([torque_init] * biorbd_model[0].nbGeneralizedTorque()) # ------------- # return OptimalControlProgram( biorbd_model, variable_type, number_shooting_points, final_time, objective_functions, (X_init, X_init), (U_init, U_init), X_bounds, U_bounds, constraints, ode_solver=ode_solver, show_online_optim=show_online_optim, )
def prepare_ocp( final_time, time_min, time_max, number_shooting_points, biorbd_model_path="cube.bioMod", ode_solver=OdeSolver.RK ): # --- Options --- # nb_phases = len(number_shooting_points) if nb_phases != 1 and nb_phases != 3: raise RuntimeError("Number of phases must be 1 to 3") # Model path biorbd_model = (biorbd.Model(biorbd_model_path), biorbd.Model(biorbd_model_path), biorbd.Model(biorbd_model_path)) # Problem parameters tau_min, tau_max, tau_init = -100, 100, 0 # Add objective functions objective_functions = ObjectiveList() objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100, phase=0) if nb_phases == 3: objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100, phase=1) objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100, phase=2) # Dynamics dynamics = DynamicsTypeList() dynamics.add(DynamicsType.TORQUE_DRIVEN, phase=0) if nb_phases == 3: dynamics.add(DynamicsType.TORQUE_DRIVEN, phase=1) dynamics.add(DynamicsType.TORQUE_DRIVEN, phase=2) # Constraints constraints = ConstraintList() constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.START, first_marker_idx=0, second_marker_idx=1, phase=0) constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.END, first_marker_idx=0, second_marker_idx=2, phase=0) constraints.add(Constraint.TIME_CONSTRAINT, instant=Instant.END, minimum=time_min[0], maximum=time_max[0], phase=0) if nb_phases == 3: constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.END, first_marker_idx=0, second_marker_idx=1, phase=1) constraints.add( Constraint.TIME_CONSTRAINT, instant=Instant.END, minimum=time_min[1], maximum=time_max[1], phase=1 ) constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.END, first_marker_idx=0, second_marker_idx=2, phase=2) constraints.add( Constraint.TIME_CONSTRAINT, instant=Instant.END, minimum=time_min[2], maximum=time_max[2], phase=2 ) # Path constraint x_bounds = BoundsList() x_bounds.add(QAndQDotBounds(biorbd_model[0])) # Phase 0 if nb_phases == 3: x_bounds.add(QAndQDotBounds(biorbd_model[0])) # Phase 1 x_bounds.add(QAndQDotBounds(biorbd_model[0])) # Phase 2 for bounds in x_bounds: for i in [1, 3, 4, 5]: bounds.min[i, [0, -1]] = 0 bounds.max[i, [0, -1]] = 0 x_bounds[0].min[2, 0] = 0.0 x_bounds[0].max[2, 0] = 0.0 if nb_phases == 3: x_bounds[2].min[2, [0, -1]] = [0.0, 1.57] x_bounds[2].max[2, [0, -1]] = [0.0, 1.57] # Initial guess x_init = InitialConditionsList() x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot())) if nb_phases == 3: x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot())) x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot())) # Define control path constraint u_bounds = BoundsList() u_bounds.add([[tau_min] * biorbd_model[0].nbGeneralizedTorque(), [tau_max] * biorbd_model[0].nbGeneralizedTorque()]) if nb_phases == 3: u_bounds.add( [[tau_min] * biorbd_model[0].nbGeneralizedTorque(), [tau_max] * biorbd_model[0].nbGeneralizedTorque()] ) u_bounds.add( [[tau_min] * biorbd_model[0].nbGeneralizedTorque(), [tau_max] * biorbd_model[0].nbGeneralizedTorque()] ) u_init = InitialConditionsList() u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque()) if nb_phases == 3: u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque()) u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque()) # ------------- # return OptimalControlProgram( biorbd_model[:nb_phases], dynamics, number_shooting_points, final_time[:nb_phases], x_init, u_init, x_bounds, u_bounds, objective_functions, constraints, ode_solver=ode_solver, )
def prepare_ocp(biorbd_model, final_time, number_shooting_points, marker_ref, excitations_ref, q_ref, state_init, use_residual_torque, activation_driven, kin_data_to_track, nb_threads, use_SX=True, param=False): # --- Options --- # nb_mus = biorbd_model.nbMuscleTotal() activation_min, activation_max, activation_init = 0, 1, 0.3 excitation_min, excitation_max, excitation_init = 0, 1, 0.1 torque_min, torque_max, torque_init = -100, 100, 0 # -- Force iso ipopt pour acados # if param is not True: # fiso = [] # for k in range(nb_mus): # fiso.append(biorbd_model.muscle(k).characteristics().forceIsoMax().to_mx()) # mat_content = sio.loadmat("./results/param_f_iso_flex.mat") # f_iso = mat_content["f_iso"] * mat_content["f_iso_global"] # for k in range(biorbd_model.nbMuscles()): # biorbd_model.muscle(k).characteristics().setForceIsoMax( # f_iso[k] * fiso[k] # ) # Add objective functions objective_functions = ObjectiveList() objective_functions.add(Objective.Lagrange.TRACK_MUSCLES_CONTROL, weight=10, target=excitations_ref) objective_functions.add(Objective.Lagrange.MINIMIZE_STATE, weight=0.01) if use_residual_torque: objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=1) if kin_data_to_track == "markers": objective_functions.add( Objective.Lagrange.TRACK_MARKERS, weight=1000, target=marker_ref[:, -biorbd_model.nbMarkers():, :]) elif kin_data_to_track == "q": objective_functions.add( Objective.Lagrange.TRACK_STATE, weight=100, # target=q_ref, # states_idx=range(biorbd_model.nbQ()) ) else: raise RuntimeError("Wrong choice of kin_data_to_track") # Dynamics dynamics = DynamicsTypeList() if use_residual_torque: dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN) elif activation_driven: dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_DRIVEN) else: dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_DRIVEN) # Constraints constraints = () # Path constraint x_bounds = BoundsList() x_bounds.add(QAndQDotBounds(biorbd_model)) if use_SX: x_bounds[0].min[:, 0] = np.concatenate( (state_init[6:biorbd_model.nbQ() + 6, 0], state_init[biorbd_model.nbQ() + 12:-nb_mus, 0])) x_bounds[0].max[:, 0] = np.concatenate( (state_init[6:biorbd_model.nbQ() + 6, 0], state_init[biorbd_model.nbQ() + 12:-nb_mus, 0])) # Add muscle to the bounds if activation_driven is not True: x_bounds[0].concatenate( Bounds([activation_min] * biorbd_model.nbMuscles(), [activation_max] * biorbd_model.nbMuscles())) # Initial guess x_init = InitialConditionsList() if activation_driven: # state_base = np.ndarray((12, n_shooting_points+1)) # for i in range(n_shooting_points+1): # state_base[:, i] = np.concatenate((state_init[:6, 0], np.zeros((6)))) x_init.add(np.concatenate( (state_init[6:biorbd_model.nbQ() + 6, :], state_init[biorbd_model.nbQ() + 12:-nb_mus, :])), interpolation=InterpolationType.EACH_FRAME) # x_init.add(state_init[:-nb_mus, :], interpolation=InterpolationType.EACH_FRAME) else: # x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) + [0] * biorbd_model.nbMuscles()) x_init.add(state_init[biorbd_model.nbQ():, :], interpolation=InterpolationType.EACH_FRAME) # Add muscle to the bounds u_bounds = BoundsList() u_init = InitialConditionsList() nb_tau = 6 # init_residual_torque = np.concatenate((np.ones((biorbd_model.nbGeneralizedTorque(), n_shooting_points))*0.5, # excitations_ref)) if use_residual_torque: u_bounds.add([ [torque_min] * biorbd_model.nbGeneralizedTorque() + [excitation_min] * biorbd_model.nbMuscleTotal(), [torque_max] * biorbd_model.nbGeneralizedTorque() + [excitation_max] * biorbd_model.nbMuscleTotal(), ]) u_init.add([torque_init] * biorbd_model.nbGeneralizedTorque() + [excitation_init] * biorbd_model.nbMuscleTotal()) # u_init.add(init_residual_torque, interpolation=InterpolationType.EACH_FRAME) else: u_bounds.add([[excitation_min] * biorbd_model.nbMuscleTotal(), [excitation_max] * biorbd_model.nbMuscleTotal()]) if activation_driven: # u_init.add([activation_init] * biorbd_model.nbMuscleTotal()) u_init.add(excitations_ref, interpolation=InterpolationType.EACH_FRAME) else: # u_init.add([excitation_init] * biorbd_model.nbMuscleTotal()) u_init.add(excitations_ref, interpolation=InterpolationType.EACH_FRAME) # Get initial isometric forces fiso = [] for k in range(nb_mus): fiso.append( biorbd_model.muscle(k).characteristics().forceIsoMax().to_mx()) # Define the parameter to optimize bound_p_iso = Bounds( # min_bound=np.repeat(0.75, nb_mus), max_bound=np.repeat(3, nb_mus), interpolation=InterpolationType.CONSTANT) min_bound=[0.5] * nb_mus + [0.75], max_bound=[3.5] * nb_mus + [3], interpolation=InterpolationType.CONSTANT) bound_shape_factor = Bounds(min_bound=np.repeat(-3, nb_mus), max_bound=np.repeat(0, nb_mus), interpolation=InterpolationType.CONSTANT) p_iso_init = InitialConditions([1] * nb_mus + [2]) initial_guess_A = InitialConditions([-3] * nb_mus) parameters = ParameterList() parameters.add( "p_iso", # The name of the parameter modify_isometric_force, # The function that modifies the biorbd model p_iso_init, bound_p_iso, # The bounds size=nb_mus + 1, # The number of elements this particular parameter vector has fiso_init=fiso, ) # parameters.add( # "shape_factor", # The name of the parameter # modify_shape_factor, # initial_guess_A, # bound_shape_factor, # The bounds # size=nb_mus, # The number of elements this particular parameter vector has # ) # ------------- # return OptimalControlProgram( biorbd_model, dynamics, number_shooting_points, final_time, x_init, u_init, x_bounds, u_bounds, objective_functions, nb_threads=nb_threads, use_SX=use_SX, # parameters=parameters )
def prepare_ocp(model_path, phase_time, number_shooting_points, direction, boundary): # --- Options --- # # Model path biorbd_model = biorbd.Model(model_path) tau_min, tau_max, tau_ini = -500, 500, 0 tau_mapping = BidirectionalMapping(Mapping([-1, -1, -1, 0]), Mapping([3])) # Add objective functions objective_functions = ObjectiveList() objective_functions.add(Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT, weight=-1) # Dynamics dynamics = DynamicsTypeList() dynamics.add(DynamicsType.TORQUE_DRIVEN_WITH_CONTACT) # Constraints constraints = ConstraintList() constraints.add( Constraint.CONTACT_FORCE_INEQUALITY, direction=direction, instant=Instant.ALL, contact_force_idx=1, boundary=boundary, ) constraints.add( Constraint.CONTACT_FORCE_INEQUALITY, direction=direction, instant=Instant.ALL, contact_force_idx=2, boundary=boundary, ) # Path constraint nb_q = biorbd_model.nbQ() nb_qdot = nb_q pose_at_first_node = [0, 0, -0.75, 0.75] # Initialize X_bounds x_bounds = BoundsList() x_bounds.add(QAndQDotBounds(biorbd_model)) x_bounds[0].min[:, 0] = pose_at_first_node + [0] * nb_qdot x_bounds[0].max[:, 0] = pose_at_first_node + [0] * nb_qdot # Initial guess x_init = InitialConditionsList() x_init.add(pose_at_first_node + [0] * nb_qdot) # Define control path constraint u_bounds = BoundsList() u_bounds.add([[tau_min] * tau_mapping.reduce.len, [tau_max] * tau_mapping.reduce.len]) u_init = InitialConditionsList() u_init.add([tau_ini] * tau_mapping.reduce.len) # ------------- # return OptimalControlProgram( biorbd_model, dynamics, number_shooting_points, phase_time, x_init, u_init, x_bounds, u_bounds, objective_functions, constraints, tau_mapping=tau_mapping, )
def prepare_ocp(biorbd_model_path="HandSpinner.bioMod"): end_crank_idx = 0 hand_marker_idx = 18 # --- Options --- # # Model path biorbd_model = biorbd.Model(biorbd_model_path) tau_min, tau_max, tau_init = -100, 100, 0 muscle_min, muscle_max, muscle_init = 0, 1, 0.5 # Problem parameters number_shooting_points = 30 final_time = 1.0 # Add objective functions objective_functions = ObjectiveList() objective_functions.add(Objective.Lagrange.MINIMIZE_MARKERS_DISPLACEMENT, markers_idx=hand_marker_idx) objective_functions.add(Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL) objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE) # Dynamics dynamics = DynamicsTypeList() dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN) # Constraints constraints = ConstraintList() constraints.add(Constraint.ALIGN_MARKERS, first_marker_idx=hand_marker_idx, second_marker_idx=end_crank_idx, instant=Instant.ALL) constraints.add( Constraint.TRACK_STATE, instant=Instant.ALL, states_idx=0, target=np.linspace(0, 2 * np.pi, number_shooting_points + 1), ) state_transitions = StateTransitionList() state_transitions.add(state_transition_function, phase_pre_idx=0) # Path constraint x_bounds = BoundsList() x_bounds.add(QAndQDotBounds(biorbd_model)) # Initial guess x_init = InitialConditionsList() x_init.add([0, -0.9, 1.7, 0.9, 2.0, -1.3] + [0] * biorbd_model.nbQdot()) # Define control path constraint u_bounds = BoundsList() u_bounds.add([ [tau_min] * biorbd_model.nbGeneralizedTorque() + [muscle_min] * biorbd_model.nbMuscleTotal(), [tau_max] * biorbd_model.nbGeneralizedTorque() + [muscle_max] * biorbd_model.nbMuscleTotal(), ]) u_init = InitialConditionsList() u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque() + [muscle_init] * biorbd_model.nbMuscleTotal()) # ------------- # return OptimalControlProgram( biorbd_model, dynamics, number_shooting_points, final_time, x_init, u_init, x_bounds, u_bounds, objective_functions, constraints, state_transitions=state_transitions, )
def prepare_ocp( biorbd_model, final_time, number_shooting_points, marker_ref, excitations_ref, q_ref, state_ekf, use_residual_torque, kin_data_to_track, nb_threads, use_SX=True, ): # --- Options --- # nb_mus = biorbd_model.nbMuscleTotal() activation_min, activation_max, activation_init = 0, 1, 0.5 excitation_min, excitation_max, excitation_init = 0, 1, 0.1 torque_min, torque_max, torque_init = -100, 100, 0 # Add objective functions objective_functions = ObjectiveList() objective_functions.add(Objective.Lagrange.TRACK_MUSCLES_CONTROL, weight=0.001, target=excitations_ref) if use_residual_torque: objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=10) if kin_data_to_track == "markers": objective_functions.add(Objective.Lagrange.TRACK_MARKERS, weight=1, target=marker_ref) elif kin_data_to_track == "q": objective_functions.add(Objective.Lagrange.TRACK_STATE, weight=100, target=q_ref, states_idx=range(biorbd_model.nbQ())) else: raise RuntimeError("Wrong choice of kin_data_to_track") # Dynamics dynamics = DynamicsTypeList() if use_residual_torque: dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_AND_TORQUE_DRIVEN) else: dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_DRIVEN) # Path constraint x_bounds = BoundsList() x_bounds.add(QAndQDotBounds(biorbd_model)) # Add muscle to the bounds x_bounds[0].concatenate( Bounds([activation_min] * biorbd_model.nbMuscles(), [activation_max] * biorbd_model.nbMuscles())) x_bounds[0].min[:, 0] = 0 # state_ekf[:, 0] x_bounds[0].max[:, 0] = 0 # state_ekf[:, 0] # Initial guess x_init = InitialConditionsList() x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) + [0] * biorbd_model.nbMuscles()) # x_init.add(state_ekf, interpolation=InterpolationType.EACH_FRAME) # Add muscle to the bounds u_bounds = BoundsList() u_init = InitialConditionsList() init_residual_torque = np.concatenate((np.ones( (biorbd_model.nbGeneralizedTorque(), n_shooting_points)) * 0.5, excitations_ref)) if use_residual_torque: u_bounds.add([ [torque_min] * biorbd_model.nbGeneralizedTorque() + [excitation_min] * biorbd_model.nbMuscleTotal(), [torque_max] * biorbd_model.nbGeneralizedTorque() + [excitation_max] * biorbd_model.nbMuscleTotal(), ]) # u_init.add([torque_init] * biorbd_model.nbGeneralizedTorque() + [excitation_init] * biorbd_model.nbMuscleTotal()) u_init.add(init_residual_torque, interpolation=InterpolationType.EACH_FRAME) else: u_bounds.add([[excitation_min] * biorbd_model.nbMuscleTotal(), [excitation_max] * biorbd_model.nbMuscleTotal()]) u_init.add([0] * biorbd_model.nbMuscleTotal()) # u_init.add(excitations_ref, interpolation=InterpolationType.EACH_FRAME) # Get initial isometric forces fiso = [] for k in range(nb_mus): fiso.append( biorbd_model.muscle(k).characteristics().forceIsoMax().to_mx()) # Define the parameter to optimize bound_p_iso = Bounds(min_bound=np.repeat(0.5, nb_mus + 1), max_bound=np.repeat(3.5, nb_mus + 1), interpolation=InterpolationType.CONSTANT) bound_shape_factor = Bounds(min_bound=np.repeat(-3, nb_mus), max_bound=np.repeat(0, nb_mus), interpolation=InterpolationType.CONSTANT) p_iso_init = InitialConditions(np.repeat(1, nb_mus + 1)) initial_guess_A = InitialConditions([-3] * nb_mus) parameters = ParameterList() parameters.add( "p_iso", # The name of the parameter modify_isometric_force, # The function that modifies the biorbd model p_iso_init, bound_p_iso, # The bounds size=nb_mus + 1, # The number of elements this particular parameter vector has fiso_init=fiso, ) # parameters.add( # "shape_factor", # The name of the parameter # modify_shape_factor, # initial_guess_A, # bound_shape_factor, # The bounds # size=nb_mus, # The number of elements this particular parameter vector has # ) # ------------- # return OptimalControlProgram( biorbd_model, dynamics, number_shooting_points, final_time, x_init, u_init, x_bounds, u_bounds, objective_functions, nb_threads=nb_threads, use_SX=use_SX, # parameters=parameters, )
def prepare_ocp(biorbd_model_path="HandSpinner.bioMod"): end_crank_idx = 0 hand_marker_idx = 18 # --- Options --- # # Model path biorbd_model = biorbd.Model(biorbd_model_path) torque_min, torque_max, torque_init = -100, 100, 0 muscle_min, muscle_max, muscle_init = 0, 1, 0.5 # Problem parameters number_shooting_points = 30 final_time = 1.5 # Add objective functions objective_functions = ( { "type": Objective.Lagrange.MINIMIZE_MARKERS_DISPLACEMENT, "weight": 1, "markers_idx": hand_marker_idx }, { "type": Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL, "weight": 1 }, { "type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 1 }, ) # Dynamics problem_type = ProblemType.muscle_activations_and_torque_driven # Constraints constraints = ( { "type": Constraint.ALIGN_MARKERS, "first_marker_idx": hand_marker_idx, "second_marker_idx": end_crank_idx, "instant": Instant.ALL, }, { "type": Constraint.TRACK_STATE, "instant": Instant.ALL, "states_idx": 0, "data_to_track": np.linspace(0, 2 * np.pi, number_shooting_points + 1), }, ) # Path constraint X_bounds = QAndQDotBounds(biorbd_model) # Initial guess X_init = InitialConditions([0, -0.9, 1.7, 0.9, 2.0, -1.3] + [0] * biorbd_model.nbQdot()) # Define control path constraint U_bounds = Bounds( [torque_min] * biorbd_model.nbGeneralizedTorque() + [muscle_min] * biorbd_model.nbMuscleTotal(), [torque_max] * biorbd_model.nbGeneralizedTorque() + [muscle_max] * biorbd_model.nbMuscleTotal(), ) U_init = InitialConditions([torque_init] * biorbd_model.nbGeneralizedTorque() + [muscle_init] * biorbd_model.nbMuscleTotal()) # ------------- # return OptimalControlProgram( biorbd_model, problem_type, number_shooting_points, final_time, X_init, U_init, X_bounds, U_bounds, objective_functions, constraints, is_cyclic_objective=True, )
def prepare_ocp( biorbd_model, final_time, nb_shooting, markers_ref, excitations_ref, q_ref, kin_data_to_track="markers", show_online_optim=False, ): # Problem parameters torque_min, torque_max, torque_init = -100, 100, 0 activation_min, activation_max, activation_init = 0, 1, 0.5 excitation_min, excitation_max, excitation_init = 0, 1, 0.5 # Add objective functions objective_functions = [ { "type": Objective.Lagrange.TRACK_MUSCLES_CONTROL, "weight": 1, "data_to_track": excitations_ref }, { "type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 10000 }, ] if kin_data_to_track == "markers": objective_functions.append( { "type": Objective.Lagrange.TRACK_MARKERS, "weight": 100, "data_to_track": markers_ref }, ) elif kin_data_to_track == "q": objective_functions.append( { "type": Objective.Lagrange.TRACK_STATE, "weight": 100, "data_to_track": q_ref, "states_idx": range(biorbd_model.nbQ()), }, ) else: raise RuntimeError("Wrong choice of kin_data_to_track") # Dynamics variable_type = ProblemType.muscle_excitations_and_torque_driven # Constraints constraints = () # Path constraint X_bounds = QAndQDotBounds(biorbd_model) X_bounds.first_node_min += [activation_min] * biorbd_model.nbMuscleTotal() X_bounds.first_node_max += [activation_max] * biorbd_model.nbMuscleTotal() X_bounds.min += [activation_min] * biorbd_model.nbMuscleTotal() X_bounds.max += [activation_max] * biorbd_model.nbMuscleTotal() X_bounds.last_node_min += [activation_min] * biorbd_model.nbMuscleTotal() X_bounds.last_node_max += [activation_max] * biorbd_model.nbMuscleTotal() # Initial guess X_init = InitialConditions([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) + [activation_init] * biorbd_model.nbMuscleTotal()) # Define control path constraint U_bounds = Bounds( [torque_min] * biorbd_model.nbGeneralizedTorque() + [excitation_min] * biorbd_model.nbMuscleTotal(), [torque_max] * biorbd_model.nbGeneralizedTorque() + [excitation_max] * biorbd_model.nbMuscleTotal(), ) U_init = InitialConditions( [torque_init] * biorbd_model.nbGeneralizedTorque() + [excitation_init] * biorbd_model.nbMuscleTotal()) # ------------- # return OptimalControlProgram( biorbd_model, variable_type, nb_shooting, final_time, objective_functions, X_init, U_init, X_bounds, U_bounds, constraints, show_online_optim=show_online_optim, )
def prepare_ocp(biorbd_model_path, ode_solver=OdeSolver.RK): # --- Options --- # # Model path biorbd_model = biorbd.Model(biorbd_model_path) # Problem parameters number_shooting_points = 30 final_time = 2 tau_min, tau_max, tau_init = -100, 100, 0 # Add objective functions objective_functions = ObjectiveOption(Objective.Lagrange.MINIMIZE_TORQUE, weight=100) # Dynamics dynamics = DynamicsTypeOption(DynamicsType.TORQUE_DRIVEN) # Constraints constraints = ConstraintList() constraints.add(custom_func_align_markers, instant=Instant.START, first_marker_idx=0, second_marker_idx=1) constraints.add(custom_func_align_markers, instant=Instant.END, first_marker_idx=0, second_marker_idx=2) # Path constraint x_bounds = BoundsOption(QAndQDotBounds(biorbd_model)) x_bounds.min[1:6, [0, -1]] = 0 x_bounds.max[1:6, [0, -1]] = 0 x_bounds.min[2, -1] = 1.57 x_bounds.max[2, -1] = 1.57 # Initial guess x_init = InitialConditionsOption( [0] * (biorbd_model.nbQ() + biorbd_model.nbQdot())) # Define control path constraint u_bounds = BoundsOption([[tau_min] * biorbd_model.nbGeneralizedTorque(), [tau_max] * biorbd_model.nbGeneralizedTorque()]) u_init = InitialConditionsOption([tau_init] * biorbd_model.nbGeneralizedTorque()) # ------------- # return OptimalControlProgram( biorbd_model, dynamics, number_shooting_points, final_time, x_init, u_init, x_bounds, u_bounds, objective_functions, constraints, ode_solver=ode_solver, )
def prepare_ocp( biorbd_model, final_time, number_shooting_points, marker_ref, excitations_ref, q_ref, state_init, use_residual_torque, activation_driven, kin_data_to_track, nb_threads, use_SX=True, ): # --- Options --- # nb_mus = biorbd_model.nbMuscleTotal() activation_min, activation_max, activation_init = 0, 1, 0.3 excitation_min, excitation_max, excitation_init = 0, 1, 0.1 torque_min, torque_max, torque_init = -100, 100, 0 # Add objective functions objective_functions = ObjectiveList() objective_functions.add(Objective.Lagrange.TRACK_MUSCLES_CONTROL, weight=10, target=excitations_ref) objective_functions.add(Objective.Lagrange.MINIMIZE_STATE, weight=0.01) if use_residual_torque: objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=1) if kin_data_to_track == "markers": objective_functions.add(Objective.Lagrange.TRACK_MARKERS, weight=1000, target=marker_ref[:, -biorbd_model.nbMarkers():, :] ) elif kin_data_to_track == "q": objective_functions.add( Objective.Lagrange.TRACK_STATE, weight=100, # target=q_ref, # states_idx=range(biorbd_model.nbQ()) ) else: raise RuntimeError("Wrong choice of kin_data_to_track") # Dynamics dynamics = DynamicsTypeList() if use_residual_torque: dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN) elif activation_driven: dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_DRIVEN) else: dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_DRIVEN) # Constraints constraints = () # Path constraint x_bounds = BoundsList() x_bounds.add(QAndQDotBounds(biorbd_model)) if use_SX: x_bounds[0].min[:, 0] = np.concatenate((state_init[6:biorbd_model.nbQ() + 6, 0], state_init[biorbd_model.nbQ() + 12:-nb_mus, 0])) x_bounds[0].max[:, 0] = np.concatenate((state_init[6:biorbd_model.nbQ() + 6, 0], state_init[biorbd_model.nbQ() + 12:-nb_mus, 0])) # Add muscle to the bounds if activation_driven is not True: x_bounds[0].concatenate( Bounds([activation_min] * biorbd_model.nbMuscles(), [activation_max] * biorbd_model.nbMuscles()) ) # Initial guess x_init = InitialConditionsList() if activation_driven: # state_base = np.ndarray((12, n_shooting_points+1)) # for i in range(n_shooting_points+1): # state_base[:, i] = np.concatenate((state_init[:6, 0], np.zeros((6)))) x_init.add(np.concatenate((state_init[6:biorbd_model.nbQ() + 6, :], state_init[biorbd_model.nbQ() + 12:-nb_mus, :])), interpolation=InterpolationType.EACH_FRAME) # x_init.add(state_init[:-nb_mus, :], interpolation=InterpolationType.EACH_FRAME) else: # x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) + [0] * biorbd_model.nbMuscles()) x_init.add(state_init[biorbd_model.nbQ():, :], interpolation=InterpolationType.EACH_FRAME) # Add muscle to the bounds u_bounds = BoundsList() u_init = InitialConditionsList() nb_tau = 6 # init_residual_torque = np.concatenate((np.ones((biorbd_model.nbGeneralizedTorque(), n_shooting_points))*0.5, # excitations_ref)) if use_residual_torque: u_bounds.add( [ [torque_min] * biorbd_model.nbGeneralizedTorque() + [excitation_min] * biorbd_model.nbMuscleTotal(), [torque_max] * biorbd_model.nbGeneralizedTorque() + [excitation_max] * biorbd_model.nbMuscleTotal(), ] ) u_init.add( [torque_init] * biorbd_model.nbGeneralizedTorque() + [excitation_init] * biorbd_model.nbMuscleTotal()) # u_init.add(init_residual_torque, interpolation=InterpolationType.EACH_FRAME) else: u_bounds.add( [[excitation_min] * biorbd_model.nbMuscleTotal(), [excitation_max] * biorbd_model.nbMuscleTotal()]) if activation_driven: # u_init.add([activation_init] * biorbd_model.nbMuscleTotal()) u_init.add(excitations_ref, interpolation=InterpolationType.EACH_FRAME) else: # u_init.add([excitation_init] * biorbd_model.nbMuscleTotal()) u_init.add(excitations_ref, interpolation=InterpolationType.EACH_FRAME) # Get initial isometric forces fiso = [] for k in range(nb_mus): fiso.append(biorbd_model.muscle(k).characteristics().forceIsoMax().to_mx()) # ------------- # return OptimalControlProgram( biorbd_model, dynamics, number_shooting_points, final_time, x_init, u_init, x_bounds, u_bounds, objective_functions, nb_threads=nb_threads, use_SX=use_SX, # parameters=parameters )
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points, ode_solver, initialize_near_solution): # --- Options --- # # Model path biorbd_model = biorbd.Model(biorbd_model_path) # Problem parameters torque_min, torque_max, torque_init = -100, 100, 0 # Add objective functions objective_functions = { "type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 100 } # Dynamics problem_type = ProblemType.torque_driven # Constraints constraints = ( { "type": Constraint.ALIGN_MARKERS, "instant": Instant.START, "first_marker_idx": 0, "second_marker_idx": 4, }, { "type": Constraint.ALIGN_MARKERS, "instant": Instant.END, "first_marker_idx": 0, "second_marker_idx": 5, }, { "type": Constraint.ALIGN_MARKER_WITH_SEGMENT_AXIS, "instant": Instant.ALL, "marker_idx": 1, "segment_idx": 2, "axis": (Axe.X), }, ) # Path constraint X_bounds = QAndQDotBounds(biorbd_model) for i in range(1, 8): if i != 3: X_bounds.min[i, [0, -1]] = 0 X_bounds.max[i, [0, -1]] = 0 X_bounds.min[2, -1] = 1.57 X_bounds.max[2, -1] = 1.57 # Initial guess X_init = InitialConditions([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot())) if initialize_near_solution: for i in range(2): X_init.init[i] = 1.5 for i in range(4, 6): X_init.init[i] = 0.7 for i in range(6, 8): X_init.init[i] = 0.6 # Define control path constraint U_bounds = Bounds( [torque_min] * biorbd_model.nbGeneralizedTorque(), [torque_max] * biorbd_model.nbGeneralizedTorque(), ) U_init = InitialConditions([torque_init] * biorbd_model.nbGeneralizedTorque()) # ------------- # return OptimalControlProgram( biorbd_model, problem_type, number_shooting_points, final_time, X_init, U_init, X_bounds, U_bounds, objective_functions, constraints, ode_solver=ode_solver, )
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points, use_SX=False, nb_threads=1): # --- Options --- # # Model path biorbd_model = biorbd.Model(biorbd_model_path) tau_min, tau_max, tau_init = -5, 5, 0 activation_min, activation_max, activation_init = 0, 1, 0.5 excitation_min, excitation_max, excitation_init = 0, 1, 0.5 # Add objective functions objective_functions = ObjectiveList() objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100) objective_functions.add(Objective.Lagrange.MINIMIZE_STATE, weight=100) objective_functions.add(Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL, weight=10) # Dynamics dynamics = DynamicsTypeList() dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_AND_TORQUE_DRIVEN) # Path constraint x_bounds = BoundsList() x_bounds.add(QAndQDotBounds(biorbd_model)) # Add muscle to the bounds x_bounds[0].concatenate( Bounds([activation_min] * biorbd_model.nbMuscles(), [activation_max] * biorbd_model.nbMuscles())) # Following values are taken from Belaise's matlab code x_bounds[0].min[:, 0] = (-0.2, 0.1, -0.25, 0.1, 0, -0, -0.2, 0.05, -0.15, -0.02, 0, 0.28) + (0, ) * biorbd_model.nbMuscles() x_bounds[0].max[:, 0] = (-0.2, 0.1, -0.25, 0.1, 0, -0, -0.2, 0.05, -0.15, -0.02, 0, 0.28) + (0, ) * biorbd_model.nbMuscles() x_bounds[0].min[:biorbd_model.nbQ() * 2, -1] = (-0.03, 0.1, -0.1, 0.2, -0.76, 1., 2., -1.5, -0.17, -0.62, 1.4, -0.57) x_bounds[0].max[:biorbd_model.nbQ() * 2, -1] = (-0.03, 0.1, -0.1, 0.2, -0.76, 1., 2., -1.5, -0.17, -0.62, 1.4, -0.57) # Initial guess x_init = InitialConditionsList() x_init.add([1.] * biorbd_model.nbQ() + [0] * biorbd_model.nbQdot() + [0] * biorbd_model.nbMuscles()) # Define control path constraint u_bounds = BoundsList() u_init = InitialConditionsList() u_bounds.add([ [tau_min] * biorbd_model.nbGeneralizedTorque() + [excitation_min] * biorbd_model.nbMuscles(), [tau_max] * biorbd_model.nbGeneralizedTorque() + [excitation_max] * biorbd_model.nbMuscles(), ]) u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque() + [excitation_init] * biorbd_model.nbMuscles()) # ------------- # return OptimalControlProgram(biorbd_model, dynamics, number_shooting_points, final_time, x_init, u_init, x_bounds, u_bounds, objective_functions, use_SX=use_SX, nb_threads=nb_threads)
def prepare_ocp(biorbd_model_path, number_shooting_points, final_time, loop_from_constraint, ode_solver=OdeSolver.RK): # --- Options --- # # Model path biorbd_model = biorbd.Model(biorbd_model_path) # Problem parameters torque_min, torque_max, torque_init = -100, 100, 0 # Add objective functions objective_functions = [{ "type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 100 }] # Dynamics problem_type = ProblemType.torque_driven # Constraints constraints = ( { "type": Constraint.ALIGN_MARKERS, "instant": Instant.MID, "first_marker_idx": 0, "second_marker_idx": 2, }, { "type": Constraint.TRACK_STATE, "instant": Instant.MID, "states_idx": 2, }, { "type": Constraint.ALIGN_MARKERS, "instant": Instant.END, "first_marker_idx": 0, "second_marker_idx": 1, }, ) # Path constraint X_bounds = QAndQDotBounds(biorbd_model) X_bounds.min[2:6, -1] = [1.57, 0, 0, 0] X_bounds.max[2:6, -1] = [1.57, 0, 0, 0] # Initial guess X_init = InitialConditions([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot())) # Define control path constraint U_bounds = Bounds( [torque_min] * biorbd_model.nbGeneralizedTorque(), [torque_max] * biorbd_model.nbGeneralizedTorque(), ) U_init = InitialConditions([torque_init] * biorbd_model.nbGeneralizedTorque()) # ------------- # return OptimalControlProgram( biorbd_model, problem_type, number_shooting_points, final_time, X_init, U_init, X_bounds, U_bounds, objective_functions, constraints, ode_solver=ode_solver, is_cyclic_objective=not loop_from_constraint, is_cyclic_constraint=loop_from_constraint, )
def prepare_ocp(biorbd_model_path="cubeSym.bioMod", show_online_optim=False, ode_solver=OdeSolver.RK): # --- Options --- # # Model path biorbd_model = biorbd.Model(biorbd_model_path) # Problem parameters number_shooting_points = 30 final_time = 2 torque_min, torque_max, torque_init = -100, 100, 0 # Add objective functions objective_functions = { "type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 100 } # Dynamics variable_type = ProblemType.torque_driven # Constraints constraints = ( { "type": Constraint.ALIGN_MARKERS, "instant": Instant.START, "first_marker": 0, "second_marker": 1, }, { "type": Constraint.ALIGN_MARKERS, "instant": Instant.END, "first_marker": 0, "second_marker": 2, }, { "type": Constraint.PROPORTIONAL_STATE, "instant": Instant.ALL, "first_dof": 2, "second_dof": 3, "coef": -1, }, ) # Path constraint X_bounds = QAndQDotBounds(biorbd_model) for i in range(4, 8): X_bounds.first_node_min[i] = 0 X_bounds.last_node_min[i] = 0 X_bounds.first_node_max[i] = 0 X_bounds.last_node_max[i] = 0 # Initial guess X_init = InitialConditions([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot())) # Define control path constraint U_bounds = Bounds( [torque_min] * biorbd_model.nbQ(), [torque_max] * biorbd_model.nbQ(), ) U_init = InitialConditions([torque_init] * biorbd_model.nbQ()) # ------------- # return OptimalControlProgram( biorbd_model, variable_type, number_shooting_points, final_time, objective_functions, X_init, U_init, X_bounds, U_bounds, constraints, ode_solver=ode_solver, show_online_optim=show_online_optim, )
def prepare_ocp( biorbd_model, final_time, nb_shooting, markers_ref, excitations_ref, q_ref, with_residual_torque, kin_data_to_track="markers", ): # Problem parameters torque_min, torque_max, torque_init = -100, 100, 0 activation_min, activation_max, activation_init = 0, 1, 0.5 excitation_min, excitation_max, excitation_init = 0, 1, 0.5 # Add objective functions objective_functions = [ {"type": Objective.Lagrange.TRACK_MUSCLES_CONTROL, "weight": 1, "data_to_track": excitations_ref}, ] if with_residual_torque: objective_functions.append({"type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 1}) if kin_data_to_track == "markers": objective_functions.append( {"type": Objective.Lagrange.TRACK_MARKERS, "weight": 100, "data_to_track": markers_ref}, ) elif kin_data_to_track == "q": objective_functions.append( { "type": Objective.Lagrange.TRACK_STATE, "weight": 100, "data_to_track": q_ref, "states_idx": range(biorbd_model.nbQ()), }, ) else: raise RuntimeError("Wrong choice of kin_data_to_track") # Dynamics if with_residual_torque: variable_type = ProblemType.muscle_excitations_and_torque_driven else: variable_type = ProblemType.muscle_excitations_driven # Constraints constraints = () # Path constraint X_bounds = QAndQDotBounds(biorbd_model) # Due to unpredictable movement of the forward dynamics that generated the movement, the bound must be larger X_bounds.min[[0, 1], :] = -2 * np.pi X_bounds.max[[0, 1], :] = 2 * np.pi # Add muscle to the bounds X_bounds.concatenate( Bounds([activation_min] * biorbd_model.nbMuscles(), [activation_max] * biorbd_model.nbMuscles()) ) # Initial guess X_init = InitialConditions([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) + [0] * biorbd_model.nbMuscles()) # Define control path constraint if with_residual_torque: U_bounds = Bounds( [torque_min] * biorbd_model.nbGeneralizedTorque() + [excitation_min] * biorbd_model.nbMuscles(), [torque_max] * biorbd_model.nbGeneralizedTorque() + [excitation_max] * biorbd_model.nbMuscles(), ) U_init = InitialConditions( [torque_init] * biorbd_model.nbGeneralizedTorque() + [excitation_init] * biorbd_model.nbMuscles() ) else: U_bounds = Bounds([excitation_min] * biorbd_model.nbMuscles(), [excitation_max] * biorbd_model.nbMuscles(),) U_init = InitialConditions([excitation_init] * biorbd_model.nbMuscles()) # ------------- # return OptimalControlProgram( biorbd_model, variable_type, nb_shooting, final_time, X_init, U_init, X_bounds, U_bounds, objective_functions, constraints, )
def prepare_ocp(biorbd_model_path, number_shooting_points, final_time): # --- Options --- # # Model path biorbd_model = biorbd.Model(biorbd_model_path) nq = biorbd_model.nbQ() nqdot = biorbd_model.nbQdot() ntau = nqdot # biorbd_model.nbGeneralizedTorque() tau_min, tau_max, tau_init = -100, 100, 0 # Add objective functions objective_functions = ObjectiveList() objective_functions.add(Objective.Mayer.MINIMIZE_MARKERS, markers_idx=1, weight=-1) objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100) # Dynamics dynamics = DynamicsTypeList() dynamics.add(DynamicsType.TORQUE_DRIVEN) # Path constraint x_bounds = BoundsList() x_bounds.add(QAndQDotBounds(biorbd_model)) # Define control path constraint u_bounds = BoundsList() u_bounds.add([[tau_min] * ntau, [tau_max] * ntau]) # Initial guesses x = np.vstack((np.zeros( (biorbd_model.nbQ(), 2)), np.ones((biorbd_model.nbQdot(), 2)))) Arm_init_D = np.zeros((3, 2)) Arm_init_D[1, 0] = 0 Arm_init_D[1, 1] = -np.pi + 0.01 Arm_init_G = np.zeros((3, 2)) Arm_init_G[1, 0] = 0 Arm_init_G[1, 1] = np.pi - 0.01 for i in range(2): Arm_Quat_D = eul2quat(Arm_init_D[:, i]) Arm_Quat_G = eul2quat(Arm_init_G[:, i]) x[6:9, i] = Arm_Quat_D[1:] x[12, i] = Arm_Quat_D[0] x[9:12, i] = Arm_Quat_G[1:] x[13, i] = Arm_Quat_G[0] x_init = InitialConditionsList() x_init.add(x, interpolation=InterpolationType.LINEAR) u_init = InitialConditionsList() u_init.add([tau_init] * ntau) # ------------- # return OptimalControlProgram( biorbd_model, dynamics, number_shooting_points, final_time, x_init, u_init, x_bounds, u_bounds, objective_functions, )