Esempio n. 1
0
def prepare_ocp(model_path, phase_time, number_shooting_points):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(model_path)

    torque_min, torque_max, torque_init = -500, 500, 0
    tau_mapping = BidirectionalMapping(Mapping([-1, -1, -1, 0]), Mapping([3]))

    # Add objective functions
    objective_functions = (
        {
            "type": Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
            "weight": -1
        },
        {
            "type": Objective.Lagrange.MINIMIZE_TORQUE,
            "weight": 1 / 100
        },
    )

    # Dynamics
    problem_type = ProblemType.torque_driven_with_contact

    # Constraints
    constraints = ()

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    pose_at_first_node = [0, 0, -0.5, 0.5]

    # Initialize X_bounds
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.min[:, 0] = pose_at_first_node + [0] * nb_qdot
    X_bounds.max[:, 0] = pose_at_first_node + [0] * nb_qdot

    # Initial guess
    X_init = InitialConditions(pose_at_first_node + [0] * nb_qdot)

    # Define control path constraint
    U_bounds = Bounds(min_bound=[torque_min] * tau_mapping.reduce.len,
                      max_bound=[torque_max] * tau_mapping.reduce.len)

    U_init = InitialConditions([torque_init] * tau_mapping.reduce.len)
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        phase_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
        tau_mapping=tau_mapping,
    )
Esempio n. 2
0
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    torque_min, torque_max, torque_init = -1, 1, 0
    muscle_min, muscle_max, muscle_init = 0, 1, 0.5

    # Add objective functions
    objective_functions = (
        {"type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 1},
        {"type": Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL, "weight": 1},
        {"type": Objective.Mayer.ALIGN_MARKERS, "first_marker_idx": 0, "second_marker_idx": 5, "weight": 1,},
    )

    # Dynamics
    problem_type = ProblemType.muscle_activations_and_torque_driven

    # Constraints
    constraints = ()

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)

    # Set the initial position
    X_bounds.min[:, 0] = (0.07, 1.4, 0, 0)
    X_bounds.max[:, 0] = (0.07, 1.4, 0, 0)

    # Initial guess
    X_init = InitialConditions([1.57] * biorbd_model.nbQ() + [0] * biorbd_model.nbQdot())

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * biorbd_model.nbGeneralizedTorque() + [muscle_min] * biorbd_model.nbMuscleTotal(),
        [torque_max] * biorbd_model.nbGeneralizedTorque() + [muscle_max] * biorbd_model.nbMuscleTotal(),
    )

    U_init = InitialConditions(
        [torque_init] * biorbd_model.nbGeneralizedTorque() + [muscle_init] * biorbd_model.nbMuscleTotal()
    )
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
    )
def prepare_ocp(model_path, phase_time, number_shooting_points,
                muscle_activations_ref, contact_forces_ref):
    # Model path
    biorbd_model = biorbd.Model(model_path)
    tau_min, tau_max, tau_init = -500, 500, 0
    activation_min, activation_max, activation_init = 0, 1, 0.5

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.TRACK_MUSCLES_CONTROL,
                            target=muscle_activations_ref)
    objective_functions.add(Objective.Lagrange.TRACK_CONTACT_FORCES,
                            target=contact_forces_ref)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(
        DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN_WITH_CONTACT)

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    pose_at_first_node = [0, 0, -0.75, 0.75]

    # Initialize X_bounds
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, 0] = pose_at_first_node + [0] * nb_qdot
    x_bounds[0].max[:, 0] = pose_at_first_node + [0] * nb_qdot

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add(pose_at_first_node + [0] * nb_qdot)

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([
        [tau_min] * biorbd_model.nbGeneralizedTorque() +
        [activation_min] * biorbd_model.nbMuscleTotal(),
        [tau_max] * biorbd_model.nbGeneralizedTorque() +
        [activation_max] * biorbd_model.nbMuscleTotal(),
    ])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque() +
               [activation_init] * biorbd_model.nbMuscleTotal())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        phase_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions=objective_functions,
    )
def prepare_ocp(biorbd_model_path, number_shooting_points, final_time, loop_from_constraint, ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveOption(Objective.Lagrange.MINIMIZE_TORQUE, weight=100)

    # Dynamics
    dynamics = DynamicsTypeOption(DynamicsType.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.MID, first_marker_idx=0, second_marker_idx=2)
    constraints.add(Constraint.TRACK_STATE, instant=Instant.MID, states_idx=2)
    constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.END, first_marker_idx=0, second_marker_idx=1)

    # Path constraint
    x_bounds = BoundsOption(QAndQDotBounds(biorbd_model))
    x_bounds.min[2:6, -1] = [1.57, 0, 0, 0]
    x_bounds.max[2:6, -1] = [1.57, 0, 0, 0]

    # Initial guess
    x_init = InitialConditionsOption([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    u_bounds = BoundsOption(
        [[tau_min] * biorbd_model.nbGeneralizedTorque(), [tau_max] * biorbd_model.nbGeneralizedTorque()]
    )

    u_init = InitialConditionsOption([tau_init] * biorbd_model.nbGeneralizedTorque())

    # ------------- #
    # A state transition loop constraint is treated as
    # hard penalty (constraint) if weight is <= 0 [or if no weight is provided], or
    # as a soft penalty (objective) otherwise
    state_transitions = StateTransitionList()
    if loop_from_constraint:
        state_transitions.add(StateTransition.CYCLIC, weight=0)
    else:
        state_transitions.add(StateTransition.CYCLIC, weight=10000)

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
        state_transitions=state_transitions,
    )
Esempio n. 5
0
def prepare_ocp(biorbd_model_path,
                final_time,
                number_shooting_points,
                use_SX=False):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    tau_min, tau_max, tau_init = -1, 1, 0
    muscle_min, muscle_max, muscle_init = 0, 1, 0.5

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE)
    objective_functions.add(Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL)
    objective_functions.add(Objective.Mayer.ALIGN_MARKERS,
                            first_marker_idx=0,
                            second_marker_idx=5)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, 0] = (0.07, 1.4, 0, 0)
    x_bounds[0].max[:, 0] = (0.07, 1.4, 0, 0)

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([1.57] * biorbd_model.nbQ() + [0] * biorbd_model.nbQdot())

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([
        [tau_min] * biorbd_model.nbGeneralizedTorque() +
        [muscle_min] * biorbd_model.nbMuscleTotal(),
        [tau_max] * biorbd_model.nbGeneralizedTorque() +
        [muscle_max] * biorbd_model.nbMuscleTotal(),
    ])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque() +
               [muscle_init] * biorbd_model.nbMuscleTotal())
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        use_SX=use_SX,
    )
Esempio n. 6
0
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points,
                nb_threads):
    # --- Options --- #
    biorbd_model = biorbd.Model(biorbd_model_path)
    torque_min, torque_max, torque_init = -1000000, 1000000, 0
    n_q = biorbd_model.nbQ()
    n_qdot = biorbd_model.nbQdot()
    n_tau = biorbd_model.nbGeneralizedTorque()

    # Add objective functions
    objective_functions = {
        "type": Objective.Lagrange.MINIMIZE_TORQUE,
        "weight": 100
    }

    # Dynamics
    problem_type = ProblemType.torque_driven

    # Constraints
    constraints = ()

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.min[:, 0] = 0
    X_bounds.max[:, 0] = 0
    X_bounds.min[:n_q, -1] = 1
    X_bounds.max[:n_q, -1] = 1
    X_bounds.min[n_q:, -1] = 0
    X_bounds.max[n_q:, -1] = 0

    # Initial guess
    X_init = InitialConditions([0] * (n_q + n_qdot))

    # Define control path constraint
    U_bounds = Bounds(min_bound=[torque_min] * n_tau,
                      max_bound=[torque_max] * n_tau)

    # Control initial guess
    U_init = InitialConditions([torque_init] * n_tau)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
        nb_threads=nb_threads,
    )
Esempio n. 7
0
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points, nb_threads, use_SX=False):
    # --- Options --- #
    biorbd_model = biorbd.Model(biorbd_model_path)
    torque_min, torque_max, torque_init = -100, 100, 0
    n_q = biorbd_model.nbQ()
    n_qdot = biorbd_model.nbQdot()
    n_tau = biorbd_model.nbGeneralizedTorque()
    data_to_track = np.zeros((number_shooting_points + 1, n_q + n_qdot))
    data_to_track[:, 1] = 3.14
    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100.0)
    objective_functions.add(Objective.Lagrange.MINIMIZE_STATE, weight=1.0)
    objective_functions.add(
        Objective.Mayer.MINIMIZE_STATE, weight=50000.0, target=data_to_track.T, instant=Instant.END,
    )

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, 0] = 0
    x_bounds[0].max[:, 0] = 0

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (n_q + n_qdot))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add(
        [[torque_min] * n_tau, [torque_max] * n_tau,]
    )
    u_bounds[0].min[n_tau - 1, :] = 0
    u_bounds[0].max[n_tau - 1, :] = 0

    u_init = InitialConditionsList()
    u_init.add([torque_init] * n_tau)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        nb_threads=nb_threads,
        use_SX=use_SX,
    )
Esempio n. 8
0
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points,
                time_min, time_max):
    # --- Options --- #
    biorbd_model = biorbd.Model(biorbd_model_path)
    tau_min, tau_max, tau_init = -100, 100, 0
    n_q = biorbd_model.nbQ()
    n_qdot = biorbd_model.nbQdot()
    n_tau = biorbd_model.nbGeneralizedTorque()

    # Add objective functions
    objective_functions = ObjectiveOption(Objective.Lagrange.MINIMIZE_TORQUE)

    # Dynamics
    dynamics = DynamicsTypeOption(DynamicsType.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintOption(Constraint.TIME_CONSTRAINT,
                                   instant=Instant.END,
                                   minimum=time_min,
                                   maximum=time_max)

    # Path constraint
    x_bounds = BoundsOption(QAndQDotBounds(biorbd_model))
    x_bounds.min[:, [0, -1]] = 0
    x_bounds.max[:, [0, -1]] = 0
    x_bounds.min[n_q - 1, -1] = 3.14
    x_bounds.max[n_q - 1, -1] = 3.14

    # Initial guess
    x_init = InitialConditionsOption([0] * (n_q + n_qdot))

    # Define control path constraint
    u_bounds = BoundsOption([[tau_min] * n_tau, [tau_max] * n_tau])
    u_bounds.min[n_tau - 1, :] = 0
    u_bounds.max[n_tau - 1, :] = 0

    u_init = InitialConditionsOption([tau_init] * n_tau)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
    )
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points):
    # --- Options --- #
    biorbd_model = biorbd.Model(biorbd_model_path)
    tau_min, tau_max, tau_init = -100, 100, 0
    n_q = biorbd_model.nbQ()
    n_qdot = biorbd_model.nbQdot()
    n_tau = biorbd_model.nbGeneralizedTorque()

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Mayer.MINIMIZE_TIME)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, [0, -1]] = 0
    x_bounds[0].max[:, [0, -1]] = 0
    x_bounds[0].min[n_q - 1, -1] = 3.14
    x_bounds[0].max[n_q - 1, -1] = 3.14

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (n_q + n_qdot))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * n_tau, [tau_max] * n_tau])
    u_bounds[0].min[n_tau - 1, :] = 0
    u_bounds[0].max[n_tau - 1, :] = 0

    u_init = InitialConditionsList()
    u_init.add([tau_init] * n_tau)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
    )
Esempio n. 10
0
def prepare_ocp(biorbd_model, final_time, number_shooting_points, markers_ref,
                tau_ref):
    # --- Options --- #
    tau_min, tau_max, tau_init = -100, 100, 0
    n_q = biorbd_model.nbQ()
    n_qdot = biorbd_model.nbQdot()
    n_tau = biorbd_model.nbGeneralizedTorque()

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.TRACK_MARKERS,
                            axis_tot_track=[Axe.Y, Axe.Z],
                            weight=100,
                            target=markers_ref)
    objective_functions.add(Objective.Lagrange.TRACK_TORQUE, target=tau_ref)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, 0] = 0
    x_bounds[0].max[:, 0] = 0

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (n_q + n_qdot))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * n_tau, [tau_max] * n_tau])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * n_tau)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
    )
def prepare_ocp(biorbd_model_path="cubeSym.bioMod", show_online_optim=False, ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    number_shooting_points = 30
    final_time = 2
    torque_min, torque_max, torque_init = -100, 100, 0
    all_generalized_mapping = BidirectionalMapping(Mapping([0, 1, 2, 2], [3]), Mapping([0, 1, 2]))

    # Add objective functions
    objective_functions = {"type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 100}

    # Dynamics
    variable_type = ProblemType.torque_driven

    # Constraints
    constraints = (
        {"type": Constraint.ALIGN_MARKERS, "instant": Instant.START, "first_marker": 0, "second_marker": 1,},
        {"type": Constraint.ALIGN_MARKERS, "instant": Instant.END, "first_marker": 0, "second_marker": 2,},
    )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model, all_generalized_mapping)
    for i in range(3, 6):
        X_bounds.first_node_min[i] = 0
        X_bounds.last_node_min[i] = 0
        X_bounds.first_node_max[i] = 0
        X_bounds.last_node_max[i] = 0

    # Initial guess
    X_init = InitialConditions([0] * all_generalized_mapping.reduce.len * 2)

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * all_generalized_mapping.reduce.len, [torque_max] * all_generalized_mapping.reduce.len,
    )
    U_init = InitialConditions([torque_init] * all_generalized_mapping.reduce.len)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        variable_type,
        number_shooting_points,
        final_time,
        objective_functions,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        constraints,
        ode_solver=ode_solver,
        all_generalized_mapping=all_generalized_mapping,
        show_online_optim=show_online_optim,
    )
Esempio n. 12
0
def prepare_ocp(biorbd_model_path, number_shooting_points, final_time, use_actuators=False, ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    if use_actuators:
        torque_min, torque_max, torque_init = -1, 1, 0
    else:
        torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = {"type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 100}

    # Dynamics
    if use_actuators:
        problem_type = ProblemType.torque_activations_driven
    else:
        problem_type = ProblemType.torque_driven

    # Constraints
    constraints = (
        {"type": Constraint.ALIGN_MARKERS, "instant": Instant.START, "first_marker_idx": 0, "second_marker_idx": 1,},
        {"type": Constraint.ALIGN_MARKERS, "instant": Instant.END, "first_marker_idx": 0, "second_marker_idx": 2,},
    )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.min[3:6, [0, -1]] = 0
    X_bounds.max[3:6, [0, -1]] = 0
    X_bounds.min[2, [0, -1]] = [0, 1.57]
    X_bounds.max[2, [0, -1]] = [0, 1.57]

    # Initial guess
    X_init = InitialConditions([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * biorbd_model.nbGeneralizedTorque(), [torque_max] * biorbd_model.nbGeneralizedTorque(),
    )
    U_init = InitialConditions([torque_init] * biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
    )
Esempio n. 13
0
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points,
                time_min, time_max):
    # --- Options --- #
    biorbd_model = biorbd.Model(biorbd_model_path)
    torque_min, torque_max, torque_init = -100, 100, 0
    n_q = biorbd_model.nbQ()
    n_qdot = biorbd_model.nbQdot()
    n_tau = biorbd_model.nbGeneralizedTorque()

    # Add objective functions
    objective_functions = {"type": Objective.Lagrange.MINIMIZE_TORQUE}

    # Dynamics
    problem_type = ProblemType.torque_driven

    # Constraints
    constraints = ({
        "type": Constraint.TIME_CONSTRAINT,
        "minimum": time_min,
        "maximum": time_max,
    }, )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.min[:, [0, -1]] = 0
    X_bounds.max[:, [0, -1]] = 0
    X_bounds.min[n_q - 1, -1] = 3.14
    X_bounds.max[n_q - 1, -1] = 3.14

    # Initial guess
    X_init = InitialConditions([0] * (n_q + n_qdot))

    # Define control path constraint
    U_bounds = Bounds(min_bound=[torque_min] * n_tau,
                      max_bound=[torque_max] * n_tau)
    U_bounds.min[n_tau - 1, :] = 0
    U_bounds.max[n_tau - 1, :] = 0

    U_init = InitialConditions([torque_init] * n_tau)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
    )
Esempio n. 14
0
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points):
    # --- Options --- #
    biorbd_model = biorbd.Model(biorbd_model_path)
    torque_min, torque_max, torque_init = -100, 100, 0
    n_q = biorbd_model.nbQ()
    n_qdot = biorbd_model.nbQdot()
    n_tau = biorbd_model.nbGeneralizedTorque()

    # Dynamics
    dynamics = DynamicsTypeOption(DynamicsType.TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsOption(QAndQDotBounds(biorbd_model))
    x_bounds.min[:, [0, -1]] = 0
    x_bounds.max[:, [0, -1]] = 0
    x_bounds.min[1, -1] = 3.14
    x_bounds.max[1, -1] = 3.14

    # Initial guess
    x_init = InitialConditionsOption([0] * (n_q + n_qdot))

    # Define control path constraint
    u_bounds = BoundsOption([[torque_min] * n_tau, [torque_max] * n_tau])
    u_bounds.min[n_tau - 1, :] = 0
    u_bounds.max[n_tau - 1, :] = 0

    u_init = InitialConditionsOption([torque_init] * n_tau)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
    )
def prepare_ocp(biorbd_model_path="cube.bioMod",
                show_online_optim=False,
                ode_solver=OdeSolver.RK,
                long_optim=False):
    # --- Options --- #
    # Model path
    biorbd_model = (biorbd.Model(biorbd_model_path),
                    biorbd.Model(biorbd_model_path))

    # Problem parameters
    if long_optim:
        number_shooting_points = (100, 1000)
    else:
        number_shooting_points = (20, 30)
    final_time = (2, 5)
    torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = (
        ({
            "type": Objective.Lagrange.MINIMIZE_TORQUE,
            "weight": 100
        }, ),
        ({
            "type": Objective.Lagrange.MINIMIZE_TORQUE,
            "weight": 100
        }, ),
    )

    # Dynamics
    variable_type = (ProblemType.torque_driven, ProblemType.torque_driven)

    # Constraints
    constraints = (
        (
            {
                "type": Constraint.ALIGN_MARKERS,
                "instant": Instant.START,
                "first_marker": 0,
                "second_marker": 1,
            },
            {
                "type": Constraint.ALIGN_MARKERS,
                "instant": Instant.END,
                "first_marker": 0,
                "second_marker": 2,
            },
        ),
        ({
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.END,
            "first_marker": 0,
            "second_marker": 1,
        }, ),
    )

    # Path constraint
    X_bounds = [
        QAndQDotBounds(biorbd_model[0]),
        QAndQDotBounds(biorbd_model[0])
    ]

    for bounds in X_bounds:
        for i in range(6):
            if i != 0 and i != 2:
                bounds.first_node_min[i] = 0
                bounds.last_node_min[i] = 0
                bounds.first_node_max[i] = 0
                bounds.last_node_max[i] = 0
    X_bounds[0].first_node_min[2] = 0.0
    X_bounds[0].first_node_max[2] = 0.0
    X_bounds[1].first_node_min[2] = 0.0
    X_bounds[1].first_node_max[2] = 0.0
    X_bounds[1].last_node_min[2] = 1.57
    X_bounds[1].last_node_max[2] = 1.57

    # Initial guess
    X_init = InitialConditions(
        [0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))

    # Define control path constraint
    U_bounds = [
        Bounds(
            [torque_min] * biorbd_model[0].nbGeneralizedTorque(),
            [torque_max] * biorbd_model[0].nbGeneralizedTorque(),
        ),
        Bounds(
            [torque_min] * biorbd_model[0].nbGeneralizedTorque(),
            [torque_max] * biorbd_model[0].nbGeneralizedTorque(),
        ),
    ]
    U_init = InitialConditions([torque_init] *
                               biorbd_model[0].nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        variable_type,
        number_shooting_points,
        final_time,
        objective_functions,
        (X_init, X_init),
        (U_init, U_init),
        X_bounds,
        U_bounds,
        constraints,
        ode_solver=ode_solver,
        show_online_optim=show_online_optim,
    )
Esempio n. 16
0
def prepare_ocp(
    final_time, time_min, time_max, number_shooting_points, biorbd_model_path="cube.bioMod", ode_solver=OdeSolver.RK
):
    # --- Options --- #
    nb_phases = len(number_shooting_points)
    if nb_phases != 1 and nb_phases != 3:
        raise RuntimeError("Number of phases must be 1 to 3")

    # Model path
    biorbd_model = (biorbd.Model(biorbd_model_path), biorbd.Model(biorbd_model_path), biorbd.Model(biorbd_model_path))

    # Problem parameters
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100, phase=0)
    if nb_phases == 3:
        objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100, phase=1)
        objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100, phase=2)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN, phase=0)
    if nb_phases == 3:
        dynamics.add(DynamicsType.TORQUE_DRIVEN, phase=1)
        dynamics.add(DynamicsType.TORQUE_DRIVEN, phase=2)

    # Constraints
    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.START, first_marker_idx=0, second_marker_idx=1, phase=0)
    constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.END, first_marker_idx=0, second_marker_idx=2, phase=0)
    constraints.add(Constraint.TIME_CONSTRAINT, instant=Instant.END, minimum=time_min[0], maximum=time_max[0], phase=0)
    if nb_phases == 3:
        constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.END, first_marker_idx=0, second_marker_idx=1, phase=1)
        constraints.add(
            Constraint.TIME_CONSTRAINT, instant=Instant.END, minimum=time_min[1], maximum=time_max[1], phase=1
        )
        constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.END, first_marker_idx=0, second_marker_idx=2, phase=2)
        constraints.add(
            Constraint.TIME_CONSTRAINT, instant=Instant.END, minimum=time_min[2], maximum=time_max[2], phase=2
        )

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model[0]))  # Phase 0
    if nb_phases == 3:
        x_bounds.add(QAndQDotBounds(biorbd_model[0]))  # Phase 1
        x_bounds.add(QAndQDotBounds(biorbd_model[0]))  # Phase 2

    for bounds in x_bounds:
        for i in [1, 3, 4, 5]:
            bounds.min[i, [0, -1]] = 0
            bounds.max[i, [0, -1]] = 0
    x_bounds[0].min[2, 0] = 0.0
    x_bounds[0].max[2, 0] = 0.0
    if nb_phases == 3:
        x_bounds[2].min[2, [0, -1]] = [0.0, 1.57]
        x_bounds[2].max[2, [0, -1]] = [0.0, 1.57]

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
    if nb_phases == 3:
        x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
        x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * biorbd_model[0].nbGeneralizedTorque(), [tau_max] * biorbd_model[0].nbGeneralizedTorque()])
    if nb_phases == 3:
        u_bounds.add(
            [[tau_min] * biorbd_model[0].nbGeneralizedTorque(), [tau_max] * biorbd_model[0].nbGeneralizedTorque()]
        )
        u_bounds.add(
            [[tau_min] * biorbd_model[0].nbGeneralizedTorque(), [tau_max] * biorbd_model[0].nbGeneralizedTorque()]
        )

    u_init = InitialConditionsList()
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    if nb_phases == 3:
        u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
        u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model[:nb_phases],
        dynamics,
        number_shooting_points,
        final_time[:nb_phases],
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
    )
    def prepare_ocp(biorbd_model,
                    final_time,
                    number_shooting_points,
                    marker_ref,
                    excitations_ref,
                    q_ref,
                    state_init,
                    use_residual_torque,
                    activation_driven,
                    kin_data_to_track,
                    nb_threads,
                    use_SX=True,
                    param=False):

        # --- Options --- #
        nb_mus = biorbd_model.nbMuscleTotal()
        activation_min, activation_max, activation_init = 0, 1, 0.3
        excitation_min, excitation_max, excitation_init = 0, 1, 0.1
        torque_min, torque_max, torque_init = -100, 100, 0

        # -- Force iso ipopt pour acados
        # if param is not True:
        #     fiso = []
        #     for k in range(nb_mus):
        #         fiso.append(biorbd_model.muscle(k).characteristics().forceIsoMax().to_mx())
        #     mat_content = sio.loadmat("./results/param_f_iso_flex.mat")
        #     f_iso = mat_content["f_iso"] * mat_content["f_iso_global"]
        #     for k in range(biorbd_model.nbMuscles()):
        #         biorbd_model.muscle(k).characteristics().setForceIsoMax(
        #             f_iso[k] * fiso[k]
        #         )

        # Add objective functions
        objective_functions = ObjectiveList()

        objective_functions.add(Objective.Lagrange.TRACK_MUSCLES_CONTROL,
                                weight=10,
                                target=excitations_ref)

        objective_functions.add(Objective.Lagrange.MINIMIZE_STATE, weight=0.01)

        if use_residual_torque:
            objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE,
                                    weight=1)

        if kin_data_to_track == "markers":
            objective_functions.add(
                Objective.Lagrange.TRACK_MARKERS,
                weight=1000,
                target=marker_ref[:, -biorbd_model.nbMarkers():, :])

        elif kin_data_to_track == "q":
            objective_functions.add(
                Objective.Lagrange.TRACK_STATE,
                weight=100,
                # target=q_ref,
                # states_idx=range(biorbd_model.nbQ())
            )
        else:
            raise RuntimeError("Wrong choice of kin_data_to_track")

        # Dynamics
        dynamics = DynamicsTypeList()
        if use_residual_torque:
            dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN)
        elif activation_driven:
            dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_DRIVEN)
        else:
            dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_DRIVEN)

        # Constraints
        constraints = ()

        # Path constraint
        x_bounds = BoundsList()
        x_bounds.add(QAndQDotBounds(biorbd_model))
        if use_SX:
            x_bounds[0].min[:, 0] = np.concatenate(
                (state_init[6:biorbd_model.nbQ() + 6,
                            0], state_init[biorbd_model.nbQ() + 12:-nb_mus,
                                           0]))
            x_bounds[0].max[:, 0] = np.concatenate(
                (state_init[6:biorbd_model.nbQ() + 6,
                            0], state_init[biorbd_model.nbQ() + 12:-nb_mus,
                                           0]))

        # Add muscle to the bounds
        if activation_driven is not True:
            x_bounds[0].concatenate(
                Bounds([activation_min] * biorbd_model.nbMuscles(),
                       [activation_max] * biorbd_model.nbMuscles()))

        # Initial guess
        x_init = InitialConditionsList()
        if activation_driven:
            # state_base = np.ndarray((12, n_shooting_points+1))
            # for i in range(n_shooting_points+1):
            #     state_base[:, i] = np.concatenate((state_init[:6, 0], np.zeros((6))))
            x_init.add(np.concatenate(
                (state_init[6:biorbd_model.nbQ() + 6, :],
                 state_init[biorbd_model.nbQ() + 12:-nb_mus, :])),
                       interpolation=InterpolationType.EACH_FRAME)
            # x_init.add(state_init[:-nb_mus, :], interpolation=InterpolationType.EACH_FRAME)
        else:
            # x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) + [0] * biorbd_model.nbMuscles())
            x_init.add(state_init[biorbd_model.nbQ():, :],
                       interpolation=InterpolationType.EACH_FRAME)

        # Add muscle to the bounds
        u_bounds = BoundsList()
        u_init = InitialConditionsList()
        nb_tau = 6
        # init_residual_torque = np.concatenate((np.ones((biorbd_model.nbGeneralizedTorque(), n_shooting_points))*0.5,
        #                                        excitations_ref))
        if use_residual_torque:
            u_bounds.add([
                [torque_min] * biorbd_model.nbGeneralizedTorque() +
                [excitation_min] * biorbd_model.nbMuscleTotal(),
                [torque_max] * biorbd_model.nbGeneralizedTorque() +
                [excitation_max] * biorbd_model.nbMuscleTotal(),
            ])
            u_init.add([torque_init] * biorbd_model.nbGeneralizedTorque() +
                       [excitation_init] * biorbd_model.nbMuscleTotal())
            # u_init.add(init_residual_torque, interpolation=InterpolationType.EACH_FRAME)

        else:
            u_bounds.add([[excitation_min] * biorbd_model.nbMuscleTotal(),
                          [excitation_max] * biorbd_model.nbMuscleTotal()])
            if activation_driven:
                # u_init.add([activation_init] * biorbd_model.nbMuscleTotal())
                u_init.add(excitations_ref,
                           interpolation=InterpolationType.EACH_FRAME)
            else:
                # u_init.add([excitation_init] * biorbd_model.nbMuscleTotal())
                u_init.add(excitations_ref,
                           interpolation=InterpolationType.EACH_FRAME)

        # Get initial isometric forces
        fiso = []
        for k in range(nb_mus):
            fiso.append(
                biorbd_model.muscle(k).characteristics().forceIsoMax().to_mx())

        # Define the parameter to optimize
        bound_p_iso = Bounds(
            # min_bound=np.repeat(0.75, nb_mus), max_bound=np.repeat(3, nb_mus), interpolation=InterpolationType.CONSTANT)
            min_bound=[0.5] * nb_mus + [0.75],
            max_bound=[3.5] * nb_mus + [3],
            interpolation=InterpolationType.CONSTANT)
        bound_shape_factor = Bounds(min_bound=np.repeat(-3, nb_mus),
                                    max_bound=np.repeat(0, nb_mus),
                                    interpolation=InterpolationType.CONSTANT)

        p_iso_init = InitialConditions([1] * nb_mus + [2])
        initial_guess_A = InitialConditions([-3] * nb_mus)

        parameters = ParameterList()
        parameters.add(
            "p_iso",  # The name of the parameter
            modify_isometric_force,  # The function that modifies the biorbd model
            p_iso_init,
            bound_p_iso,  # The bounds
            size=nb_mus +
            1,  # The number of elements this particular parameter vector has
            fiso_init=fiso,
        )
        # parameters.add(
        #         "shape_factor",  # The name of the parameter
        #         modify_shape_factor,
        #         initial_guess_A,
        #         bound_shape_factor,  # The bounds
        #         size=nb_mus,  # The number of elements this particular parameter vector has
        # )

        # ------------- #
        return OptimalControlProgram(
            biorbd_model,
            dynamics,
            number_shooting_points,
            final_time,
            x_init,
            u_init,
            x_bounds,
            u_bounds,
            objective_functions,
            nb_threads=nb_threads,
            use_SX=use_SX,
            # parameters=parameters
        )
Esempio n. 18
0
def prepare_ocp(model_path, phase_time, number_shooting_points, direction,
                boundary):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(model_path)
    tau_min, tau_max, tau_ini = -500, 500, 0
    tau_mapping = BidirectionalMapping(Mapping([-1, -1, -1, 0]), Mapping([3]))

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
                            weight=-1)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN_WITH_CONTACT)

    # Constraints
    constraints = ConstraintList()
    constraints.add(
        Constraint.CONTACT_FORCE_INEQUALITY,
        direction=direction,
        instant=Instant.ALL,
        contact_force_idx=1,
        boundary=boundary,
    )
    constraints.add(
        Constraint.CONTACT_FORCE_INEQUALITY,
        direction=direction,
        instant=Instant.ALL,
        contact_force_idx=2,
        boundary=boundary,
    )

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    pose_at_first_node = [0, 0, -0.75, 0.75]

    # Initialize X_bounds
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, 0] = pose_at_first_node + [0] * nb_qdot
    x_bounds[0].max[:, 0] = pose_at_first_node + [0] * nb_qdot

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add(pose_at_first_node + [0] * nb_qdot)

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * tau_mapping.reduce.len,
                  [tau_max] * tau_mapping.reduce.len])

    u_init = InitialConditionsList()
    u_init.add([tau_ini] * tau_mapping.reduce.len)
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        phase_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        tau_mapping=tau_mapping,
    )
Esempio n. 19
0
def prepare_ocp(biorbd_model_path="HandSpinner.bioMod"):
    end_crank_idx = 0
    hand_marker_idx = 18

    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    tau_min, tau_max, tau_init = -100, 100, 0
    muscle_min, muscle_max, muscle_init = 0, 1, 0.5

    # Problem parameters
    number_shooting_points = 30
    final_time = 1.0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_MARKERS_DISPLACEMENT,
                            markers_idx=hand_marker_idx)
    objective_functions.add(Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL)
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS,
                    first_marker_idx=hand_marker_idx,
                    second_marker_idx=end_crank_idx,
                    instant=Instant.ALL)
    constraints.add(
        Constraint.TRACK_STATE,
        instant=Instant.ALL,
        states_idx=0,
        target=np.linspace(0, 2 * np.pi, number_shooting_points + 1),
    )

    state_transitions = StateTransitionList()
    state_transitions.add(state_transition_function, phase_pre_idx=0)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0, -0.9, 1.7, 0.9, 2.0, -1.3] + [0] * biorbd_model.nbQdot())

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([
        [tau_min] * biorbd_model.nbGeneralizedTorque() +
        [muscle_min] * biorbd_model.nbMuscleTotal(),
        [tau_max] * biorbd_model.nbGeneralizedTorque() +
        [muscle_max] * biorbd_model.nbMuscleTotal(),
    ])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque() +
               [muscle_init] * biorbd_model.nbMuscleTotal())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        state_transitions=state_transitions,
    )
Esempio n. 20
0
def prepare_ocp(
    biorbd_model,
    final_time,
    number_shooting_points,
    marker_ref,
    excitations_ref,
    q_ref,
    state_ekf,
    use_residual_torque,
    kin_data_to_track,
    nb_threads,
    use_SX=True,
):

    # --- Options --- #
    nb_mus = biorbd_model.nbMuscleTotal()
    activation_min, activation_max, activation_init = 0, 1, 0.5
    excitation_min, excitation_max, excitation_init = 0, 1, 0.1
    torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()

    objective_functions.add(Objective.Lagrange.TRACK_MUSCLES_CONTROL,
                            weight=0.001,
                            target=excitations_ref)

    if use_residual_torque:
        objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=10)

    if kin_data_to_track == "markers":
        objective_functions.add(Objective.Lagrange.TRACK_MARKERS,
                                weight=1,
                                target=marker_ref)

    elif kin_data_to_track == "q":
        objective_functions.add(Objective.Lagrange.TRACK_STATE,
                                weight=100,
                                target=q_ref,
                                states_idx=range(biorbd_model.nbQ()))
    else:
        raise RuntimeError("Wrong choice of kin_data_to_track")

    # Dynamics
    dynamics = DynamicsTypeList()
    if use_residual_torque:
        dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_AND_TORQUE_DRIVEN)
    else:
        dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))

    # Add muscle to the bounds
    x_bounds[0].concatenate(
        Bounds([activation_min] * biorbd_model.nbMuscles(),
               [activation_max] * biorbd_model.nbMuscles()))

    x_bounds[0].min[:, 0] = 0  # state_ekf[:, 0]
    x_bounds[0].max[:, 0] = 0  # state_ekf[:, 0]

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) +
               [0] * biorbd_model.nbMuscles())
    # x_init.add(state_ekf, interpolation=InterpolationType.EACH_FRAME)

    # Add muscle to the bounds
    u_bounds = BoundsList()
    u_init = InitialConditionsList()
    init_residual_torque = np.concatenate((np.ones(
        (biorbd_model.nbGeneralizedTorque(), n_shooting_points)) * 0.5,
                                           excitations_ref))
    if use_residual_torque:
        u_bounds.add([
            [torque_min] * biorbd_model.nbGeneralizedTorque() +
            [excitation_min] * biorbd_model.nbMuscleTotal(),
            [torque_max] * biorbd_model.nbGeneralizedTorque() +
            [excitation_max] * biorbd_model.nbMuscleTotal(),
        ])
        # u_init.add([torque_init] * biorbd_model.nbGeneralizedTorque() + [excitation_init] * biorbd_model.nbMuscleTotal())
        u_init.add(init_residual_torque,
                   interpolation=InterpolationType.EACH_FRAME)
    else:
        u_bounds.add([[excitation_min] * biorbd_model.nbMuscleTotal(),
                      [excitation_max] * biorbd_model.nbMuscleTotal()])
        u_init.add([0] * biorbd_model.nbMuscleTotal())
        # u_init.add(excitations_ref, interpolation=InterpolationType.EACH_FRAME)

    # Get initial isometric forces
    fiso = []
    for k in range(nb_mus):
        fiso.append(
            biorbd_model.muscle(k).characteristics().forceIsoMax().to_mx())

    # Define the parameter to optimize
    bound_p_iso = Bounds(min_bound=np.repeat(0.5, nb_mus + 1),
                         max_bound=np.repeat(3.5, nb_mus + 1),
                         interpolation=InterpolationType.CONSTANT)
    bound_shape_factor = Bounds(min_bound=np.repeat(-3, nb_mus),
                                max_bound=np.repeat(0, nb_mus),
                                interpolation=InterpolationType.CONSTANT)

    p_iso_init = InitialConditions(np.repeat(1, nb_mus + 1))
    initial_guess_A = InitialConditions([-3] * nb_mus)

    parameters = ParameterList()
    parameters.add(
        "p_iso",  # The name of the parameter
        modify_isometric_force,  # The function that modifies the biorbd model
        p_iso_init,
        bound_p_iso,  # The bounds
        size=nb_mus +
        1,  # The number of elements this particular parameter vector has
        fiso_init=fiso,
    )
    # parameters.add(
    #         "shape_factor",  # The name of the parameter
    #         modify_shape_factor,
    #         initial_guess_A,
    #         bound_shape_factor,  # The bounds
    #         size=nb_mus,  # The number of elements this particular parameter vector has
    # )

    # ------------- #
    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        nb_threads=nb_threads,
        use_SX=use_SX,
        # parameters=parameters,
    )
Esempio n. 21
0
def prepare_ocp(biorbd_model_path="HandSpinner.bioMod"):
    end_crank_idx = 0
    hand_marker_idx = 18

    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    torque_min, torque_max, torque_init = -100, 100, 0
    muscle_min, muscle_max, muscle_init = 0, 1, 0.5

    # Problem parameters
    number_shooting_points = 30
    final_time = 1.5

    # Add objective functions
    objective_functions = (
        {
            "type": Objective.Lagrange.MINIMIZE_MARKERS_DISPLACEMENT,
            "weight": 1,
            "markers_idx": hand_marker_idx
        },
        {
            "type": Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL,
            "weight": 1
        },
        {
            "type": Objective.Lagrange.MINIMIZE_TORQUE,
            "weight": 1
        },
    )

    # Dynamics
    problem_type = ProblemType.muscle_activations_and_torque_driven

    # Constraints
    constraints = (
        {
            "type": Constraint.ALIGN_MARKERS,
            "first_marker_idx": hand_marker_idx,
            "second_marker_idx": end_crank_idx,
            "instant": Instant.ALL,
        },
        {
            "type": Constraint.TRACK_STATE,
            "instant": Instant.ALL,
            "states_idx": 0,
            "data_to_track": np.linspace(0, 2 * np.pi,
                                         number_shooting_points + 1),
        },
    )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)

    # Initial guess
    X_init = InitialConditions([0, -0.9, 1.7, 0.9, 2.0, -1.3] +
                               [0] * biorbd_model.nbQdot())

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * biorbd_model.nbGeneralizedTorque() +
        [muscle_min] * biorbd_model.nbMuscleTotal(),
        [torque_max] * biorbd_model.nbGeneralizedTorque() +
        [muscle_max] * biorbd_model.nbMuscleTotal(),
    )

    U_init = InitialConditions([torque_init] *
                               biorbd_model.nbGeneralizedTorque() +
                               [muscle_init] * biorbd_model.nbMuscleTotal())
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
        is_cyclic_objective=True,
    )
Esempio n. 22
0
def prepare_ocp(
    biorbd_model,
    final_time,
    nb_shooting,
    markers_ref,
    excitations_ref,
    q_ref,
    kin_data_to_track="markers",
    show_online_optim=False,
):
    # Problem parameters
    torque_min, torque_max, torque_init = -100, 100, 0
    activation_min, activation_max, activation_init = 0, 1, 0.5
    excitation_min, excitation_max, excitation_init = 0, 1, 0.5

    # Add objective functions
    objective_functions = [
        {
            "type": Objective.Lagrange.TRACK_MUSCLES_CONTROL,
            "weight": 1,
            "data_to_track": excitations_ref
        },
        {
            "type": Objective.Lagrange.MINIMIZE_TORQUE,
            "weight": 10000
        },
    ]
    if kin_data_to_track == "markers":
        objective_functions.append(
            {
                "type": Objective.Lagrange.TRACK_MARKERS,
                "weight": 100,
                "data_to_track": markers_ref
            }, )
    elif kin_data_to_track == "q":
        objective_functions.append(
            {
                "type": Objective.Lagrange.TRACK_STATE,
                "weight": 100,
                "data_to_track": q_ref,
                "states_idx": range(biorbd_model.nbQ()),
            }, )
    else:
        raise RuntimeError("Wrong choice of kin_data_to_track")

    # Dynamics
    variable_type = ProblemType.muscle_excitations_and_torque_driven

    # Constraints
    constraints = ()

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.first_node_min += [activation_min] * biorbd_model.nbMuscleTotal()
    X_bounds.first_node_max += [activation_max] * biorbd_model.nbMuscleTotal()
    X_bounds.min += [activation_min] * biorbd_model.nbMuscleTotal()
    X_bounds.max += [activation_max] * biorbd_model.nbMuscleTotal()
    X_bounds.last_node_min += [activation_min] * biorbd_model.nbMuscleTotal()
    X_bounds.last_node_max += [activation_max] * biorbd_model.nbMuscleTotal()

    # Initial guess
    X_init = InitialConditions([0] *
                               (biorbd_model.nbQ() + biorbd_model.nbQdot()) +
                               [activation_init] *
                               biorbd_model.nbMuscleTotal())

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * biorbd_model.nbGeneralizedTorque() +
        [excitation_min] * biorbd_model.nbMuscleTotal(),
        [torque_max] * biorbd_model.nbGeneralizedTorque() +
        [excitation_max] * biorbd_model.nbMuscleTotal(),
    )
    U_init = InitialConditions(
        [torque_init] * biorbd_model.nbGeneralizedTorque() +
        [excitation_init] * biorbd_model.nbMuscleTotal())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        variable_type,
        nb_shooting,
        final_time,
        objective_functions,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        constraints,
        show_online_optim=show_online_optim,
    )
Esempio n. 23
0
def prepare_ocp(biorbd_model_path, ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    number_shooting_points = 30
    final_time = 2
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveOption(Objective.Lagrange.MINIMIZE_TORQUE,
                                          weight=100)

    # Dynamics
    dynamics = DynamicsTypeOption(DynamicsType.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(custom_func_align_markers,
                    instant=Instant.START,
                    first_marker_idx=0,
                    second_marker_idx=1)
    constraints.add(custom_func_align_markers,
                    instant=Instant.END,
                    first_marker_idx=0,
                    second_marker_idx=2)

    # Path constraint
    x_bounds = BoundsOption(QAndQDotBounds(biorbd_model))
    x_bounds.min[1:6, [0, -1]] = 0
    x_bounds.max[1:6, [0, -1]] = 0
    x_bounds.min[2, -1] = 1.57
    x_bounds.max[2, -1] = 1.57

    # Initial guess
    x_init = InitialConditionsOption(
        [0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    u_bounds = BoundsOption([[tau_min] * biorbd_model.nbGeneralizedTorque(),
                             [tau_max] * biorbd_model.nbGeneralizedTorque()])

    u_init = InitialConditionsOption([tau_init] *
                                     biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
    )
Esempio n. 24
0
def prepare_ocp(
        biorbd_model,
        final_time,
        number_shooting_points,
        marker_ref,
        excitations_ref,
        q_ref,
        state_init,
        use_residual_torque,
        activation_driven,
        kin_data_to_track,
        nb_threads,
        use_SX=True,
        ):

    # --- Options --- #
    nb_mus = biorbd_model.nbMuscleTotal()
    activation_min, activation_max, activation_init = 0, 1, 0.3
    excitation_min, excitation_max, excitation_init = 0, 1, 0.1
    torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()

    objective_functions.add(Objective.Lagrange.TRACK_MUSCLES_CONTROL, weight=10, target=excitations_ref)

    objective_functions.add(Objective.Lagrange.MINIMIZE_STATE, weight=0.01)

    if use_residual_torque:
        objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=1)

    if kin_data_to_track == "markers":
        objective_functions.add(Objective.Lagrange.TRACK_MARKERS, weight=1000,
                                target=marker_ref[:, -biorbd_model.nbMarkers():, :]
                                )

    elif kin_data_to_track == "q":
        objective_functions.add(
            Objective.Lagrange.TRACK_STATE, weight=100,
            # target=q_ref,
            # states_idx=range(biorbd_model.nbQ())
        )
    else:
        raise RuntimeError("Wrong choice of kin_data_to_track")

    # Dynamics
    dynamics = DynamicsTypeList()
    if use_residual_torque:
        dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN)
    elif activation_driven:
        dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_DRIVEN)
    else:
        dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_DRIVEN)

    # Constraints
    constraints = ()

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    if use_SX:
        x_bounds[0].min[:, 0] = np.concatenate((state_init[6:biorbd_model.nbQ() + 6, 0],
                                                state_init[biorbd_model.nbQ() + 12:-nb_mus, 0]))
        x_bounds[0].max[:, 0] = np.concatenate((state_init[6:biorbd_model.nbQ() + 6, 0],
                                                state_init[biorbd_model.nbQ() + 12:-nb_mus, 0]))

    # Add muscle to the bounds
    if activation_driven is not True:
        x_bounds[0].concatenate(
            Bounds([activation_min] * biorbd_model.nbMuscles(), [activation_max] * biorbd_model.nbMuscles())
        )

    # Initial guess
    x_init = InitialConditionsList()
    if activation_driven:
        # state_base = np.ndarray((12, n_shooting_points+1))
        # for i in range(n_shooting_points+1):
        #     state_base[:, i] = np.concatenate((state_init[:6, 0], np.zeros((6))))
        x_init.add(np.concatenate((state_init[6:biorbd_model.nbQ() + 6, :],
                                   state_init[biorbd_model.nbQ() + 12:-nb_mus, :])),
                   interpolation=InterpolationType.EACH_FRAME)
        # x_init.add(state_init[:-nb_mus, :], interpolation=InterpolationType.EACH_FRAME)
    else:
        # x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) + [0] * biorbd_model.nbMuscles())
        x_init.add(state_init[biorbd_model.nbQ():, :], interpolation=InterpolationType.EACH_FRAME)

    # Add muscle to the bounds
    u_bounds = BoundsList()
    u_init = InitialConditionsList()
    nb_tau = 6
    # init_residual_torque = np.concatenate((np.ones((biorbd_model.nbGeneralizedTorque(), n_shooting_points))*0.5,
    #                                        excitations_ref))
    if use_residual_torque:
        u_bounds.add(
            [
                [torque_min] * biorbd_model.nbGeneralizedTorque() + [excitation_min] * biorbd_model.nbMuscleTotal(),
                [torque_max] * biorbd_model.nbGeneralizedTorque() + [excitation_max] * biorbd_model.nbMuscleTotal(),
            ]
        )
        u_init.add(
            [torque_init] * biorbd_model.nbGeneralizedTorque() + [excitation_init] * biorbd_model.nbMuscleTotal())
        # u_init.add(init_residual_torque, interpolation=InterpolationType.EACH_FRAME)

    else:
        u_bounds.add(
            [[excitation_min] * biorbd_model.nbMuscleTotal(), [excitation_max] * biorbd_model.nbMuscleTotal()])
        if activation_driven:
            # u_init.add([activation_init] * biorbd_model.nbMuscleTotal())
            u_init.add(excitations_ref, interpolation=InterpolationType.EACH_FRAME)
        else:
            # u_init.add([excitation_init] * biorbd_model.nbMuscleTotal())
            u_init.add(excitations_ref, interpolation=InterpolationType.EACH_FRAME)

    # Get initial isometric forces
    fiso = []
    for k in range(nb_mus):
        fiso.append(biorbd_model.muscle(k).characteristics().forceIsoMax().to_mx())


    # ------------- #
    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        nb_threads=nb_threads,
        use_SX=use_SX,
        # parameters=parameters
    )
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points,
                ode_solver, initialize_near_solution):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = {
        "type": Objective.Lagrange.MINIMIZE_TORQUE,
        "weight": 100
    }

    # Dynamics
    problem_type = ProblemType.torque_driven

    # Constraints
    constraints = (
        {
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.START,
            "first_marker_idx": 0,
            "second_marker_idx": 4,
        },
        {
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.END,
            "first_marker_idx": 0,
            "second_marker_idx": 5,
        },
        {
            "type": Constraint.ALIGN_MARKER_WITH_SEGMENT_AXIS,
            "instant": Instant.ALL,
            "marker_idx": 1,
            "segment_idx": 2,
            "axis": (Axe.X),
        },
    )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)

    for i in range(1, 8):
        if i != 3:
            X_bounds.min[i, [0, -1]] = 0
            X_bounds.max[i, [0, -1]] = 0
    X_bounds.min[2, -1] = 1.57
    X_bounds.max[2, -1] = 1.57

    # Initial guess
    X_init = InitialConditions([0] *
                               (biorbd_model.nbQ() + biorbd_model.nbQdot()))
    if initialize_near_solution:
        for i in range(2):
            X_init.init[i] = 1.5
        for i in range(4, 6):
            X_init.init[i] = 0.7
        for i in range(6, 8):
            X_init.init[i] = 0.6

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * biorbd_model.nbGeneralizedTorque(),
        [torque_max] * biorbd_model.nbGeneralizedTorque(),
    )
    U_init = InitialConditions([torque_init] *
                               biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
    )
def prepare_ocp(biorbd_model_path,
                final_time,
                number_shooting_points,
                use_SX=False,
                nb_threads=1):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    tau_min, tau_max, tau_init = -5, 5, 0
    activation_min, activation_max, activation_init = 0, 1, 0.5
    excitation_min, excitation_max, excitation_init = 0, 1, 0.5

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100)
    objective_functions.add(Objective.Lagrange.MINIMIZE_STATE, weight=100)
    objective_functions.add(Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL,
                            weight=10)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_AND_TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))

    # Add muscle to the bounds
    x_bounds[0].concatenate(
        Bounds([activation_min] * biorbd_model.nbMuscles(),
               [activation_max] * biorbd_model.nbMuscles()))

    # Following values are taken from Belaise's matlab code
    x_bounds[0].min[:,
                    0] = (-0.2, 0.1, -0.25, 0.1, 0, -0, -0.2, 0.05, -0.15,
                          -0.02, 0, 0.28) + (0, ) * biorbd_model.nbMuscles()
    x_bounds[0].max[:,
                    0] = (-0.2, 0.1, -0.25, 0.1, 0, -0, -0.2, 0.05, -0.15,
                          -0.02, 0, 0.28) + (0, ) * biorbd_model.nbMuscles()
    x_bounds[0].min[:biorbd_model.nbQ() * 2,
                    -1] = (-0.03, 0.1, -0.1, 0.2, -0.76, 1., 2., -1.5, -0.17,
                           -0.62, 1.4, -0.57)
    x_bounds[0].max[:biorbd_model.nbQ() * 2,
                    -1] = (-0.03, 0.1, -0.1, 0.2, -0.76, 1., 2., -1.5, -0.17,
                           -0.62, 1.4, -0.57)

    # Initial guess

    x_init = InitialConditionsList()
    x_init.add([1.] * biorbd_model.nbQ() + [0] * biorbd_model.nbQdot() +
               [0] * biorbd_model.nbMuscles())

    # Define control path constraint
    u_bounds = BoundsList()
    u_init = InitialConditionsList()

    u_bounds.add([
        [tau_min] * biorbd_model.nbGeneralizedTorque() +
        [excitation_min] * biorbd_model.nbMuscles(),
        [tau_max] * biorbd_model.nbGeneralizedTorque() +
        [excitation_max] * biorbd_model.nbMuscles(),
    ])
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque() +
               [excitation_init] * biorbd_model.nbMuscles())
    # ------------- #

    return OptimalControlProgram(biorbd_model,
                                 dynamics,
                                 number_shooting_points,
                                 final_time,
                                 x_init,
                                 u_init,
                                 x_bounds,
                                 u_bounds,
                                 objective_functions,
                                 use_SX=use_SX,
                                 nb_threads=nb_threads)
Esempio n. 27
0
def prepare_ocp(biorbd_model_path,
                number_shooting_points,
                final_time,
                loop_from_constraint,
                ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = [{
        "type": Objective.Lagrange.MINIMIZE_TORQUE,
        "weight": 100
    }]

    # Dynamics
    problem_type = ProblemType.torque_driven

    # Constraints
    constraints = (
        {
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.MID,
            "first_marker_idx": 0,
            "second_marker_idx": 2,
        },
        {
            "type": Constraint.TRACK_STATE,
            "instant": Instant.MID,
            "states_idx": 2,
        },
        {
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.END,
            "first_marker_idx": 0,
            "second_marker_idx": 1,
        },
    )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.min[2:6, -1] = [1.57, 0, 0, 0]
    X_bounds.max[2:6, -1] = [1.57, 0, 0, 0]

    # Initial guess
    X_init = InitialConditions([0] *
                               (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * biorbd_model.nbGeneralizedTorque(),
        [torque_max] * biorbd_model.nbGeneralizedTorque(),
    )
    U_init = InitialConditions([torque_init] *
                               biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
        is_cyclic_objective=not loop_from_constraint,
        is_cyclic_constraint=loop_from_constraint,
    )
def prepare_ocp(biorbd_model_path="cubeSym.bioMod",
                show_online_optim=False,
                ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    number_shooting_points = 30
    final_time = 2
    torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = {
        "type": Objective.Lagrange.MINIMIZE_TORQUE,
        "weight": 100
    }

    # Dynamics
    variable_type = ProblemType.torque_driven

    # Constraints
    constraints = (
        {
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.START,
            "first_marker": 0,
            "second_marker": 1,
        },
        {
            "type": Constraint.ALIGN_MARKERS,
            "instant": Instant.END,
            "first_marker": 0,
            "second_marker": 2,
        },
        {
            "type": Constraint.PROPORTIONAL_STATE,
            "instant": Instant.ALL,
            "first_dof": 2,
            "second_dof": 3,
            "coef": -1,
        },
    )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)
    for i in range(4, 8):
        X_bounds.first_node_min[i] = 0
        X_bounds.last_node_min[i] = 0
        X_bounds.first_node_max[i] = 0
        X_bounds.last_node_max[i] = 0

    # Initial guess
    X_init = InitialConditions([0] *
                               (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * biorbd_model.nbQ(),
        [torque_max] * biorbd_model.nbQ(),
    )
    U_init = InitialConditions([torque_init] * biorbd_model.nbQ())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        variable_type,
        number_shooting_points,
        final_time,
        objective_functions,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        constraints,
        ode_solver=ode_solver,
        show_online_optim=show_online_optim,
    )
Esempio n. 29
0
def prepare_ocp(
    biorbd_model,
    final_time,
    nb_shooting,
    markers_ref,
    excitations_ref,
    q_ref,
    with_residual_torque,
    kin_data_to_track="markers",
):
    # Problem parameters
    torque_min, torque_max, torque_init = -100, 100, 0
    activation_min, activation_max, activation_init = 0, 1, 0.5
    excitation_min, excitation_max, excitation_init = 0, 1, 0.5

    # Add objective functions
    objective_functions = [
        {"type": Objective.Lagrange.TRACK_MUSCLES_CONTROL, "weight": 1, "data_to_track": excitations_ref},
    ]
    if with_residual_torque:
        objective_functions.append({"type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 1})
    if kin_data_to_track == "markers":
        objective_functions.append(
            {"type": Objective.Lagrange.TRACK_MARKERS, "weight": 100, "data_to_track": markers_ref},
        )
    elif kin_data_to_track == "q":
        objective_functions.append(
            {
                "type": Objective.Lagrange.TRACK_STATE,
                "weight": 100,
                "data_to_track": q_ref,
                "states_idx": range(biorbd_model.nbQ()),
            },
        )
    else:
        raise RuntimeError("Wrong choice of kin_data_to_track")

    # Dynamics
    if with_residual_torque:
        variable_type = ProblemType.muscle_excitations_and_torque_driven
    else:
        variable_type = ProblemType.muscle_excitations_driven

    # Constraints
    constraints = ()

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model)
    # Due to unpredictable movement of the forward dynamics that generated the movement, the bound must be larger
    X_bounds.min[[0, 1], :] = -2 * np.pi
    X_bounds.max[[0, 1], :] = 2 * np.pi

    # Add muscle to the bounds
    X_bounds.concatenate(
        Bounds([activation_min] * biorbd_model.nbMuscles(), [activation_max] * biorbd_model.nbMuscles())
    )

    # Initial guess
    X_init = InitialConditions([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) + [0] * biorbd_model.nbMuscles())

    # Define control path constraint
    if with_residual_torque:
        U_bounds = Bounds(
            [torque_min] * biorbd_model.nbGeneralizedTorque() + [excitation_min] * biorbd_model.nbMuscles(),
            [torque_max] * biorbd_model.nbGeneralizedTorque() + [excitation_max] * biorbd_model.nbMuscles(),
        )
        U_init = InitialConditions(
            [torque_init] * biorbd_model.nbGeneralizedTorque() + [excitation_init] * biorbd_model.nbMuscles()
        )
    else:
        U_bounds = Bounds([excitation_min] * biorbd_model.nbMuscles(), [excitation_max] * biorbd_model.nbMuscles(),)
        U_init = InitialConditions([excitation_init] * biorbd_model.nbMuscles())
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        variable_type,
        nb_shooting,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
    )
Esempio n. 30
0
def prepare_ocp(biorbd_model_path, number_shooting_points, final_time):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    nq = biorbd_model.nbQ()
    nqdot = biorbd_model.nbQdot()
    ntau = nqdot  # biorbd_model.nbGeneralizedTorque()
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Mayer.MINIMIZE_MARKERS,
                            markers_idx=1,
                            weight=-1)
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * ntau, [tau_max] * ntau])

    # Initial guesses
    x = np.vstack((np.zeros(
        (biorbd_model.nbQ(), 2)), np.ones((biorbd_model.nbQdot(), 2))))
    Arm_init_D = np.zeros((3, 2))
    Arm_init_D[1, 0] = 0
    Arm_init_D[1, 1] = -np.pi + 0.01
    Arm_init_G = np.zeros((3, 2))
    Arm_init_G[1, 0] = 0
    Arm_init_G[1, 1] = np.pi - 0.01
    for i in range(2):
        Arm_Quat_D = eul2quat(Arm_init_D[:, i])
        Arm_Quat_G = eul2quat(Arm_init_G[:, i])
        x[6:9, i] = Arm_Quat_D[1:]
        x[12, i] = Arm_Quat_D[0]
        x[9:12, i] = Arm_Quat_G[1:]
        x[13, i] = Arm_Quat_G[0]
    x_init = InitialConditionsList()
    x_init.add(x, interpolation=InterpolationType.LINEAR)

    u_init = InitialConditionsList()
    u_init.add([tau_init] * ntau)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
    )