def run_restrictedImgnetHypo(auto_var):
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    _ = set_random_seed(auto_var)
    norm = auto_var.get_var("norm")
    trn_ds, tst_ds = auto_var.get_var("dataset")
    lbl_enc = None # TODO
    auto_var.set_intermidiate_variable("lbl_enc", lbl_enc)
    n_classes = len(trn_ds.classes)

    result = {}
    mock_trnX = np.concatenate([trn_ds[0][0], trn_ds[1][0]], axis=0)
    trny = np.array(trn_ds.targets)
    tsty = np.array(tst_ds.targets)
    #multigpu = True if torch.cuda.device_count() > 1 else False
    multigpu = False
    model = auto_var.get_var("model", trnX=trnX, trny=trny, multigpu=multigpu, n_channels=n_channels)
    model.tst_ds = (tstX, tsty)
    with Stopwatch("Fitting Model"):
        history = model.fit(trnX, trny)

    result['trn_acc'] = (model.predict_ds(trn_ds) == trny).mean()
    result['tst_acc'] = (model.predict_ds(tst_ds) == tsty).mean()
    print(f"train acc: {result['trn_acc']}")
    print(f"test acc: {result['tst_acc']}")

    attack_model = auto_var.get_var("attack", model=model, n_classes=n_classes,
                                    clip_min=0, clip_max=1,)
    with Stopwatch("Attacking Train"):
        adv_trnX = attack_model.perturb_ds(trn_ds)
    with Stopwatch("Attacking Test"):
        adv_tstX = attack_model.perturb_ds(tst_ds)
    result['adv_trn_acc'] = (model.predict(adv_trnX) == trny).mean()
    result['adv_tst_acc'] = (model.predict(adv_tstX) == tsty).mean()
    print(f"adv trn acc: {result['adv_trn_acc']}")
    print(f"adv tst acc: {result['adv_tst_acc']}")
    del attack_model

    with Stopwatch("Estimating trn Lip"):
        trn_lip, _ = estimate_local_lip_v2(model.model, trn_ds, top_norm=1, btm_norm=norm,
                                     epsilon=auto_var.get_var("eps"), device=device)
    result['avg_trn_lip_1'] = trn_lip
    with Stopwatch("Estimating tst Lip"):
        tst_lip, _ = estimate_local_lip_v2(model.model, tst_ds, top_norm=1, btm_norm=norm,
                                     epsilon=auto_var.get_var("eps"), device=device)
    result['avg_tst_lip_1'] = tst_lip
    print(f"avg trn lip: {result['avg_trn_lip_1']}")
    print(f"avg tst lip: {result['avg_tst_lip_1']}")

    print(result)
    return result
Esempio n. 2
0
def exception_example():
    print("[exception_example]")
    try:
        with Stopwatch():
            raise ValueError("example error")
    except ValueError:
        pass
Esempio n. 3
0
def cumulative_elapsed_time_example():
    print(
        "[cumulative_elapsed_time_example] use python logging module with different log level"
    )
    timer = Stopwatch("Waiting")
    with timer:
        sleep(1)
    sleep(1)
    with timer:
        sleep(1)
        timer.log_elapsed_time(
            prefix="timer.log_elapsed_time(): ")  # 0:00:01....
        print("timer.get_elapsed_time():",
              timer.get_elapsed_time())  # 0:00:01....
    print("timer.split_elapsed_time:", timer.split_elapsed_time)
    # [datetime.timedelta(seconds=1), datetime.timedelta(seconds=1)]
    print("timer.get_cumulative_elapsed_time():",
          timer.get_cumulative_elapsed_time())
Esempio n. 4
0
def logging_example():
    print("[logging_example] use python logging module")
    with Stopwatch("Waiting", logger=logger):
        sleep(1)
Esempio n. 5
0
def changing_prefix_example():
    print("[changing_prefix_example] change the prefix")
    with Stopwatch("Waiting", prefix="[bistiming] "):
        sleep(1)
Esempio n. 6
0
def same_line_log_example():
    print("[same_line_log_example] write the ending log at the same line")
    with Stopwatch("Waiting", end_in_new_line=False):
        sleep(1)
Esempio n. 7
0
def hide_all_logs_example():
    print("[hide_all_logs_example] hide all logs")
    with Stopwatch(verbose=False):
        sleep(1)
Esempio n. 8
0
def hide_ending_log_example():
    print("[hide_ending_log_example] hide ending log")
    with Stopwatch("Waiting", verbose_end=False):
        sleep(1)
Esempio n. 9
0
def description_example():
    print("[description_example] stopwatch with description")
    with Stopwatch("Waiting"):
        sleep(1)
Esempio n. 10
0
def basic_context_manager_example():
    print("[basic_context_manager_example]")
    with Stopwatch():
        sleep(1)
Esempio n. 11
0
def basic_example():
    print("[basic_example]")
    timer = Stopwatch()
    sleep(0.1)
    timer.log_elapsed_time()  # 0:00:00
    timer.start()
    sleep(0.1)
    timer.log_elapsed_time()  # 0:00:00.1
    sleep(0.1)
    timer.pause()
    timer.log_elapsed_time()  # 0:00:00.2
    sleep(0.1)
    timer.log_elapsed_time()  # 0:00:00.2
    timer.split()  # 0:00:00.2
    timer.log_elapsed_time()  # 0:00:00
    print("timer.get_cumulative_elapsed_time():",
          timer.get_cumulative_elapsed_time())  # 0:00:00.2
    sleep(0.1)
    timer.start()
    sleep(0.1)
    timer.log_elapsed_time()  # 0:00:00.1
    print("timer.get_cumulative_elapsed_time():",
          timer.get_cumulative_elapsed_time())  # 0:00:00.3
    timer.split()  # 0:00:00.1
    sleep(0.1)
    timer.pause()
    timer.split()  # 0:00:00.1
    print("timer.get_cumulative_elapsed_time():",
          timer.get_cumulative_elapsed_time())  # 0:00:00.4
    print("timer.split_elapsed_time:",
          [str(delta) for delta in timer.split_elapsed_time])
    # [0:00:00.2, 0:00:00.1, 0:00:00.1]
    timer.reset()

    timer.log_elapsed_time()  # 0:00:00
    print("timer.get_cumulative_elapsed_time():",
          timer.get_cumulative_elapsed_time())  # 0:00:00
    print("timer.split_elapsed_time:", timer.split_elapsed_time)  # []
    sleep(0.1)
    timer.start()
    sleep(0.1)
    timer.log_elapsed_time()  # 0:00:00.1
Esempio n. 12
0
def logging_level_example():
    print(
        "[logging_level_example] use python logging module with different log level"
    )
    with Stopwatch("Waiting", logger=logger, logging_level=logging.DEBUG):
        sleep(1)
Esempio n. 13
0
import numpy as np
import pickle
from bistiming import Stopwatch

direct_encoding_fields = ['hour', 'C1', 'C15', 'C16', 'C18', 'C20',
                          'banner_pos',  'site_category','app_category',
                          'device_type','device_conn_type']

frequency_encoding_fields = ['C14','C17', 'C19', 'C21',
                             'site_id','site_domain','app_id','app_domain',
                              'device_model', 'device_id']

with Stopwatch('Step 2: loading data')
    # load direct encoding fields
    with open('sets/click.pkl','rb') as f:
        click = pickle.load(f)

    with open('sets/hour.pkl','rb') as f:
        hour = pickle.load(f)

    with open('sets/C1.pkl','rb') as f:
        C1 = pickle.load(f)

    with open('sets/C15.pkl','rb') as f:
        C15 = pickle.load(f)

    with open('sets/C16.pkl','rb') as f:
        C16 = pickle.load(f)

    with open('sets/C18.pkl','rb') as f:
        C18 = pickle.load(f)
Esempio n. 14
0
def run_hypo(auto_var):
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    _ = set_random_seed(auto_var)
    norm = auto_var.get_var("norm")
    trnX, trny, tstX, tsty = auto_var.get_var("dataset")
    lbl_enc = OneHotEncoder(categories=[np.sort(np.unique(trny))],
                            sparse=False).fit(trny.reshape(-1, 1))
    auto_var.set_intermidiate_variable("lbl_enc", lbl_enc)
    n_classes = len(np.unique(trny))
    n_channels = trnX.shape[-1]

    result = {}
    multigpu = False
    model = auto_var.get_var("model",
                             trnX=trnX,
                             trny=trny,
                             multigpu=multigpu,
                             n_channels=n_channels)
    model.tst_ds = (tstX, tsty)
    with Stopwatch("Fitting Model"):
        history = model.fit(trnX, trny)

    result['trn_acc'] = (model.predict(trnX) == trny).mean()
    result['tst_acc'] = (model.predict(tstX) == tsty).mean()
    print(f"train acc: {result['trn_acc']}")
    print(f"test acc: {result['tst_acc']}")

    attack_model = auto_var.get_var(
        "attack",
        model=model,
        n_classes=n_classes,
        clip_min=0,
        clip_max=1,
    )
    with Stopwatch("Attacking"):
        adv_trnX = attack_model.perturb(trnX, trny)
        adv_tstX = attack_model.perturb(tstX, tsty)
    result['adv_trn_acc'] = (model.predict(adv_trnX) == trny).mean()
    result['adv_tst_acc'] = (model.predict(adv_tstX) == tsty).mean()
    print(f"adv trn acc: {result['adv_trn_acc']}")
    print(f"adv tst acc: {result['adv_tst_acc']}")
    del attack_model

    with Stopwatch("Estimating trn Lip"):
        trn_lip, _ = estimate_local_lip_v2(model.model,
                                           trnX,
                                           top_norm=1,
                                           btm_norm=norm,
                                           epsilon=auto_var.get_var("eps"),
                                           device=device)
    result['avg_trn_lip_1'] = trn_lip
    with Stopwatch("Estimating tst Lip"):
        tst_lip, _ = estimate_local_lip_v2(model.model,
                                           tstX,
                                           top_norm=1,
                                           btm_norm=norm,
                                           epsilon=auto_var.get_var("eps"),
                                           device=device)
    result['avg_tst_lip_1'] = tst_lip
    print(f"avg trn lip: {result['avg_trn_lip_1']}")
    print(f"avg tst lip: {result['avg_tst_lip_1']}")

    print(result)
    return result
Esempio n. 15
0
def test_low_level_api():
    timer = Stopwatch()
    sleep(0.1)
    assert timer.get_elapsed_time() == datetime.timedelta()
    timer.start()
    sleep(0.1)
    assert_timedelta_close_seconds(timer.get_elapsed_time(), 0.1)
    sleep(0.1)
    timer.pause()
    assert_timedelta_close_seconds(timer.get_elapsed_time(), 0.2)
    sleep(0.1)
    assert_timedelta_close_seconds(timer.get_elapsed_time(), 0.2)
    timer.split()  # 0:00:00.2
    assert timer.get_elapsed_time() == datetime.timedelta()
    assert_timedelta_close_seconds(timer.get_cumulative_elapsed_time(), 0.2)
    sleep(0.1)
    timer.start()
    sleep(0.1)
    assert_timedelta_close_seconds(timer.get_elapsed_time(), 0.1)
    assert_timedelta_close_seconds(timer.get_cumulative_elapsed_time(), 0.3)
    timer.split()  # 0:00:00.1
    sleep(0.1)
    timer.pause()
    timer.split()  # 0:00:00.1
    assert_timedelta_close_seconds(timer.get_cumulative_elapsed_time(), 0.4)
    assert_timedelta_close_seconds(timer.split_elapsed_time[0], 0.2)
    assert_timedelta_close_seconds(timer.split_elapsed_time[1], 0.1)
    assert_timedelta_close_seconds(timer.split_elapsed_time[2], 0.1)
    timer.reset()

    assert timer.get_elapsed_time() == datetime.timedelta()
    assert timer.get_cumulative_elapsed_time() == datetime.timedelta()
    assert timer.split_elapsed_time == []
    sleep(0.1)
    timer.start()
    sleep(0.1)
    assert_timedelta_close_seconds(timer.get_elapsed_time(), 0.1)