Esempio n. 1
0
    def test_poles_independent_of_ma(self):
        p = 5
        rng = default_rng(5)
        a = rng.normal(size=p)
        arma1 = Arma(a, rng.normal(size=3))
        arma2 = Arma(a, rng.normal(size=5))

        poles1 = arma1.calculate_poles()
        poles2 = arma2.calculate_poles()

        np.testing.assert_allclose(poles1, poles2)
Esempio n. 2
0
    def test_ar1(self):
        a = [0.7]
        ar1 = Arma(a, [])
        poles = ar1.calculate_poles()

        self.assertEqual(len(poles), 1)
        self.assertAlmostEqual(poles[0], a[0])
Esempio n. 3
0
    def test_number_of_poles_matches_ar_order(self):
        p = 6
        rng = default_rng(4)
        ar = Arma(rng.normal(size=p), [])
        poles = ar.calculate_poles()

        self.assertEqual(len(poles), p)
Esempio n. 4
0
    def test_ar2(self):
        a = [0.5, -0.7]
        ar2 = Arma(a, [])
        poles = ar2.calculate_poles()

        self.assertEqual(len(poles), 2)

        pole_prod = np.prod(poles)
        pole_sum = np.sum(poles)

        np.testing.assert_allclose(pole_sum, a[0], atol=1e-8)
        np.testing.assert_allclose(pole_prod, -a[1], atol=1e-8)
Esempio n. 5
0
    def test_product_of_monomials_based_on_poles_recovers_ar_coeffs(self):
        p = 5
        q = 3
        rng = default_rng(2)
        arma = Arma(rng.normal(size=p), rng.normal(size=q))

        poles = arma.calculate_poles()
        coeffs = np.polynomial.polynomial.polyfromroots(poles)

        # make sure the coefficients are real, up to tolerance
        self.assertLess(np.max(np.abs(np.imag(coeffs))), 1e-6)

        # ensure that the coefficients are ordered in the proper way
        coeffs = np.flip(coeffs.real)

        np.testing.assert_allclose(coeffs[1:], -arma.a)